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Abstract

Order-sorted logics (or many-sorted logics) do not only have rigorous theoretic foundations
but also can represent structured information by the sort symbols in a hierarchy, called a
sort-hierarchy. This thesis presents the following contributions to the use of order-sorted
logic as a knowledge representation language.

First, we propose an extended order-sorted logic as a knowledge representation lan-
guage that possesses both hierarchies of sorts and predicates. This logic must delete and
supplement the arguments of each predicate in order to allow it to derive superordinate
and subordinate predicates (each with different argument structure) from the other predi-
cates in a predicate-hierarchy (as distinguished from a sort-hierarchy). Thus, we introduce
a Horn clause resolution extended to include inference rules of predicate-hierarchy. These
rules include the manipulation of arguments in which the supplementary arguments are
quantified differently, depending on whether a predicate is interpreted as an occurrence of
an event or a universal property. For the extended logic with a distinction between events
and properties in predicates, we give a restricted semantic model by interpreting the
constraints on predicate-hierarchy and the manipulation of arguments. Furthermore, we
prove the soundness and completeness of this Horn-clause resolution with both hierarchies
of sorts and predicates.

Secondly, we present a hybrid inference system which can deal with the properties
of implicitly negative sorts in an assertional knowledge base separated from the sort-
hierarchy. This solves the problem of the knowledge base being unable to appropriately
use a sort as negative information, despite the fact that sorts with negative meaning
may be implicitly included in a sort-hierarchy. These implicit negations, called lexical
negations in linguistics, are classified as (i) negative affix or (ii) lexicon with negative
meaning. Lexical negations are distinct from the negative particle ‘not’. We propose the
notions of structured sorts, sort relations, and contradiction in a sort-hierarchy. These
can define the relationship between the implicit negations and the classical negation, and
can declare the exclusivity and the totality of each negation and its affirmation. In this
thesis, we present a method of regarding the negative affix as an operator based on strong
negation and the lexicon with negative meaning as a sort exclusive to its antonymous sort
in the hierarchy. In order to infer from these negations, we combine a structured sort
constraint system into a clausal inference system.
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Chapter 1

Introduction

The goal of knowledge representation is to describe declarative knowledge in the real
world, not to put statements to be executed in order into a computer system. In the field
of artificial intelligence, many logical deduction systems with rigorous theoretic founda-
tions (syntax and model-theoretic semantics) have been used as knowledge representation
languages. In particular, order-sorted logics (or many-sorted logics) do not only have
rigorous foundations but also can represent structured information (i.e. the classification
of objects [15]) by the sort symbols in a hierarchy, called a sort-hierarchy, in which each
sort indexes a subset of the universe (i.e. the set of individuals).

The purpose of this thesis is:

1) to propose an extended order-sorted logic as a knowledge representation language
that possesses both hierarchies of sorts and pre(]icates;

(2) to present a hybrid inference system which can deal with the properties of implicitly
negative sorts in an assertional knowledge base, separated from the sort-hierarchy.

1.1 Sort and predicate hierarchies

We are concerned with describing structured information, not only as the classification of
objects but also as the classification of predicates, in various kinds of knowledge represen-
tation and with richer logical reasoning about the structured information than existent
knowledge reasoning systems (or deduction systems). However, knowledge representation
in standard logics, even in order-sorted logics with a sort-hierarchy, tends to lose the
structure information (e.g. the relationship between predicates fly and move) of pred-
icates describing assertions and their reasoning. To represent the relationship between
predicates within the framework of logic programming, programmers can build a pseudo-
predicate-hierarchy (by a set of formulas of the logical implication form “p(z) — ¢(x)”
in which a superordinate predicate ¢ has more abstract meaning than the subordinate
predicate p); nevertheless, this does not allow the flexible reasoning that can be achieved
using a predicate-hierarchy in which each predicate has its own fixed argument structure.
Thus, the representation and inference machinery peculiar to predicate-hierarchies (as
well as sort-hierarchies) is essential for predicate-hierarchy reasoning that is independent
of argument structures.



Logical deduction systems with sorted (or typed) expressions have been investigated
from the viewpoints of knowledge representation and rational reasoning. Amongst these
systems, there seem to be two approaches: the formalization of a logic language and the
implementation of a reasoning system (or logic programming language [6, 27]).

Following the many-sorted logic in Herbrand’s thesis [22], several many-sorted log-
ics [53, 18, 29] with different sorts as classes (e.g. points, lines, and planes in geometry)
of individuals (but without subsorts, namely all sorts are disjoint) have been formalized
as a generalized first-order logic with the same properties as first-order logic. A many-
sorted logic with a sort-hierarchy or subsorts is called an order-sorted logic [36]. In the
field of computer science, Walther and Cohn have separately developed an order-sorted
calculus [50, 51, 14] based on a resolution by a sorted unification algorithm with sort-
hierarchy. Since these papers, order-sorted logics have been extended to include more
expressive and efficient methods of knowledge representation and automated deduction
systems. In the logics [52, 10, 20, 41, 44] with a sort-hierarchy, the researchers are con-
cerned with order-sorted unifications that solve the problem of finding the most general
unifier of sorted terms depending on the structure (e.g. lattice) of the sort-hierarchy. In
other work related to order-sorted logic, typed logic programming languages [23, 21] have
been investigated as Horn clause logics with typed terms extended to include polymorphic
types and SLD-resolution (Selection-rule driven Linear Resolution for Definite clauses).

With regard to work that actually implements a reasoning system, the logic pro-
gramming languages LOGIN [1] and LIFE [2] have been proposed by Ait-Kaci in which
Y-terms together with feature structures [13] (which can describe complicated classes of
objects) are introduced. Smolka has proposed Feature Logic [44] to generalize t-terms
by adding negation and quantification. In New HELIC-II [35, 33] developed as a legal
reasoning system, Nitta has proposed a typed term (called an H-term) with a verb-type
or a noun-type by extending i-terms in order to represent legal knowledge. Alternatively,
F-logic [26] and QuzxoTe [54, 55] have been developed as object-oriented deductive lan-
guages with the notions of objects, classes, subclasses, and property inheritance derived
from the object-oriented programming paradigm.

We propose an extended order-sorted logic as a knowledge representation language
that possesses both hierarchies of sorts and predicates. This logic must delete and sup-
plement the arguments of each predicate in order to allow it to derive superordinate and
subordinate predicates (each with different argument structures) from the other predicates
in a predicate-hierarchy (as distinguished from a sort-hierarchy). For the manipulation of
arguments, we suggest that a distinction between event and property in predicate interpre-
tation leads to the machinery appropriate for predicate-hierarchy reasoning. The notion
of event and property is based on work [5, 31, 43] dealing with temporal reasoning (i.e.
taking account of various temporal aspects of propositions). In [5], Allen distinguished
between event, property, and process in English sentences, and so did McDermott [31]
between fact and event. In contrast to the work regarding temporal reasoning, we intro-
duce the new and entirely original idea that event and property assertions respectively
afford different quantification to all implicit objects in the real world, not only to spatio-
temporal objects. On the basis of this idea, we define an inference mechanism for the
predicate-hierarchy. This includes the manipulation of predicate arguments in which the
supplementary arguments are quantified differently, depending on whether a predicate is
interpreted as an occurrence of an event or a universal property. We develop a Horn clause
resolution extended to include inference rules (generalization and specialization rules) of



the predicate-hierarchy that include the supplementation of arguments in addition to
sorted substitutions (to enable sort-hierarchy reasoning).

1.2 Implicit negations

When one attempts to denote a sort name by the vocabulary in a natural language (e.g.
the sorts loser and unhappy_person), a sort-hierarchy may implicitly contain sorts with
negative meaning (which differs from the classical negation). These implicitly negative
sorts (called lexical negations in the literature [38] of linguistics) are classified as (i) neg-
ative affix or (ii) lexicon with negative meaning. In addition to a subsort relation corre-
sponding to the classification of objects, knowledge representation using a sort-hierarchy
requires describing the exclusivity and the totality of these negative sorts using com-
plex sorts (composed of the operators: conjunction, disjunction, and negation). In fact,
order-sorted logics cannot describe and emphasize the negative information in sorts in the
hierarchy, and also order-sorted substitutions (or unifications) cannot provide the reason-
ing mechanism required for the properties of implicitly negative sorts. Thus, in these
logics, the negative sorts would give rise to a semantic conflict between sort symbols in
the hierarchy.

We present a hybrid inference system which can deal with the properties of implicitly
negative sorts in an assertional knowledge base, separated from the sort-hierarchy. Our
approach is based on the order-sorted logic Beierle has proposed in [10]. In his logic, a
unary predicate (called a sort predicate) expressed by a sort can be expressible in clausal
forms whereby the resolution for clauses with sort predicates leads to a close coupling
between a sort-hierarchy and an assertional knowledge base. In this thesis, we propose
the notions of structured sorts, sort relations, and contradiction in a sort-hierarchy. These
can define the relationship between the implicit negations and the classical negation, and
can declare the exclusivity and the totality of each negation and its affirmation. In order
to infer assertional conclusions from these negations, we define deduction and resolution
systems obtained by a combination of a clausal inference system with sort predicates and a
structured sort constraint system. The negative information in sorts can be derived from
the hierarchy of structured sorts by regarding the negative affix as an operator based
on strong negation and the lexicon with negative meaning as an exclusive sort of the
antonym.! Furthermore, we define a contradiction in a sort-hierarchy that is decided by
the exclusivity and the totality (or partiality) of affirmative and negative sorts. Finally,
we give the syntax and the semantics of an order-sorted logic with structured sorts, and
the consistency of a hybrid inference system from clausal forms and sort constrains is then
proved.

1.3 Organization of thesis

We start in Chapter 2 with an introduction to the basic notions of sort-hierarchy (logic
with sort-hierarchy, property inheritance in a sort-hierarchy, and knowledge base with
sort-hierarchy) and lexical negations in natural language, and then discuss our motivations
for extending order-sorted logics (or typed logic programming languages) for knowledge
reasoning. Section 2.1 demonstrates the expected reasoning mechanism for both sort and

'A word that is opposite in meaning to anther word.



predicate hierarchies using two examples given by a typed logic programming language
with a query system. In Section 2.2, we illustrate the conclusions deduced from a sort-
hierarchy in a case where the hierarchy includes sort names that are lexical negations. At
the end of Chapter 2, we show related approaches to knowledge representation systems.

Chapter 3 sets the focus of the research. It develops an extended order-sorted logic with
predicate-hierarchy and eventuality. Section 3.1 considers how we introduce the notions
of predicate-hierarchy and eventuality and their corresponding reasoning mechanism into
an order-sorted logic. Here we discuss the problems of the framework of former order-
sorted logics (or reasoning systems with type expressions) that arise from dealing with a
predicate-hierarchy. In Section 3.2, we define the syntax and the semantics of the proposed
logic. In Section 3.3, we formalize a Horn clause calculus with inference rules of predicate-
hierarchy that include argument supplementation, and then develop a resolution based on
this calculus and an order-sorted unification algorithm. In Section 3.4, we evaluate the
capability of our logic as a knowledge representation system. Hence, we show that a query
system defined by the resolution we develop provides the reasoning mechanism required
in our motivational examples given in Chapter 2, and give an example of its application
to a legal reasoning.

Chapter 4 presents an order-sorted logic that includes the complex sort expressions of
implicit negations. In Section 4.1, we give an account of structured sorts, sort relations,
and contradiction in a sort-hierarchy. These notions can be used to declare the properties
of implicitly negative sorts in a sort-hierarchy. Section 4.2 and Section 4.3 present the
formalization of order-sorted logic with structured sorts, and systems of clausal deduction,
clausal resolution, and structured sort constraints. Section 4.4 evaluates the usefulness of
the knowledge representation system to deal with implicit negations. This will be shown
by derivations (using a hybrid inference system obtained by combining the systems we
propose) for the examples in Chapter 2.

In Chapter 5, we give our conclusions and discuss future work.



Chapter 2

Motivations and background

We start in Chapter 2 with an introduction to the basic notions of sort-hierarchy (logic
with sort-hierarchy, property inheritance in a sort-hierarchy, and knowledge base with
sort-hierarchy) and lexical negations in natural language, and then discuss our motivations
for extending order-sorted logics (or typed logic programming languages) for knowledge
reasoning. Section 2.1 demonstrates the expected reasoning mechanism for both sort and
predicate hierarchies using two examples given by a typed logic programming language
with a query system. In Section 2.2, we illustrate the conclusions deduced from a sort-
hierarchy in a case where the hierarchy includes sort names that are lexical negations. At
the end of Chapter 2, we show related approaches to knowledge representation systems.

2.1 Predicate-hierarchy and eventuality

2.1.1 Logic with sort-hierarchy

We will explain the notation (based on [45]) of order-sorted logic: sort-hierarchy, sorted
variables, sorted terms, and sorted substitutions. S denotes a set {si,...,s,} of sorts
where each sort indexes a class of individuals. A subsort declaration for S is an ordered
pair (s;,s;) of sorts, denoted by s; Cg s;. Let Ds be a set of sort declarations. The
subsort relation by Dgs can be obtained as follows

Cs={(s,s) € SxS|sCs s €Ds}.

A Cg path from s to s’ is a finite sequence xg,,..., T, in S such that o = s, z, = ¢
and, for 1 <1 <n, x;_; Cgs x;. We denote by <g the reflexive and transitive closure of
Cs. That is,

s<gs & s=45 or

there exists a CTg path from s to s'.

A hierarchy of sorts (or a sort-hierarchy) is an ordered pair (S, <g) where S is a set of
sorts (containing the greatest sort T and the least 1) and <g is a reflexive and transitive
subsort relation. A sort s is a lower bound of s; and s, if s <g s; and s <g s5. A sort
s is a greatest lower bound of s; and s, if s is a lower bound and s’ <g s for all lower
bounds s’ of s; and sy, written as s = glb(sy, s2). (S, <g) is called a lower semi-lattice if
glb(s1, s2) exists for all s1,s0 € S.
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Figure 2.1 A sort-hierarchy

For example, the following subsort declarations express that the sorts apple and orange
are subsorts of fruit and the sorts carrot and lettuce are subsorts of vegetable.

apple CTs fruit,
orange [Cg fruit,
carrot g wvegetable,

lettuce g wvegetable.
Moreover, by adding the subsort declarations

fruit Cg T,
vegetable Cg T,
1L Cs apple,
1 Cg orange,
1 Cg carrot,
1L Cg lettuce.

to the above declarations, the sort-hierarchy in Figure 2.1 can be built.
A variable z of sort s whose domain is restricted (i.e. a subset of the universe) is
written as

xT.s

which is called a sorted variable. A sort declaration (called a function declaration) of
n-ary function f is denoted by

fisi X ...xX8, = s

with s1,...,8,,s € S. In particular, a sort declaration of constant ¢ (i.e. 0-ary function)
is denoted by ¢: — s. A sort declaration (called a predicate declaration) of n-ary predicate
f is denoted by

P:Sy X ... X Sp
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Figure 2.2 Property inheritance

with s1,...,s, € S.

The term f(tq,...,t,) is a term of sort s, if the function declaration is f: sy x...X s, —
s. We denote the term f(ty,...,t,) of sort s by
ftr, ..o tn):s

where f is a n-ary function with the function declaration f:s; x...xs, — s. In particular,
we write for the term c of sort s

c:S

where ¢ is a constant with the function declaration ¢: — s. A term restricted by a sort s
is called a sorted term. For any sorted term ¢, the function Sort(t) assigns to the sort of
term ¢.

For example, we have

Sort(z:s1) = si,
Sort(f(c:s1,y:83):82) = $a.

Let L; be a literal where L;(t) denotes that the term ¢ occurs in the literal L;. A sorted
substitution with a subsort relation <g (or a sort-hierarchy) is defined by the following
rule [37]:

Li(x:s)V ...V L,(x: -
1(2:5) (2:5) (sorted substitution)
Li(t) V...V L,(1) ’

where Sort(t) <g s.

2.1.2 Property inheritance in a sort-hierarchy

The notion of inheritance [4] in a hierarchy is well-known in artificial intelligence and the
object-oriented paradigm in work that is related to nonmonotonic reasoning. Inheritance
is a mechanism in which subclasses (or specific classes) inherit the properties of their
superclasses (or general classes) in a hierarchy expressed as a semantic network [39]. We
now outline an inheritance mechanism in a sort-hierarchy that is the same as that adopted
in the logic programming languages LOGIN [1] and LIFE [2], and in the object-oriented
deductive languages F-logic [26] and QuzxoTe [54, 55].
Given the sort-hierarchy shown in Figure 2.2, we assume an assertion

7



prop(x: s1)

(described in order-sorted predicate logic) means that s; has the property prop. In the
sort-hierarchy, the property inheritance is a downward reasoning mechanism (shown in
Figure 2.2) from a supersort to the subsorts along the subsort relation. That is, if a
supersort has a property, then the subsorts also have the same property.

By the subsort declaration s, Cg s1, the sort sy inherits the property prop of sort s;.
Hence, we can obtain the following conclusion

prop(x: s3)

All the other subsorts sz, s4, s5 of s1 also inherit the property prop. We can say that this
conclusion is consistent with the classification of objects, since an object in subsort s must
an element of supersort s’ (with s Cg ') and then have the properties of s'.

2.1.3 Motivations

We shall discuss the expected reasoning mechanism for both sort and predicate hierarchies
using two examples given by a typed logic programming language with a query system.

Example 1. A hierarchy of predicates

We consider deriving superordinate predicates from subordinate predicates in the hierar-
chy of predicates.! That is, general expressions can be inferred from specific expressions
in the predicate-hierarchy.

Given the hierarchy of predicates in Figure 2.3, we expect the following results from
a query system in which the answer yes or no must be returned. First, we assume the
argument numbers of the predicates hit and illegal_act as follow.

hit/1
illegal_act/2

If a fact hit(john:man) holds, then the superordinate predicate illegal_act can be
derived from the predicate hit in direction (1) shown in the hierarchy of Figure 2.3.
However, the first query “Did John commit an illegal act against Mary?” expressed by
7-illegal_act(john:man, mary:woman) will give the answer no. It is certain that John
hit somebody but not that John hit Mary. Thus, the second query “Did John commit an
illegal act against somebody?” expressed by 7-illegal_act(john:man, Y:person) will
yield yes.

hit(john:man) .
?7-illegal_act(john:man, mary:woman) .
no.

7-illegal_act(john:man, Y:person).
yes.

IThe derivation from a subordinate predicate p; to the superordinate predicate p» is different from
the property inheritance we have explained in the previous section, and it is usually deduced from the
rule p1(x) — p2(x) and logical inference rules without any machinery peculiar to predicate-hierarchies.
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Figure 2.3 A hierarchy of predicates

This exemplifies the case of a derivation of predicate illegal_act (higher in the hier-
archy of predicates) with more arguments than the predicate hit representing the fact
hit(john:man). To make the inference above, we have to supplement the second argu-
ment (whose role may be person and which exists in i1llegal_act but not in hit) to the
fact hit(john:man). In addition, we have to take account of the quantifications of the
supplemented arguments. When the supplemented argument Y:person is interpreted as
all persons, the answer to the second query may be no. Therefore, because this interpre-
tation does not fit with what we expect (i.e. human reasoning), the argument Y:person
should be interpreted as a person (somebody).

Next we assume the argument numbers of the predicates illegal_act, hit, steal
and rob_with_violence as follow.

illegal_act/1

hit/2

steal/2
rob_with_violence/3

Since the predicate illegal_act has fewer arguments than the predicate steal in the
fact steal(john:man, mary:woman), the derivation of the following query results in yes
from direction (2) in Figure 2.3.

steal(john:man, mary:woman) .
7-illegal_act(john:man) .
yes.

This answer is plausible enough, because the fact steal (john:man, mary:woman) implies
the fact illegal_act (john:man) in a broad sense. Namely, the predicate illegal_act
is more general than the predicate steal, and the single argumant john:man is more
general than the two arguments john:man and mary:woman.

As for a more complicated inference, the predicate rob_with_violence as the con-
junction of hit and steal will be derived from the two predicates (on (3) in Figure 2.3).
Since the facts hit (john:man, mary:woman) and steal(john:man, c:wallet) in an in-
cident imply John’s robbing with violence, the query “Did John steal Mary’s wallet using
robbery with violence?” will yield yes.

hit(john:man, mary:woman) .
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Figure 2.4 The inference by event and property

steal(john:man, c:wallet).
?7-rob_with_violence(john:man, mary:woman, c:wallet).
yes.

To obtain this answer, we require inference machinery for the predicate-hierarchy whereby
the arguments of two predicates hit and steal are mixed to produce the arguments of
predicate rob_with_violence.

Example 2. Event and property interpretations

The interpretation of natural language sentences can vary the meaning of a predicate.
In knowledge representation using predicates, a predicate has the two roles as event and
as property (discussed in the research [5, 31] into temporal reasoning). For example, we
assume that the assertion f1y(X:bird) holds with the sort-hierarchy in Figure 2.4. This
assertion would be ambiguous, because of the two ways of interpreting it (as event and
as property) illustrated as follows.

The fact £1y (X:bird), when interpreted as an event, states that a bird is flying. Thus,
the fact entails that an animal is flying, so that the query ?-fly(X:animal) results in
yes. However, the fact does not state that a penguin is flying, and so the answer to query
7-fly(X:penguin) is no as follows.

Interpretation 1: A bird is flying.

fly(X:bird) .
7-fly(X:animal) .

yes.
7-fly(X:penguin) .
no.

?-move (X:animal) .
yes.

Briefly, the assertion as an event can be used to deduce the event assertion of a supersort.
As in the left hand side of Figure 2.4, we can deduce the event fly(X:animal) from the
event f1y(X:bird), since the sort animal is one of the supersorts of bird.

In contrast, the fact £1y(X:bird) interpreted as a property states that birds have the
property of flight. In this case, we can use the mechanism of property inheritance in the

10



sort-hierarchy as we have mentioned in the previous section. If birds have the property
fly and penguin is a subsort of bird, then penguins should have the same property fly.
Thus, the query ?-fly(X:penguin) will have the answer yes as follows.

Interpretation 2: Birds have the property of flight.

fly(X:bird) .
7-fly(X:animal) .

no.
7-fly(X:penguin) .
yes.

?-move (X:animal) .
no.

However, the assertion fly(X:bird) does not imply that all animals have the prop-
erty of flight, since animal is not a subsort of bird. As a result, the answer for query
7-fly(X:animal) will yield no. The right hand side of Figure 2.4 demonstrates the mech-
anism of property inheritance in which subsorts inherit the properties from the supersorts.
Using the inheritance mechanism, the conclusion fly(X:penguin) can be inferred from
the fact f1y(X:bird) in the sort-hierarchy.

In their interpretation as an event or as a property, these inferences in the two direc-
tions shown in the hierarchy in Figure 2.4 are consistent with natural human reasoning
from the eventuality.?

The queries and the answers we have seen suggest the necessity for order-sorted logics
to include an inference machinery that deals with both sort and predicate hierarchies and
which can distinguish between event and property in predicate interpretation.

2.2 Implicit negations

2.2.1 Knowledge base with sort-hierarchy

Beierle [10] has proposed a hybrid knowledge representation system that distinguishes
between taxonomical information (in the sort-hierarchy) and assertional information (in
the assertional knowledge base), by extending an order-sorted logic. This system can deal
with the taxonomical information in an assertional knowledge base in which a sort symbol
can be expressed as a unary predicate (called a sort predicate) in clausal forms. Since
a sort and a unary predicate have the same expressive power, we can regard a subsort
declaration s; C so as the following logical implication form:

s1(x) = so(x)

where the unary predicates s;(x), s2(x) corresponding to the sorts sy, s, are sort predicates.
Let C,Cy,Cy be clauses, s, sy, sy sorts (or sort predicates), 6 a sorted substitution,

and t,tq,ty sorted terms. In order to use the information in a sort-hierarchy in a clausal

knowledge base (or an assertional knowledge base), the following inference rules:

’In this paper, we use eventuality as a technical term to indicate the concept that propositions are
classified as various temporal aspects (e.g. event or property).

11
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(subsort resolution)

6(C1 Vv Cy)
where sy Cg s1 and () = 6(t5), and
—s(t) v C
% (elimination)

where Sort(t) Cg s, are added to his resolution system.
This hybrid knowledge representation system provides a useful way to deal with a
sort-hierarchy in a clausal knowledge base.

2.2.2 Lexical negations in natural language

In knowledge representation using a logic with sort-hierarchy, we can describe the classi-
fication of objects using a subsort relation. However, a sort-hierarchy may contain sorts
which we recognize as implicitly negative from their natural language meaning. These
negations are called lexical negations in linguistics and are distinct from the negative
particle not. Order-sorted logics would regard an implicitly negative sort as a positive ex-
pression but not as an expression which is opposite to its antonym, since every sort name
is a mere string or a symbol. Nevertheless, knowledge representation systems should take
account of the fact that the lexical negation unhappy (or loser) is opposite in meaning to
the positive expression happy (or winner), when a sort-hierarchy has these expressions.

To do this, we have to observe the properties of lexical negations in natural language
and then consider dealing with these negations in a sort-hierarchy. In [38], lexical nega-
tions (words that implicitly have negative meaning) are classified as follows:

(i) Negative affix (in-,un-,non-):
incoherent, inactive, unfix, nonselfish, illogical, impolite, etc.

(ii) Lexicon with negative meaning:
doubt(believe not), deny(approve not), prohibit(permit not), forget(remember not),
etc.

2.2.3 DMotivations

In the following, we will illustrate the conclusions deduced from a sort-hierarchy in a case
where the hierarchy includes sort names that are lexical negations.

Example 3. Negative affix: unhappy

A sort-hierarchy h; containing the sort unhappy with negative affix un is shown in Fig-
ure 2.5. The sort unhappy is not only a negative expression (unlike the positive expression
happy) but also a subexpression of feeling (like happy). Hence, the sort feeling can be
derived from unhappy (like happy) upward in the sort-hierarchy, whereas it cannot be
derived from the classical negation —happy of happy as follows:

unhappy(bob) F,  feeling(bob)
—happy(bob) t, feeling(bob)

12



feeling

/N
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very_happy sI ightly_ very_unhappy
happy

Figure 2.5 A sort-hierarchy including unhappy

person
pl ayer
Wi nner | oser

Figure 2.6 A sort-hierarchy including loser

where A |, B indicates that B is derivable from A in a sort-hierarchy h.

The sort unhappy is a stronger negative statement than the classical negation —happy,
so that —~happy can be derived from unhappy, but unhappy cannot be derived from —happy
in the following.

unhappy(bob) t,,  —happy(bob)

)
—happy(bob) 4, unhappy(bob)
The fact = feeling(bob) that the person bob is not feeling yields the following result.
—feeling(bob) tp, —happy(bob) A —unhappy(bob).
In contrast, no premise can derive
—happy(bob) A\ ~=happy(bob).

This shows the sort unhappy has the meaning of feeling, but the classical negation
—happy does not have the meaning of feeling.

Example 4. Lexicon with negative meaning: [oser

Let a sort-hierarchy hs including loser be given in Figure 2.6. In this sort-hierarchy,
both antonyms winner and loser (i.e. winner is opposite in meaning to loser) hold the
meaning of objects playing a game (i.e. player). Moreover, loser is different from the
classical negation —~winner of winner, because loser means the negative event opposite
to an event denoted by win but the classical negation —winner denys the event denoted
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by win. Therefore, the supersort player can be derived from loser (or winner), but not
from —winner as follows.

loser(tom) 4, player(tom)

—winner(tom) y, player(tom)

This is related to the difference (discussed in [19, 43]) between the negations of an event
and a property.

Furthermore, if the person tom is not a player, then the negations —winner and —loser
can be derived. In contrary, if the person tom is a player, then winner or loser holds in
the totality (i.e. tom must be a winner or a loser) of winner and loser as follows.

—player(tom) tp, —winner(tom) A —loser(tom)

player(tom) tp, winner(tom) V loser(tom)

By the totality, if the person tom is a player but not a loser (—loser), then tom is a
winner. If tom is neither a winner nor a loser (—winner A —loser), then tom is not a
player (—player) as follows.

player(tom) A =loser(tom) tp, winner(tom)

—winner(tom) A =loser(tom) tp, —player(tom)

We require these derivations from implicitly negative sorts. However, it is hard to dis-
tinctively describe implicitly negative sorts in the sort-hierarchy, so that many knowledge
bases would lose the property that implicit negations are exclusive to their antonyms and
partial to their classical negation. Therefore, standard inference systems of order-sorted
logics cannot immediately derive the above results from subsorts, supersorts, and classi-
cal negation. Thus, relating these negative sorts to their antonyms and classical negation
should be considered in an order-sorted logic. In Chapter 4, we will propose a method
to describe the properties of lexical negations implicitly included in a sort-hierarchy and
develop an inference machinery for outputting the above results..

2.3 Related work

In this section, we show related approaches to knowledge representation systems including
complex type expressions and their inference rules.

2.3.1 LOGIN

LOGIN has been developed as a logic programming language by replacing predicate ar-
guments in PROLOG with extended terms, called y-terms. This language includes an
inheritance mechanism (in an ISA-hierarchy) based on a ¢-term unification algorithm, in-
stead of a resolution principle for clausal forms. A 1)-term accompanies a sort (or a type)
symbol s with a finite sequence (called a feature structure) of ordered pairs of the form
[ = t where [ is an attribute label and ¢ is its attribute value. As a result, it contributes
a more expressive and efficient method of knowledge representation.

For example, the following t-term represents a concept “person” by the sort person
with feature structure id = name, born = date(...), father = person.
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person( id = name;
born = date(day = integer;
month = monthname;
year = integer);
father = person).

-terms allow us to represent more detailed information by feature structures than simple
sorts. The following 1-term

apple(taste = sour; color = red)

represents “sour red apples” where taste and color are attribute labels and sour and
red are their attribute values respectively. The meaning of a i-term is narrowed by the
succeeding feature structure, e.g., the simple sort apple is a more abstract expression than
the 1-term apple(taste = sour; color = red). Note that the simple sort apple shows
“apples” and the i-term apple(taste = sour; color = red)) shows “sour red apples.”

In particular, ¢)-terms enhance the expressivity of the terminology used to represent
complex concepts (both concrete and general concepts with attributes). However, -terms
cannot express the classification of verb-expressions (or predicates), because a t-term
cannot express a relation between objects, it can only express a class of objects, i.e. a
complex sort (or type). To deal with the classification of verb-expressions, the knowledge
representation language in New HELIC-II (which we will explain in the next section)
introduces an extended terminology (called H-terms that are based on 1)-terms) with a
type-hierarchy that distinguishes between verb-types and noun-types.

2.3.2 New HELIC-II

In [35], Nitta has presented the legal reasoning system New HELIC-II which is aimed at
the modeling of general legal reasoning and is based on his experience with HELIC-II [34].
This system, composed of two inference engines (rule-based reasoning and case based rea-
soning) provides two important functions in legal reasoning. The first is an argumentation
function realized by a typed logic language. The second is a debating function realized by
controlling the argumentation. The knowledge representation language in New HELIC-II
can describe legal rules, legal cases, and meta-rules by the typed terms (called H-terms)
extended to ¥-terms in LOGIN. A type expression in an H-term is classified as a verb-
type or a noun-type in the type-hierarchy® (as shown in Figure 2.7), where the hierarchy
includes the greatest type T (as the set of all objects) and the least type L (as a null set).

We here introduce a typed term to explain the notation of H-terms. Similarly to a
1-term, a typed term

E(ll :Ala---aln:An)

consists of a type expression E and a list ; = Ay,...,l, = A, of attributes where F
is a verb-type or a noun-type, li,...,l, attribute labels, and A;,..., A, typed terms.
Therefore, a H-term is a typed term such that the root symbol E is a verb-type and the
attribute values A;,..., A, are typed terms of which each root symbol is a verb-type or
a noun-type. We give an example of a legal rule written by H-terms as follows:

3In [33], a verb-type is called an event-type or a property-type, and a noun-type is called an object-
type.
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Figure 2.7 Verb type and noun type

crime_of _violence(a-object = hit(agent = X /person, object =Y /person,
place = W/T, time = Z/T)) «+
hit(agent = X/person, object =Y /person, place = W/T, time = Z/T).

The expressions crime_of _violence(. ..) and hit(...) are H-terms where the root symbols
crime_of _violence and hit are verb-types and person is a noun-type.

Since H-terms allow us to use either a verb-type or a noun-type in their arguments,
it is useful for representing legal knowledge more expressively than i-terms. However,
its complicated syntax gives rise to the difficulties in defining the semantic models and
proving the completeness of the inference system.

2.3.3 F-logic

Frame-logic (called F-logic [26]) is a deductive object-oriented language that is as an exten-
sion to O-logic [28]. It includes object identity, complex objects, inheritance, polymorphic
types, query method, encapsulation, and other features. In general, object-oriented ap-
proaches are insufficient for the formalization of model-theoretic semantics. Alternatively,
formal deductive approaches only represent flat data and so do not support notions of
the classification of objects. In contrast to these two separate approaches, F-logic as an
object-oriented language with logical deduction solves both problems.

The formulas (called F-formulas) in the language for F-logic are classified as is-a
assertions, data expressions, or signature expressions. An example of F-formulas is shown
as below:

ISA-relations:

student : person

john : student
Database facts:

bob[name — “Bob";age — 40;

works — csi[dname — “CS";mngr — bob;
assistants —» {john, sally}|]

General Class Information:
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facultylboss = {faculty, hi_paid_empl};
age = midaged; degrees == degrees;
degrees —» {phd}]
Deductive rule:
Elboss — M] «+ E:empllworks — D :deptlmngr — M :empl]].

An is-a assertion denotes an ISA-relation, e.g. student : person declares the class student
is a subclass of person. As can be seen from the above F-formulas, the double-headed
arrows — and = are used as set-valued attributes, and the single-headed arrows — and
= are used as scalar attributes. Data expressions take two forms:

Scalar data expressions: O[Q — Ti;...],
Set-valued data expressions: O[R —» {S1,...,Sk};.. ],

which denote database facts. In the above example, the database fact indicates that the
object bob has the attributes: name “Bob”, age 40, and works cs,. Signature expressions
also take two forms:

Scalar signature expressions: O[V = (Ay,..., A.);...],
Set-valued signature expressions: O[W == (By,...,S);...],

which denote general class information. In the above example, the general class informa-
tion shows the concept of “faculty” with attributes boss, age, and degrees.

Moreover, F-logic provides a complete inference system for F-formulas (expressed as
[SA-relations, database facts, general class information, and deductive rules) that consists
of clausal inference rules, ISA inference rules, and type inference rules.

2.3.4 Quixote

QuzxoTe [47, 54, 55] has been developed as a object-oriented deductive language in which
the basic notions of knowledge representation are objects and their properties. An object
term o denotes an object, and a subsumption constraint o; = o0y over the set of object
terms denotes a property of objects. An ordered pair (o, {csi,....,cs,}) of an object
term o and a set {csq,...,¢s,} of subsumption constraints (such that cs; is of the form
0.l Cwv, 0.l Jw,or ol =wv)is called an attribute term that represents properties of object
0. This ordered pair is written by

0/[110271711, S anPZUn]

with op; € {=, —, <} where the list [lyopiv1, ..., l,op,v,] is called the extrinsic attribute
of object term o. Here, if ¢s; is of the form 0.l C v, then the list includes [ — v. If ¢s; is
of the form v C o.[, then the list includes [ «— v. We write [ = v for [ — v and [ <— v. For
example, the following expression

john/[age = 20, sex = male)].

is an extrinsic attribute term. A object inherits extrinsic attributes from the super objects.
For example, given the following statements

swallow T bird.
bird/[canfly — yes].
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The object swallow inherits the extrinsic attribute [canfly — yes| from the object bird.
Moreover, QuzxoTe has introduced another attribute (called an intrinsic attribute) rep-
resenting a property that identifies the object. An intrinsic attribute is included in the
object term but not in the attribution of an attribute term. The following example rep-
resents the concept “red apples” by a complex object term with an intrinsic attribute.

apple[color = red).

While the statement apple[color = red] means “red apples,” the statement apple/[color =
red] means that “apples are red.” These extrinsic and intrinsic attributes correspond to
a Y-term apple(color = red) (i.e. a typed term with feature structure) and an atomic
formula red(z: apple) in predicate logic respectively.

QuzxoTe provides a programming language paradigm as well as a knowledge repre-
sentation system. However, we believe that it is incapable of representing those quantifi-
cations of propositions that depend on eventuality in natural language.

2.3.5 Description logics

Description logics (as outlined in [40, 17]) have been proposed as a theoretical approach
to terminological knowledge representation, related to semantic networks [39], frame sys-
tems [32], and KL-ONE knowledge representation systems [11]. These logics represent
structured concepts formed by primitive concepts and attributes, whereas order-sorted
logics express assertions concerning objects classified in a sort-hierarchy. The language of
a description logic is a language (called a concept language) that consists of a set C of
concept symbols and a set R of role symbols. In [42], the attribute concept description
language ALC and its sublanguages AL, ALE, ALU have been presented. Given a set C
of concepts (C, D, ..) and a set R of roles (R, S, ..), the syntax of language ALC is defined
by the following.

Concept terms : C,D — C | -C | C11D | CUD |VR.C |3R.C.
For example, the following concept term

AChild.Male N Person

indicates “persons that have a male child.” Furthermore, the sublanguage AL is obtained
by deleting the disjunction form C U D, restricting IR.C' to the form IR.T (called un-
qualified existential quantification), and restricting —=C' to the form —A (called simple
complement) where A is a concept symbol. By adding constructors (connectives, quan-
tifiers, modal operators, etc.) to AL, various superlanguages [7, 12, 8, 25] have been
developed.

An interpretation Z = (AZ,.%) consists of a set AT (called the domain of Z) and
a function % that maps every concept to a subset of A? and every role to a subset of
AT x AT such that

T = AT,

(VR.C)* = {a € AT |V(a,b) € RE:b € CT},
(AR.CY* = {a € AT | A(a,b) € R*:b € C*},
(Cn D) =C*n Dt

(CuD)f =C*tuD?,

(=C)F = AT — 7.
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A knowledge base in description logics is a set of axioms of the form
Subsumptions : C C D

where C' and D are concept terms. We write C' = D for C C D and D C C. For example,
we can define “a man is a human and a male” as follows.

Man = Human 1 Male

Note that the concept Man is defined by the concepts Human and Male.
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Chapter 3

Predicate-hierarchy and eventuality
in order-sorted logic

In this chapter, we develop an extended order-sorted logic with predicate-hierarchy and
eventuality.

Section 3.1 considers how we introduce the notions of predicate-hierarchy and even-
tuality and their corresponding reasoning mechanism into an order-sorted logic. Here we
discuss the problems of the framework of former order-sorted logics (or reasoning systems
with type expressions) that arise from dealing with a predicate-hierarchy. In Section 3.2,
we define the syntax and the semantics of the proposed logic. In Section 3.3, we formalize
a Horn clause calculus with inference rules of predicate-hierarchy that include argument
supplementation, and then develop a resolution based on this calculus and an order-sorted
unification algorithm. In Section 3.4, we evaluate the capability of our logic as a knowl-
edge representation system. Hence, we show that a query system defined by the resolution
we develop provides the reasoning mechanism required in our motivational examples given
in Chapter 2, and give an example of its application to a legal reasoning.

3.1 Event, Property, and Hierarchy

In this section, we consider the notions of predicate-hierarchy and eventuality, and discuss
the problems of the framework of standard logics that arise from dealing with them.

3.1.1 A hierarchy of predicates

In a deduction system with sort-hierarchy, we attempt to introduce a predicate-hierarchy
built by a binary relation Cp (which we call a subpredicate relation) on a set of predicate
symbols. For any predicates pi,po, the subpredicate declaration p; Cp p, means that
p1 is a subordinate predicate of p, and that p, is a superordinate predicate of p;. We
assume that every subpredicate relation Cp is anti-symmetric. Within the framework of
logic programming, the subpredicate relation to build a predicate-hierarchy is expressed
by a set of formulas of the logical implication form p(xz) — ¢(z) (expressed as a logic
representation [46]). By this logical implication form, the following formula

fly(x) — move(x)
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denotes that move is a superordinate predicate of fly, whereby we can infer that if fly(a)
holds, then move(a) does.

However, we contend that this form cannot completely represent the relationship be-
tween predicates in a hierarchy. The problem comes from the fact that each predicate
with its own fixed argument structure leads to a disconnection (e.g. by a difference in
the number of arguments) between predicates related to each other in a hierarchy. For
example, suppose that the following formulas expressed by the predicates explain and talk
with two arguments are given as:

explain(john: man, c: book)
talk(john: man, mary: woman)

In the example, the first argument of both predicates is the same, but the second argu-
ments are different. The role of both first arguments is “agent,” and the role of the second
argument in ezxplain is “object” but in talk is “coagent.” Therefore, the second arguments
cannot be unified between explain and talk when the predicate talk is derived from the
predicate explain along the subpredicate declaration explain Cp talk. Moreover, if we
attempt to write a subpredicate declaration by the logical implication form, we may have
to write several formulas to associate arguments in the premise p(..) with those in the con-
clusion ¢(..) (e.g. p(z,y) — q(z,y), p(x,y) — q(y, ), p(x,z) = q(x,x),...). Hence, they
would become more complicated as the number of predicates in the hierarchy increased.

Next we will discuss an inference machinery from a subpredicate relation Cp in which
each predicate in the predicate-hierarchy may have a different argument structure. Sup-
pose that the subpredicate declaration

explain Cp talk

is given. To fill the gap between the fixed argument structures of predicates explain and
talk we need to supplement missing arguments by appropriate arguments, depending on
the argument structures and their argument roles. How do we obtain the necessary infor-
mation about the argument structures of predicates? In our approach, we use argument
labels' to render arguments roles, e.g., the argument labels agt and obj written as:

explain(agt = john: man,obj = c;: book)

uniquely represent the argument roles to determine the argument structure of the pred-
icate explain. In this example, agt is an argument label representing “agent,” and obj
is an argument label representing “object.” This notation would be able to provide the
following reasoning mechanism in a query system. Let the fact

explain(agt = john: man, obj = ¢;: book)
be given. The query
?-talk(agt = x: person, coagt = y: person)

will yield yes in the following way.

!The argument labels differ from the attribute labels in the ¥-terms proposed in LOGIN [1].
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Fact: explain(agt = john: man,obj = ¢;: book)
i (1) derivation of the superordinate predicate
talk(agt = john:man,obj = c;: book)
i (2) deletion of an argument
talk(agt = john: man)
i (3) addition of an argument
talk(agt = john: man, coagt = cy: person)
T (4) sorted substitution
Query: talk(agt = x: person, coagt = y: person)

In the above reasoning process,
(1) derives the predicate talk from the subordinate predicate ezplain,

(2) deletes the second argument obj = ¢;1: book that is a surplus argument in the pred-
icate talk,

(3) adds the argument coagt = cy:person that is deficient in the arguments of the
predicate talk,

(4) substitutes agt = x:person for the first argument agt = john:man along the
subsort declaration man Cg person, and coagt = y: person for the second argument
coagt = c: person.

In the manipulations of (2) and (3), the addition and deletion of arguments depend on the
argument structures specified by the argument labels in talk and explain. Moreover, to
make the added argument in (3), we define the scope of every argument as a sort in which
each argument label determines the sort of the term used to express that argument. Let
SCP be a function from the set of argument labels to the set of sorts. For the argument
labels agt,obj,coagt, if we define a function SCP such that

SCP(agt) = person,
SCP(obj) = thing,
SCP(coagt) = person,

then the sort person indicates the scope of agt and coagt, and the sort thing indicates the
scope of obj. Therefore, the added argument c¢y: person in (3) can be supplied from the
scope SCP(coagt) = person indicated by the argument label coagt.

3.1.2 Predicates as Event and Property

In knowledge representation, predicate symbols can be used to represent attributes, prop-
erties, or states of objects. For example, walk(z: man) means that a man is walking,
and red(y: apple) means that an apple is red. However, usage of the predicates walk and
red in these assertions may not be consistent. That is, the predicate in walk(z: man)
implies an event, whereas the predicate in red(y: apple) implies a property. Alternatively,
the predicate walk may also be interpreted as the event “is walking” or the property
“can walk.” As a result, the two kinds of usage would give rise to erroneous reasoning
from a predicate-hierarchy, unless an inference mechanism takes account of the distinction
between event and property (as we have seen in section 2.1.3).
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In the following, we give a specification that can deal with predicates to be used as
events or properties. First, we distinguish between event and property assertions and
solve the ambiguity of these assertions by introducing a different notation that identifies
each predicate as either an event or a property into an order-sorted logic. Second, we
discuss a mechanism for supplementing the deficient arguments in a predicate on the
basis of the distinction between the predicate interpreted as an occurrence of an event,
and interpreted as a property of objects.

In a typed logic programming language, we can regard c: s as an existential expression
and z:s as a universal expression where c: s is a constant of sort s and z: s is a variable
of sort s. For example, x: bird denotes all birds, and c: bird denotes a bird where c is a
new constant. Given a language with predicates py,...,p,, we specify two aspects of a
predicate as follows.

Specification 3.1 (Two aspects of a predicate) For any predicate p;, p! is the pred-
icate as event and pg 15 the predicate as property. The concept of assertions defined as an
event and as a property is given below:

Event assertion: The predicate as event expresses that there is a fact or an occurrence
of such an event. An argument of the predicate is limited to an object, so that the following
assertion is interpreted as “A bird is flying.”

fly*(c:bird) ~ Fa:bird[fly_as_event(x: bird)]?

Property assertion: The predicate as property expresses an attribute of objects. An
arqument of the predicate is universal in the domain indexed by a sort, so that the following
form means “All birds have the property of flight.”

fly?(z:bird) ~ Va:bird[fly_as_property(x: bird)]

When an argument is supplemented to a predicate in the process of predicate-hierarchy
reasoning, the two aspects of the predicate naturally cause differently quantified argu-
ments.

Specification 3.2 For the predicate p* as event, the added argument should be one oc-
currence of an object corresponding to one event. For the predicate p* as property, the
added arqgument should be globally all objects in a sort but not a unique object. Therefore,
we add an ezistential term c: s (representing an object within the sort s) to a predicate
interpreted as event, and we add a universal term x: s (representing all objects in the sort
s) to a predicate interpreted as property.

Given the predicates hit* and hit' with argument labels agt and coagt, the deficient
arqguments in their predicates are supplemented differently as follow.

2We use these expressions to explain the assertions as the closest representation of event and property
in first-order predicate logic.
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Predicate as event:
hit* (agt = john:man)
addition of an arqument
hit*(agt = john: man, coagt = c: person)
(John hit a person.)

where ¢ is a new constant.

Predicate as property:
hit*(agt = john: man)
addition of an arqument
hit*(agt = john: man, coagt = x: person)
(John has the property of hitting every person.)

where T 18 a new vartable.

The argument label coagt in the predicates hit® and hit* determines the sort person as the
scope of the second argument due to SCP(coagt) = person. Hence, the term c: person is
added to the predicate hit® as event where c is a new constant, whereas the term x: person
is added to the predicate hit* as property where x is a new variable.

3.2 An order-sorted logic with hierarchies and even-
tuality

In this section, we define the syntax and semantics of an extended order-sorted logic with
hierarchies and eventuality. This formalization includes the following notions to define
both sort and predicate hierarchies and predicates that distinguish between events and
properties.

(1) Syntax

e A sorted signature ¥ with hierarchical predicates that includes subsort declarations,
function declarations, subpredicate declarations and argument structure declara-
tions.

e Sorted terms and formulas that are composed of sorted variables and the sort,
function and hierarchical predicate symbols in .
(2) Semantics

e An HY-structure that consists of the universe and an interpretation of the sort,
function and predicate symbols in ¥ and satisfies the subsort declarations, the func-
tion declarations and the subpredicate and argument structure declarations.

e Two translations (argument supplementation and composition of predicates) in a
structure that are used to interpret subpredicate declarations.
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(3) Inference system

e A Horn clause calculus that includes

— a generalization rule and specialization rule of predicate-hierarchy

— argument supplementation for ill-argumented atoms.

e A Horn clause resolution that is based on the Horn clause calculus and an order-
sorted unification algorithm.

e A query system with existential and universal variables.

3.2.1 Language and signature

We first define the syntax of an extended order-sorted logic with hierarchies and eventu-
ality. In order-sorted first-order languages, variables, functions and predicates may have
sorts that are ordered and different.

Definition 3.1 An alphabet for an order-sorted first-order language L consists of the
following symbols.

(1) S is a set of sort symbols si, sa, . .. with the greatest sort T and the least L.
(2) F, is a set of n-ary function symbols fi, fo,. . ..

(3) P, is a set of n-ary predicate symbols py, pa, . . ..

(4) Vs is a countably infinite set of variables x1: s, xo:s,... of sort s.

(5) AL is a set of predicate argument labels ay, as, . . ..

(6) =, \,V,—,V,3 are the connectives and the quantifiers.

(7) (,),=,e,t are the auziliary symbols.

We denote by P the set U,>oPn of all predicate symbols and by F the set U,>o Fn of
all function symbols. V denotes the set |J,cs Vs of the variables of all sorts. In order to
indicate each argument role, the language £ contains predicate argument labels.

Definition 3.2 (Declaration) A declaration over SUFUP (for an order-sorted first-
order language L) is an ordered triple D = (Ds, Dx, Dp) such that

(1) Ds is a set of subsort declarations of the form s1 Cg 2,

(2) Dg is a set of function declarations of the form f:s; X ... x s, — s where f € F,
and n > 0,

(3) Dp is a set of subordinate predicate declarations (or simply subpredicate declarations)
of the form p; Tp ps where p1,ps € P and argument structure declarations of the
form p: {(ala 51)7 T (ana Sn)} where pE Pn; n > 07 and a; 7& a; Zfl 7& j7

(4) [fp {(alasl)v SRR (anasn)} S DP; then ARG(p) = {a17 .- '7an} (md, fOT' 1<i< n,
SCP(a;) = s; where
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— SCP is a function from AL to S,
— ARG is a function from P to 24F.

In the above declaration, the subsort declarations (in Ds) and the subordinate predi-
cate declarations (in Dp) express a sort-hierarchy and a predicate-hierarchy respectively.
SCP(a;) denotes a sort as the scope of the argument labeled by a;. ARG(p) indicates a
finite set of argument labels as the unique argument structure of predicate p. We use the
abbreviation ARG(p — ¢q) to denote ARG(p) — ARG(q).

Definition 3.3 (Sorted signature with hierarchical predicates) A signature for an
order-sorted first-order language L with hierarchical predicates (or simply a sorted signa-
ture with hierarchical predicates) is an ordered quadruple ¥ = (S, F, P, D) where S is the
set of all sort symbols, F the set of all function symbols, P the set of all predicate symbols,
and D = (Ds, Dz, Dp) a declaration over SUFUP.

Example 3.1 We show an example of a sorted signature 3 for an order-sorted first-order
language L with hierarchial predicates. The sorted signature ¥ comprises the following
symbols

S = {person, man,woman,animal,bird, wallet, thing, T, L},
F = {john,mary},
7) {p17p27 q}7

and the declaration D = (Ds, Dg, Dp) with

Ds = {man Cg person,woman Cg person,wallet Cg thing,
1 Cg man, L Cg woman, L Cg bird, L Cg wallet,
person Cg T,animal Cg T,thing Cs T },

Dy = {john:— man, mary: — woman, c: — wallet},

Dp = {hit:{(agt, person), (coagt, person)},
steal: {(agt, person), (obj, T)},
fly:{(sbj, T)}},

Unlike ordinary order-sorted logics, sorted signatures with hierarchical predicates
contain subpredicate declarations of the form p; Cp p; and argument structure dec-
larations of the form p:{(ai,s1),...,(an,s,)} that indicate a predicate-hierarchy and
the various argument structures of the predicates respectively. In the above example,
q Cp p1 (in Dp) declares that the predicate ¢ is a subpredicate of predicate p;, and
pr: {(agt, person), (coagt, person)} declares that the predicate p; consists of two argu-
ments labeled with agt and coagt (which mean an agent and a co-agent respectively) and
that the sorts of both these arguments are person.

3.2.2 Order-sorted terms and formulas

We define the expressions order-sorted term and formula for our order-sorted first-order
language L.
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Definition 3.4 (Sorted terms) Let ¥ = (S, F,P,D) be a sorted signature with hierar-
chical predicates. The set TERM of terms of sort s is defined by:

(1) A variable x: s is a term of sort s.
(2) A constant c: s is a term of sort s where ¢ € Fy and ¢: — s € Dg.

(8) If t1,...,t, are terms of sorts si,...,Sp, then f(ti,...,t,):s is a term of sort s
where f € F,, and f:s1 X ... X 8, = s € Dr.

(4) If t is a term of sort s', then t is a term of sort s where s' Cg s € Dg.

The terms of sort s include the terms of all the subsorts s’ where s’ Cg s. We denote by
TERM the set of all (order-sorted) terms

| TERM,.

SES

We define the function Var as assigning any order-sorted term to the set of free vari-
ables occurring in it.

Definition 3.5 The function Var from TERM into 2V is defined by:
(i) Var(z:s) = {x: s}, and
(i) Var(f(ty,...,tn):5) = Ur<ic, Var(ts). In particular, Var(c:s) = 0 where ¢ € Fo.

TERM, denotes the set of all the terms without variables, i.e. TERM, = {t € TERM |
Var(t) = 0}. A term ¢ is said to be a ground term if ¢ € TERM,. TERM, s denotes the
set, of all ground terms of sort s.

For every predicate symbol p € P, we use the notation (which we introduced in
Section 3.1.2) that p® is the event predicate and p* the property predicate. Given the set P
of all predicate symbols, we write P* for the set {p® | p € P} of all event predicates and P*
for the set {p* | p € P} of all property predicates. We define the function [ ]: P*UP? — P
such that [p] = p if ¢ is p* or p* and the function ( ): P* UP* — {e, £} such that

e ife=p
<(p>_{ti if ¢=p".

For instance, the predicate symbols of fly® and fly* are given by
[Fly*) = [fly"] = fly
and the eventualities of fly* and fly* are given by

(fly*) = o,
(flyy = ¢

Definition 3.6 (Sorted formulas) Let ¥ = (S, F,P,D) be a sorted signature with hi-
erarchical predicates. The set FORM of sorted formulas is defined by:

(1) If t1,...,t, are terms of si,...,Sp, then p*(a; = ti,...,a, = t,) is the atomic
formula for an event predicate where p* € P* and p:{(a1,s1),..., (an, Sn)} € Dp,
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(2) If ti,...,t, are terms of s1,...,8n, then p*(a; = ti,...,a, = t,) is the atomic
formula for a property predicate where p* € P* and p: {(ay,s1),- -, (an, $n)} € Dp,

(3) If A and B are formulas, then (—A), (AA B), (AV B), (A — B), (Vx:sA), and

(Fz: sA) are formulas.

The atomic formula for an event predicate is called an event atomic formula (or simply an
event atom) and the atomic formula for a property predicate is called a property atomic
formula (or simply a property atom).

Example 3.2 For the sorted signature ¥ of Example 3.1, we give examples of order-
sorted formulas shown as:

hit* (agt = john: man, coagt = mary: woman),
steal®(agt = john:man, obj = c:wallet),
fly(sbj = x: bird).

The first and second event atoms express that “the agent john hit the co-agent mary” and
“the agent john stole the object wallet” respectively. The third property atom describes
that “birds have the property fly,” i.e., “birds can fly.”

Two atoms ¢(a; = ti,...,a, = t,) and ¢'(by = ry,..., by, = 1) are equivalent if
o =¢ and {a; = t1,...,a, = t,} = {by = r1,...,b; = }. We write A = B to
indicate that the atoms A and B are equivalent.

Example 3.3 Let A and B be the atoms given by

A = robwith_violence® (agt = john: man, coagt = mary: woman),

B = rob_with_violence®(coagt = mary: woman, agt = john: man).

Then A ~ B.
We define the set F'Var(A) of free variables occurring in the formula A as follows.

Definition 3.7 The function FVar from the set FORM of formulas into 2V is defined by:
(i) FVar(o(ay = ti, ..., an = tn)) = Uicicn Var(t;) where ¢ € P*U P,
(i1) FVar(—=A) = FVar(A),
(iii) FVar(Ax B) = FVar(A)U FVar(B) for x € {V,\,—}, and
(iv) FVar(xA) = FVar(A) — {x: s} for x € {Va:s,Jz: s}.

A formula F is said to be a sentence if the formula is without free variables, i.e. FVar(F) =
(. A formula F is said to be a ground formula if the formula is without variables or
quantifiers.

An argument is an ordered pair (a,t) where a is an argument label and ¢ is an order-
sorted term, denoted by a = t. Let u be a set of arguments. [i is a finite sequence of
arguments in . We write ¢(f1) where ¢ € P* U P*, when we express any sequence of
arguments in p, i.e., any argument structure constructed by the elements of y. In order
to obtain the set of argument labels occurring in i, we define the function LS(j1) = {a; €
AL|aZ:>tZ€u}
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3.2.3 Y-structure

We have mentioned in the previous section that atoms composed of the same predicate
symbol and the same arguments can be regarded as equivalent. Hence, in the following
definition of the semantics of our logic, we will define that the ordering of arguments
in a predicate does not alter the interpretation of its atomic formula. For example, the
following formulas

p'(a1 = tl,a2 = t2) and p.(CLQ = t2,a1 = tl)

are regarded as semantically identical because they have the same argument structure
and terms. Instead of the ordering of arguments, we can decide the equivalence by the
argument labels that determine each argument role .

Moreover, a requirement of our order-sorted logic is to derive ¢*(i) from p*(i') (or
¢* () from p*(ji') ) along the subpredicate relation p Cp ¢ where the argument structures
i, i’ of predicates p, ¢ may be different (e.g. the numbers of arguments). Therefore,
the interpretation of the subpredicate relation must include a translation of the argument
structure 7 of p to the argument structure i’ of ¢. To begin, we shall give a sorted
structure (called a X-structure) for the semantics of order-sorted logic with hierarchies
and eventuality.

Definition 3.8 Let ¥ = (S, F,P,D) be a sorted signature with hierarchical predicates.
A X-structure is an ordered pair M = (I,U) such that

e U is a non-empty set (the universe of M), and

e [ is a function such that

— ifs€ S then I(s) C U,
— if s; Cg s; € Ds then I(s;) C I(s;),

—iffeF,and f:s1 X ...xX s, >sE€Dgr
then I(f):I(s1) X ... x I(s,) — I(s), and

— if p € P, and p: {(ay, $1),. .., (ay, $n)} € Dp
then I(¢) C {p € (ARG(p) — U) | Ya; € ARG(p), p(a;) € I(SCP(a;))}*® for

p e {p*,p"}.

We call a function p € (ARG(p) — U) an argument interpretation, which is used for
interpreting the event and property predicates p®,p* in the definition of the Y-structure.
In the semantics of first-order logic, the interpretation (denoted I(p)) of an n-ary predicate
p is a set of n-tuples on the universe U (i.e. a subset of U™). Instead of an n-tuple on U,
we use an argument interpretation:

p = {(a1,d), (a,d3), -+, (an, dn)}

defined as a set of ordered pairs (a,d) where a € AL and d € U. That is, an argument
interpretation is a subset (i.e. p C AL x U) of the cartesian product AL x U of two sets
AL and U where AL is the set of argument labels and U is the universe.

3For sets X and Y, the set of all functions from X to Y is denoted by (X — Y).
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Remark 3.1 In first-order logic, an n-ary predicate (or an n-ary relation) is defined
by a set of n-tuples (dyi,ds,...,d,) on U. In contrast to an n-tuple (dy,ds,...,d,), we
use an arqgument interpretation { (a1, dy), (a, dz), ..., (an,d,)} wheredy, ..., d, are labeled
but not ordered. Note that the argument interpretation is the function p: ARG(p) — U
with ARG (p) = {ay,...,a,} (corresponding to a n-tuple (dy,ds, ...,d,) on U) such that
play) =di,...,pla,) =d,. Similarly, a predicate is interpreted as a set of n-tuples on U
(i.e. a subset of U™). 1(p®) or I(p*) is defined as a set of argument interpretations p (i.e.
a subset of the set of all arqgument interpretations).

Example 3.4 Given a sorted signature ¥ = (S, F, P, D) with
S = {person, T, L},

Fo= 0,
P = {p},
D = (0,0, {p:{(agt,person), (obj, T)}}),

we have ARG(p) = {agt,obj}, SCP(agt) = person, and SCP(obj) = T. Let U =
{dy,dy,ds} and I be a function such that I(person) = {di} and I(T) =U. If I(p*) =0
and I(p*) = {p1, p} such that

P = {(agta dl)?(Oijdl)}a

p2 = {(agt,di),(0bj,d»)},

then (U, 1) is a X-structure, i.e. it satisfies the conditions of Definition 3.8.

3.2.4 Restricted structure for hierarchical predicates

We will define a restricted Y-structure that satisfies the constraints given by introducing
hierarchical predicates. In order that the structure interprets subpredicate declarations
in 3, we introduce two translations (argument supplementation and composition of pred-
icates) in the structure. As a prerequisite for an interpretation of hierarchical predicates,
we consider adjusting the argument structure of predicate p to the argument structure
of predicate ¢ when p Cp ¢ is declared in Dp. The adjusted arguments consist of the
following two parts:

(1) Common arguments: the intersection of the set of p’s arguments and the set of ¢’s
ones, and

(2) Additional arguments: the set of ¢’s arguments that are not p’s arguments.

Let ¢ be p* or p* and let I(¢) be an interpretation of predicate ¢ (defined by a set of
argument interpretations p € (ARG(p) — U)). For p,q € P, the common arguments of p
and ¢ are

pNARG(q)xU
where p € I(p). The additional arguments are
(i) {(a1,d1),...,(an,dn)} for some dy € I(SCP(ay)),...,d, € I(SCP(ay)) or

(i7) {(ay,z1),..., (@n,xn)} for all xy € I(SCP(ay)),...,x, € I(SCP(a,))
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where ARG(q —p) = {a1,...,a,}. (i) is the additional arguments for the event predicate
p® and (ii) for the property predicate p*.

We define the function LS*(p) = {a; € AL | (a;,d;) € p} to obtain the set of the
argument labels from an argument interpretation p.

Definition 3.9 (Argument supplementation in structures) Let ¥ = (S,F,P,D)
be a sorted signature with hierarchical predicates and M = (I,U) be a X-structure. The
event interpretation iy (resp. the property interpretation LEI) for the arqument supplemen-
tation to predicate q is a translation of all the argument interpretations in I(p®) (resp.
I(p")) to a set of argument interpretations such that:

(@) = {(pNARG(q)xU) U {(ar,dv), - (an,dn)} | p € I(p*)},

AP = {(pNARG(q)xU) U{(ar,21), - -, (an, Z0)} |
p€Ip'),z; € I(SCP(a;))},

where {ai,...,a,} = ARG(q) — LS*(p)* and, for 1 <i <n, d; € I(SCP(a;)).
Example 3.5 Given a sorted signature ¥ = (S, F, P, D) with

S = {person, T, L},

F =0,

P = {paq},

D = (0,0,{p:{(agt,person), (obj, T)},q: {(agt, person), (coagt, person)}}),

we have ARG (p) = {agt,obj} and ARG(q) = {agt,coagt}. Let U = {di,ds,ds,dy,ds}
and I be a function such that I(person) = {dy,ds,ds} and I(T) =U. If I(p*) = {p, ¢}
with

Y = {(agtadl)a(Obj7d4)}7
v = {(agt,dy), (0bj,ds)},

then
ta(L(p*)) = {{(agt, dv), (coagt, d3)}, {(agt, ds), (coagt, ds)} }.
In the following we define a composition

I(p1) ... 1 ()

of the interpretations of predicates ¢, ..., ¢, whereby all the argument interpretations
in I(p1) U---UI(p,) are integrated into a set (denoted I(yp1) M...M I(p,)) of argu-
ment interpretations. Let 1,9, ..., ¢, be event predicates pi,p3,...,p: or property

predicates pt, ph, . .. ,ph. Given the interpretations (1), I(p2),...,I(p,), we use the
union ARG(p1) U ARG(py) U ---U ARG (p,) to make a set obtained by integrating the
argument interpretations in I(¢1), I(¢2), --- ,I(¢,) and excluding the argument inter-
pretations in disagreement (i.e. p; and pe are in disagreement if p;(a) # pa(a) for some
a € ARG(p1) U ARG (p2) where p; € I(p1) and py € I(p2) (n = 2)).

4We have LS*(p) = ARG (p), since an argument interpretation p is a member of I() by Definition 3.8.
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Definition 3.10 (Composition of predicates in structures) Let M = (I,U) be a
S-structure. The composition of predicates is a translation of two sets of argument inter-
pretations into a set of arqgument interpretations as follows:

I(p) MI(p2) = {p1®p2|p1 €1(¢1), p2 € I(p2), p1 ® p2 # 0}

We define the operation @& to construct an argument interpretation from two argument
interpretations as follows.

prUpz if pi(a) = p2(a) for all a € LS (p1) N LS*(p2),
p1 D p2 =
0 otherwise.

Here the composition of two predicates can be expanded to the composition of n predi-
cates. Let IT be {p},...,ps} or {pq, L Phh

Neenl(pi) = {p@p2® - ®pn|pr € (1), p2 € 1(02),--, p2 € I(ion),
PP @@ py # 0}
where p; © pos @ -+ @ p, denotes (((p1 D p2) ®-++) D pp).
Example 3.6 Let ¥ = (S,F,P,D) with S = {s1,52, 1, L}, F=0, P={p1,p2}, and
D = (0,0, {p: {(agt, s1)},p2: {(agt, s1), (0bj, s2) } }).
If
I(p1) = {{lagt,dv)}},

I(p3) = {{(agt,d2),(0bj,d1)},{(agt,dy), (0bj,d2)}},
then

I(p}) M 1(p3) = {{(agt, d), (0bj, d2) }}.

I(p$) has the two argument interpretations {(agt, ds), (0bj, d1)}, {(agt, dy), (obj, d3)}, but
the composition of I(p}) and I(p3) excludes the argument interpretation {(agt, ds), (0bj,
dy)} that disagrees with the argument interpretation {(agt,d;)} in I(p3).

Using the above translations (in Definition 3.9 and Definition 3.10), we define a re-
stricted Y-structure (which we will call an HX-structure) that satisfies the sorted sig-
nature ¥ with hierarchical predicates. We define the one-step subpredicate relation

Cp={(p,q) €Cp| (p,7) or (r,q) €Cp}.

Definition 3.11 (HX-structure) Let Loy Lg be the event and property interpretations
for the argument supplementation to predicate q¢ and X = (S, F,P,D) a sorted signature
with hierarchical predicates. A X-structure M = (I,U) is an HX-structure if the following
conditions hold:

(1) If p,q € P and p Cp q € Dp, then
I(¢*) and

C
C I(gh.
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(2) If p1y...,pnyq € P and q Cp p1,...,q4 Cp pp € Dp(n > 1) where py,...,p, are all
predicates such that ¢ T p;, then
ty(Mpem, I(p7)) S 1(¢) and
Ao D) € 1@

where Iy = {p3,...,pt} and Iy = {pﬁa b

Example 3.7 Consider the sorted signature ¥ = (S,F,P,D) where S = {s, T,L},
F = Q)’ P = {p17p27Q}; and D = (@,@,DP) with

Dp = {¢Cpp1,qCppe}U
{p1: {(a1,5), (a2, 5)},
pZ:{(ahS)v (a37T)}7
¢:{(a1,s), (as, T)} }.

Let U = {dy,ds,ds,ds} and I be a function such that

{p2}7
I(¢*) = {ps},

~
)
3
e
S—

Il

and

p1 = {(a1,dv),(az,ds)},
p2 = {(a1,dr), (a3, d3)},
ps = {(a1,dv),(as,d3)}.

The composition of predicates p3, pS s

I(p}) N 1(p3) = {(a1,dv),(as,d3), (a3, d3)}

and therefore we can obtain the following

L(I(p) M I(p3)) = {(a1,d1), (a3, d3)}.

The function I satisfies the second condition of the HX.-interpretation in Definition 3.11.

3.2.5 Interpretation and satisfiability

A variable assignment (or an assignment) in a Y-structure M = (I,U) is a function
a:V — U such that a(x:s) € I(s) for all variables x:s € V. Let o be an assignment in a
Y-structure M = (I,U), x: s a variable, and d € I(s). The assignment a[d/z: s] is defined
by ald/xz:s] = a — {(z:s,a(x:5))} U{(z:s,d)}. We write a[d;/x;:s1,...,dp/xy: s,] for
(((aldy/z1: s1])[da/ 2t s9]) - . )|[dn/Tn: sp]. That is, if y: s = x;:s; for some ¢ € {1,...,n},
then ofdi/z1:s1,...,dy/T: su)(y: s) = d;. Otherwise, afdy/z1:s1,...,dp/Ty: sp](y:s) =
aly:s).

Definition 3.12 Let T = (M, «) be a X-interpretation. The denotation [ ], is defined by
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(1) [x:s], = a(z:s),
(2) [c:s], = I(c) with I(c) € I(s),
(3) [f(te, ... tn):s], = I()([t1l,s - - - [tal,) with I(f)([ta],, - -, [ta],) € I(s).

If a ¥-interpretation Z consists of an HX-structure M and an assignment «, then Z is said
to be an HY-interpretation. Let Z = (M, «) be a X-interpretation. The interpretation
Tldy/z1: 81, oy dp /Ty 8] With @181, 2018, € V and dy € I(s1),...,d, € I(sy) is
defined by (M, a[d;/x1: s1,...,dy/Tn Sn)).

Remark 3.2 Like structures, -structures, and HXY-structures, there are three classes
of interpretations: (unsorted) interpretations, Y-interpretations, and HX-interpretations.
In particular, the interpretations considered in this paper are the X-interpretations and
the HY-interpretations. By the above definitions, all HX-interpretations must be Y-
interpretations.

Definition 3.13 Let T = (M, «) be a S-interpretation and F an order-sorted formula.
We define the satisfiability relation T |= F by the following rules:

o Thp*(ay=t1,... a0 = to) iff {(ar,[1].),- -, (am, [ta])} € T(0°),
o T phar = th,... a0 = to) iff {(as,[ts].); -, (an, [ta] )} € T(0P),
o Tl (—A) iff T £ A,

e TE(AAB)iff Tl=A and T = B,

e I=(AVB)iff I=A orI kB,

e IE(A=B) if T AorTl B,

o T = (Va:sA) iff for all d € I(s), T|d/z: s] = A holds,

o T = (3u:sA) iff for some d € I(s), T[d/x:s] = A holds.

(
(
(
(

By the above definition, if an atomic formula is satisfied by an interpretation Z, then also
all the equivalent atoms must be satisfied by it. ATOM/ ~ is the quotient set of ATOM
modulo ~. Then, for any A, B € AS with AS € ATOM/ ~, T = Aiff T = B.

We write Z =T (Z is a model of T') if 7 = F for all formula F' € I'. We say that
[' is Y-satisfiable if it has a ¥-model. Otherwise, we say that I' is Y-unsatisfiable if it
has no ¥-models. We write I' = F' (F is a consequence of I') if every X-model of T is
a Y-model of a formula F. We write B = A if {B} E A, i.e., {B} is a singleton. In
particular, we say that Z is an HX-model if it is an HX-interpretation. We say that I’
is HX-satisfiable if it has an HY-model. Otherwise, we say that I' is HY-unsatisfiable
if it has no H¥-models. We write I' =gy F (F is a consequence of I' in the class of
HY-structures) if every HY-model of T is an HY-model of a formula F.

3.3 Deduction system

In Section 3.3, we formalize a Horn clause calculus with inference rules of predicate-
hierarchy that include argument supplementation, and then develop a resolution based
on this calculus and an order-sorted unification algorithm.
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3.3.1 Horn clauses

We prepare to formalize a Horn clause calculus (based on [24]) for the order-sorted logic
we propose in the previous section. Given an order-sorted first-order language £, the
extended order-sorted first-order language £ is obtained by adjoining to the set of sup-
plement constants ¢, for all @ € AL. We assume that every signature for the extended
order-sorted first-order language £ with hierarchical predicates contains the function
declarations ¢,: — SCP(a) for all a € AL. We write TERM ™ for the set of all terms and
FORM™ for the set of all formulas in language £*.

We first define Horn clause forms (used as the syntax of the logic programming lan-
guage PROLOG) in language L.

Definition 3.14 (Horn clauses) Let L, Ly,...,L, be atoms. A goal G is denoted by
the form

GZZLl,...,Ln.

wheren > 0. In particular, we use the notation O if n = 0, i.e. the goal with no elements.
A clause C is denoted by the form

C:=L <+ (G.
The set of all clauses is denoted by HCL.

The function C'Var from the set of all clauses into 2V is defined by:

CVar(L + G) = (|J FVar(L;)) U FVar(L).
L,eG
We write VF' for the universal closure Vzi:s;...Vx,:s,F where F' is a quantifier-free
formula with FVar(F) = {z1:51,...,Zm: Sm} (similarly, we write 3F for the existential

closure). Then clauses L < G with G = Ly,..., L, represent the universal closures
V(LyAN...ANL, = L).

Definition 3.15 (Program) A (logic) program P = (X,CS) consists of a sorted sig-
nature ¥ with hierarchical predicates and a finite set C'S of clauses without supplement
constants.

Note that any supplement constant does not belong to the program P (exactly the set
C'S of clauses), because it is used only in formulas to which a sorted substitution or an
argument supplementation (which we will explain in the following sections) is applied.

3.3.2 Sorted substitution

Definition 3.16 (Sorted substitution) A sorted substitution is a function 8 mapping
from a finite set of variables to the set TERM™ of all terms in Lt where 0(x:s) # x:s
and O(x: s) € TERM;.

Let 6 be a sorted substitution. Dom(f) denotes the domain of # and Cod(f) denotes the
codomain of #. The sorted substitution § can be represented as a finite set {t;/z1:s1,. ..,
t1/xp: sp} where Dom(0) = {x1:51,...,2,: $p} and O(x1:81) = ty, ..., O(xy: 8,) = t,. Let
V be a set of sorted variables. @ is called a sorted ground substitution (or simply a ground
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substitution) for V' if Var(0(z:s)) = 0 for all z:s € V, i.e., 8(x: s) is a ground term. 6 is
called a ground substitution if Var(6(x:s)) = 0 for all x:s € Dom(0). We write € for the
identity substitution given by the empty set. A sorted substitution 6 is a renaming if 6 is
injective on Dom(6) and Cod(#) is a set of variables. The restriction of a substitution 6
to a set V' of variables is defined by MV = {f(z:s)/x:s | x:s € V. N Dom(0)}.

We define an extension of the sorted substitution # to expressions (terms, formulas,
goals and clauses) and a set of expressions.

Definition 3.17 Let A, B be order-sorted formulas, L, L+, ..., L, atoms, G a goal, and
0 a sorted substitution. EB is defined by:

e IfE=ux:s and x:s € Dom(0), then Ef = 0(x:s),
o If E=x:s and x:s ¢ Dom(0), then Ef = x: s,
o If E=f(ty,...,tn):s, then EO = f(110,...,t,0):s,

e If B = play = t1,...,4y = t,) where p € P* U Pt then FO = olay =
t19,...,am:>tm9),

o [f E = A, then EO — —Af,

e If E=AxB forx € {A\,V}, then EQ = Af x BY,

o If E =%A for «+ € {Va:s,3x:s}, then E0 = xA(MFVar(xA)),
o« fE=1L,,... Ly, then B = L,0,...,L,0.

e« I[E=1L«G, then E) = L0 « G,

o IfE={E,,...,E,}, then E0 = {E\0,..., E0}.

Let 0 be a sorted substitution and E an expression. We call Ff an instance of E by 6.
An expression F is ground if F is without variables or quantifiers. # is called a ground
substitution for E if Ef is ground. We denote the set of all ground instances of E by
ground(E). Let ES be a set {E1,...,E,} of expressions. We define ground(ES) =
Ug,crs ground(E;). In particular, ground(C'S) = Ugeccs ground(C) where C'S is a set of
clauses. Let # and 7 be sorted substitutions. The composition of # and 7, denoted 67, is
defined by

(x:5)0y = ((x:5)8)7.

An expression FE is a variant of an expression E’ if there exists a renaming 6 such that
E = E'f. Let E; and E5 be expressions. A substitution € is a unifier of F; and Ey if
E10 = Ey0. A substitution 6 is more general than v (denoted € < «) if there exists A such
that v = OA. A unifier § of E; and E, is called a most general unifier if for every other
unifier v of £y and E5 we have 6 < ~.

Lemma 3.1 Let T be a X-interpretation, L < G a clause in HCL, and 6 a sorted sub-
stitution. If T }= L < G, then T = (L < G)0.
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Proof. Suppose that Z = Vzi:s1,...,2,: 5, F where T = (M, «) and FVar(F) = {z;: 51,
oy TpiSp}. By Definition 3.13, for all ay € I(s1),...,a, € I(s,), Zlay/x1:s1, ...,
an/Tyn: s, E F. Let 6 be a sorted substitution. Then we obtain F@ with FVar(F0)
= {yi: s\, ..., yp: s}, Let d; = [[(xi:si)ﬁ]]a[bl/yl:s,l,.__,bk/yk:su for by € I(s}),...,bx € I(s},).
Tldy/x1: 81, ..oy dn/Tp: sp) = F ATy Jyr: sy, ..., be/yk: si| = FO. Therefore T = V(F0).

fZ L+ GwithG=1Ly,...,L,, then T =V(Ly A...A L, — L). Therefore, by
the above proof for VF, we have Z =V(L; A ... A L, — L)6. 1

3.3.3 Argument supplementation

We will introduce new inference rules of predicate-hierarchy into a Horn clause calculus
for our extended order-sorted logic. First we define an argument supplementation that
translates a sequence of arguments to the sequence of arguments for a predicate p. This
translation consists of the addition and deletion of arguments based on the argument
structure of p.

Let ¥ = (S, F,P, D) be a sorted signature with hierarchical predicates, ¢ € P* U P*,
aly...,0, € AL, and t; € TEWSCP(al)a oty € TER]WSC’P(an)-

olay = t1,...,a, = ty)

is said to be an ill-argumented formula if ARG([¢]) # {a1,...,a,}. All formulas in
FORM are said to be well-argumented formulas, and ATOM (C FORM) denotes the set of
all (well-argumented) atomic formulas. A(AL) is the family of all finite subsets of AL.

ATOM, = {p(a1 = t1,..., a0 = t,) | {a1,...,a,} € A(AL),t; € TERM;, }

where s,. = SCP(a;) denotes the set of well- and ill-argumented atoms with ¢. We denote
by ATOM™ = Ugepeupt ATOM; the set of all well- and ill-argumented atoms. Note that
the ill-argumented atoms are obtained by the argument structures in A(AL).

Example 3.8 Let tq,ts,...,t, be order-sorted terms. If ARG(p) = {a1,as}, then the
following expressions

pﬂ(al = tl),

pﬂ(al = tl, as = tg),

p”(al = tl, as = t3, a4 = t4),

p”(al = tl,ag = t3, vy Oy = tn)
are ill-argumented atoms, but

pﬂ(al = tl, ay = tg)

18 a well-argumented atom.

We introduce argument supplementation for ill-argumented atoms in the following
definition.
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Definition 3.18 (Argument supplementation) Let A be a well- or ill-argumented
atom. The argument supplementation o is a function from ATOM* to ATOM defined
by:

o(A) = ADD™(DEL™(A))

where m is the least number such that ADD™(A) = ADD™(A)(m > 0) and n is the
least number such that DEL"(A) = DEL""(A)(n > 0).°

(i) The addition ADD of an argument is defined by

(U {a = cais}) if A=pt(E) and ARG(p) — LS(7) £,
ADD(A) = ZH(M U{a=wv:s}) if A=p(i) and ARG(p) — LS(fi) # ()
otherwise,

where a € ARG(p) — LS(i) with SCP(a) = s, ¢, is the supplement constant of
arqgument label a, and v: s is a new variable of sort s.

(ii) The deletion DEL of an argument is defined by

p*(p) if A=p*(pU{a=t}) and a  ARG(p),
DEL(A) = { p(p) if A=p(uU{a= z:s}) and a ¢ ARG(p),

A otherwise,

where SCP(a) = s and t € TERM.
The following example shows an application of the argument supplementation.
Example 3.9 Let ¥ = (S, F,P,D) where S = {s1, S2, 83,54}, F = {c}, P ={p}, and
D= (0, {c:— sa}, {p: {(l1, 51), (la, 54) }})-

The argument supplementation o is applied to the atom p*(l; = x1:51,ly = Ta: S9,l3 =
x3: S3) with event predicate p* as follows:

o(p*(ly = x1: 81,1ls = ¢ 89,13 = x3: 53))
= ADD(DEL(DEL(p*(ly = x1: 81,1z = ¢: 89,13 = w3:53))))
= ADD(DEL(p*(ly = x1: $1,ls = ¢ 59)))
=ADD(p*(ly = x1:51))
=p*(lh = 21:81,14 = 2 S4).

Furthermore, the argument supplementation o is applied to the atom p*(ly = x9: 85) with
property predicate p* as follows:

o(pf(ly = 79 53))
= ADD(ADD(DEL(p*(ly = x9: 52))))
= ADD(ADD(p!()))
= ADD(p*(l; = v:51))
=pH(ly = visy, Ly = V' sy).

°Let f be a function. We write f™ for the composite n functions fo fo---o f.
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The following lemma indicates that the argument supplementation o (as a translation
of an ill-argumented atom to the well-argumented atom) corresponds to the event and
property interpretations ¢, for the argument supplementation in semantics. p Cp q
implies p*(@) FEux ¢° (@) and P(i) Eus ¢ (i) where ,u is obtained by adjusting f to
the argument structure of ¢, i.e., ¢*(#') = o(q*(i)) and ¢*(7i') = o(¢*(1)). Let u be a set
{ay = t1,...,a, = t,} of arguments and ¢ € P* U P!. We define the restriction of 4 to
the argument labels of ¢ by

Ho=1{a=teulacARG(p)}.

Lemma 3.2 Let ¥ = (S, F,P,D) be a sorted signature with hierarchical predicates, o
the arqgument supplementation, and p,p1,...,pn,q € P. Then, the following holds:

(1) If p Cp q € Dp, then
(a) p*(i) Faus o(q* (i) and
(b) P*(i) s Y(o(d* (1))

where u = {a; = ti,...,a, = t,} such that ARG(p) = {ai,...,a,} and t; €
TERM scp(a;)-

(2) If ¢ CTp p1,..-,q Cp pn € Dp(n > 1) where py,...,p, are all predicates such that
q CL p;, then

(a) {P1(ipy), - - 05 (ips) } Fms 0(q* (1)) and
(6) W), i)} Eas Yo (d (7))

where p = {ay = t1,...,ap = ty} such that U<, ARG(p;) = {a1,...,an} and
t; € TER]W()’SCP(M).

Proof.
(1) (a) Suppose that T |= p* (i) where T = (M, «) is a HX-interpretation and p = {a; =
iy ooy an = to}, de, {(ar, [ ]la) - (an, [[tn]]a)} € I(p*). By Definition 3.18,

o(¢*(2)) = q°(by = tor,- -, by = tym, €1 = Ce,: SCP(ey), ... e, = ¢, SCP(ey)),

where ARG(p) N ARG(q) = {b1,...,bn}, for 1 < i < m, t,; = t; with b; = a;, and
ARG(q—p) ={e1,...,ex}. Let

(%) = {(pNARG(q)xU) U
{(e1, [ce,: SCP(er)],), - - (ers [ce: SCP(er)])} | p € 1(p*)}-
Then, by Definition 3.9 and T = p*(f1)

(1
{01, [tord s - - -5 (bims [tom] )} U
{(e1, [ce;: SCP(e1)],y); - -, (ek, [ce,: SCP(ex)],) } € ¢5(1(p*))(C 1(q*)).

Therefore T = o(q®(j)).

)

(b) Suppose that T \= p*(j1) where T = (M, «) is an HY-interpretation and u = {a; =
tiy ooy an =t} dee, {(a1, [t1],)s - - - (an, [ta],)} € I(p*). By Definition 3.18,
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a(qﬁ(ﬂ)) = qﬁ(bl = th1y oy O = tym, €1 = v1: SCP(e1), ..., e = vp: SCP(ey)),

where ARG(p) N ARG(q) = {b1,...,bn}, for 1 < i < m, t,; = t; with b; = a;, and
ARG(q—p) ={e1,...,ex}. Let

G(1(0") = {(pN ARG(q) xU) U{(e1, ), ..., (ex, di)} | p € I(pF), di € I(SCP(e:))}.

q
Then, by Definition 3.9 and T = p*(ji),

{(bla [[tbl]]a’)? SRR (bma [[tbm]]a’)a (617 [[Ul: Sl]]a’)? SRR (ekv [[Uk: Sk]]a’)} S Lg([(Pn)) - I(qﬂ

for all dy € I(SCP(ey)),...,dy € I(SCP(ex)) where sy = SCP(ey),...,s, = SCP(ey
and o = ald/vi: sy, ..., dy/vg: si]. Therefore, we have T |= Yvy:sy -+ v sk(o(q*(ji)))
with FVar(o(¢*(fi))) = {v1: 81, ..., 0 Sk}

~—

(2) (a) Suppose that, for 1 < i < n, T = pi(fips) where T = (M,a) is an HY-
interpretation and p = {a; = t1,...,am = tn} such that U<, ARG (pi) = {ay, ..., am}
and t; € TERMy scp(a;), i-¢., {(a,[t],) | a =t € fye} € I(p}). By Definition 3.18,

o(¢* (1)) = ¢ (by = to1,- .-, by = tpu, €1 = e, : SCP(e1),. .., e = ce,: SCP(ey)),

where {a1,...,a,} N ARG(q) = {b1,...,b,}, for 1 < | < w, ty = t; with b = aj,
and {ei1,...,ex} = ARG(q) — {a1,...,an}. By Definition 3.10, Myecnl(p}) with T =
{pt,....p0} includes {(aq,[t1],), - .-, (am, [tm],)}. Let

to(Mprenl (7)) = {(p N ARG(q) xU) U{(e1, ), .., (ex, dr)} | p € Mprenl (p})}

where dy = [ce,: SCP(€1)],,:- - - ,dn = [Ce,: SCP(ex)],-
Then, by Definition 3.9 and T = p3(fipe), .-, L = pp(fps),

{(bla [[tbl]laa R (bua [[tbu]]a)a (617 dl)a R (eka dk)} € L;(szeﬂl(p;)) C [(q.)
where dy = [ce,: SCP(e1)] ;- - - ,dn = [ce,: SCP(ex)],,- Therefore T = o(q®(fz)).

(b) Suppose that T = pﬁ(ﬂpg), LT E pg(ﬂp%) where T = (M, «) is an HY-interpretation
and p = {a1 = ti,...,0n = ty} such that Ui<;<, ARG (p;) = {a1,...,an} and t; €
TERMy scpia,), i-e., {(a,[t],) | @ =t € fi} € I(p}). By Definition .18,

o(¢* () = ¢*(by = tyr, ..., by = tyy,e1 = v1: SCP(ey), ..., e, = vp: SCP(ey)),

where {a1,...,a,} N ARG(q) = {b1,...,b,}, for 1 < | < w, ty = t; with b = aj,
and ARG(q) — {ay,...,an} = {e1,...,ex}. By Definition 3.10, I_ngenf(pg) with TI =

{ph,...,pL} includes {(a1,[t1],), -- - » (Gm, [tm],)}- Let
(Ml () = {(pNARG(9)xU) U {(er, ), .-, (ex, di)} |
p € Myl (0)), di € 1(SCP(e:))}.
Then, by Definition 3.9 and T = pi(f), .., T £ ph (),
{(b1; [tordars - - - (bus [tou] o)} U
{(er, [orsi])s - (ens Tow el o)} € (M I00) € 1(dF)
for all dy € I(SCP(ey)), ..., dy € I(SCP(ey)) where s, = SCP(ey), . .., sy = SCP(ey) and

o =ald /vy sy, ..., dg/vk: sg]. Therefore, we have
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T =Voy: sy - v sp(o(¢f (1))
with FVar(o(¢*(fi))) = {v1: 51, ..., Uk 5k} 1

3.3.4 Horn clause calculus

We present a Horn clause calculus for our order-sorted logic with hierarchies and eventu-
ality. The Horn clause calculus contains the following inference rules.

Definition 3.19 (Substitution rule) Let L <— G be a clause.

(L <+ G)0
where 0 is a ground substitution for L + G.

Definition 3.20 (Cut rule) Let L, <+ Gy U{L} and L < G5 be ground clauses.

L1%G1U{L} L%GQ
L1<—G1UG2

Definition 3.21 (Generalization rule for event predicates) Let p*(i) <+ G be a
ground clause and o the argument supplementation.

p*(p) «+ G
o(¢* () + G

where p Cp q.

Definition 3.22 (Generalization rule for property predicates) Let p*(ji) < G be
a ground clause and o the argument supplementation.
P(p) + G
(o(d*(m) < G)O

where p Cp q and 0 is a ground substitution for o(¢*()) < G.

Definition 3.23 (Specialization rule for event predicates) Let p}(fi) < G, ...,
Py (fips ) <= G be ground clauses and o the argument supplementation. If py,...,pu(n > 1)
are all predicates such that ¢ Cb p;, then

pI(ﬂp{)FGl p;(ﬂp;)FGn
o(¢*(p)) <+ GLU...UG,

where p = {ay = t1,...,0m = tn} such that Ui<;<, ARG (p;) = {a1,...,an} and t; €
TERMy scp(a;)-

Definition 3.24 (Specialization rule for property predicates) Let pﬁ(ﬂpu) +«— G,
1
o (ﬂpﬁ ) < G be ground clauses and o the argument supplementation. If py, ..., py(n >
1) are all predicates such that q Cb p;, then
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Py

(¢*(f)) « G1U...UG,)0

D) < Gi oo Phlia) G
(o

where 0 is a ground substitution for o(q*(j1)) < G1U... UG, and p = {a1 = t1,...,0p =
tm} such that Uy<i<, ARG (p;) = {ay,...,an} and t; € TERMy scp(a;)-

In the next two examples, we consider an application of the generalization rule for
event predicates and the specialization rule for property predicates.

Example 3.10 Let ¥ = (S, F, P, D) where
S = {5731782753}7
F =0,
P = {pl,pQ,Q};

and D = (Ds, D, Dp) with Ds =0, Dy =0, and
Dp = {p1Cppa}U

{p1: {1, 51), (I2, 52) }, p2: {11, 51), (I3, 53) }, ¢: { (1, 5) } }.

The generalization rule for event predicates is applied as follows:

Pl =t =) < ¢* (1= 1)
pS(lh = t1,l3 = c15i83) < ¢° (L = 1)

by p1 Cp pe where
a(py(lh = t1, 1y = ty)) = py(ly = 1,13 = ciy: 53).

A superpredicate py is derived from the predicate p; with the argument supplementation
o.

Example 3.11 Let ¥ = (S, F, P, D) where

S = {s,51,52,53},
F o= 0
7) = {plap%qar}a

and D = (Ds, D]:, Dp) with DS = (b, D]: = (b, and
Dp = {qCppi,qCppe}U
{pl: {(lla 81)}7]92: {(lla Sl)a (l37 83)}7 q: {(lla 51)7 (l27 82)7 (137 33)}7 T {(l7 S)}}
The specialization rule for property predicates is applied as follows:

il =t) il =t ls = t;) « ri(l =)
(qn(ll = tl,l2 = U: 8o, I3 = tg) — Tn(l = t))g

by ¢ Cp p1 and q Cp py where B(v: so) € TERM, and

O'(qu(ll = tl,lg = tg)) = qn(ll = tl,lg = UISQ,lg = tg)
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A subpredicate q is derived from the predicates py, po with the argument supplementation
0.

The next theorem guarantees that each rule in the Horn clause calculus preserves
validity.

Theorem 3.1 Let C,C4,...,C, be clauses. The conclusion C of each inference rule
in the Horn clause calculus is a consequence of its premise {C4,...,C,} in the class of
HY-structures. That is, {C4,...,C,} Eugs C.

Proof. For each inference rule we show {C,...,C,} Eux C.
1. Substitution rule. By Lemma 3.1, this is easy to show.

2. Cut rule. Suppose that Z = Ly < Gy U{L} and Z = L < G5 where 7 is an
HY¥-interpretation and L; < G; U {L} and L < G, are ground clauses. Then
T ): LG1 AL — Ll and 7 ): LG2 — L where LGi = /\LiEGiLi' If7 ): LG1 VAN L,
then Z = L. fZ (£ Lg, AL, then T | Lg, or T |~ Lg,. Hence T |~ L, A Lg,.
Therefore we have Z = Lg, A Lg, — L.

3. Generalization rule for event predicates. Suppose that Z = G where 7 is an HY-
interpretation. By the hypothesis, Z = p*(i1). Then, by Lemma 3.2, Z = o(¢*(a)).
Therefore, Z = o(q*(p)) < G.

4. Generalization rule for property predicates. Suppose that Z | G where 7 is an
HY-interpretation. By the hypothesis, Z = p*(i1). Then, by Lemma 3.2, T =
V(o (g*(j1))), and so, by Lemma 3.1, we obtain Z |= (o(¢*(j)))# where 6 is a ground
substitution for o(¢*(j1)). Therefore Z |= (o(¢*(j1)) < G)0 since G is ground.

5. Specialization rule for event predicates. Suppose that Z &= Lg, A ... A Lg, where
7 is an HY-interpretation. By the hypothesis, T |= p(fips),. .., Z = p(fips). Then,
by Lemma 3.2, T = o(¢*(@)). Hence, Z = L, A... A Lg, — o(¢*(f1)). Therefore,
ITkEo(¢*(R) « GiU...UG,.

6. Specialization rule for property predicates. Suppose that Z = Lg, A...A Lg, where
T is an HY-interpretation. By the hypothesis, Z |= pq(ﬂpg),. LI E pgl(ﬂpu ). Then,
by Lemma 3.2, 7 = V(o (¢*(ji)), and so, by Lemma 3.1, we obtain Z = (o (¢*(11)))0
where 6 is a ground substitution for o(¢*(f1)). Hence, Z = Lg, A ... A Lg, —
(o0(q*(j1)))0. Therefore, T = (0(¢*(1)) < Gi1U...UG,)0 since Gy,...,G, are

ground. 1
We define the notion of derivation from an application of the rules in the Horn clause
calculus as follows.

Definition 3.25 (Derivation) Let P = (X,CS) be a program and C,C",C; clauses.
The derivability relation P+ C' is defined by:

(i) If C € CS, then P+ CO such that C0 is a conclusion of the substitution rule.
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(ii) If P+ Cy and P &+ Cy such that Cy and Cy are premises of the cut rule, then P+ C
such that C' is its conclusion.

(iii) If P = C such that C is a premise of the generalization rule for event or property
predicates, then P E C' such that C' is its conclusion.

(i) If P+ C4,..., P C, such that Cy,...,C, are premises of the specialization rule
for event or property predicates, then P & C such that C' is its conclusion.

Let P = (X,CS) be a program. We say that L < G is derivable from P if P - L < G.
We use the abbreviation P F L to denote P L <—. We write P =y C if CS Epy C in
the sorted signature . The soundness of the Horn clause calculus is proved as follows.

Theorem 3.2 (Soundness of derivation) Let P be a program and L an atom. If P+
L, then P ):HE L.

Proof. This is proved from Definition 4.7 and Theorem 3.1 by induction on the length of
a derivation P = L. 1

We introduce the notion of a Herbrand model that is a X-model.

Definition 3.26 A Herbrand X-structure My = (Iy,Uy) is a S-structure such that
(i) Uy = TERM,,
(ii) I(s) = TERM,(C Ug) where s € S,

(11i) Ig(c) =c:s where c € F and ¢:— s € Dy,

(iv) Tg(f)(tr,... tn) = f(t1...,ty): s where f € F and f:sy X ... X s, = s € Dr.

An interpretation Z is said to be a Herbrand Y-interpretation if its structure is a Herbrand
Y-structure. A Herbrand Y-structure Z is a Herbrand >-model of I' if it is a model of T'.

Lemma 3.3 Let Iy be a Herbrand X-interpretation and L < G a clause. Ty = L + G
iff Iy = ground(L < G)

Proof.

(=) Assume that Zy = L < G. By Lemma 3.1, for any ground substitution 6 for L < G,
Iy = (L« G)0 (€ ground(L + G)).

(<) Assume that Ty = ground(L < G) where CVar(L < G) = {z1:51,...,%y: S}
We show that, for all d; € I(sy),...,d, € I(sn), Zg{di/x1:$1,...,dp/xn: s} E L < G.
By the hypothesis, for any ground substitution 0 for L + G, Iy E (L < G)f (€
ground(L < G)). Let (z;:5;)0 = d; for dy € I(s;),...,d, € I(s,) (where d; € TERM,_,
by Definition 3.26). Then Zy = (L < G)0 ift Zy{di/x1:s1,...,dp/xn: s} = L <+ G.
Therefore, Zy = L <+ G. 1

To show the completeness of the Horn clause calculus, we build an interpretation Zp
that satisfies all the atoms derivable from the program P.
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Definition 3.27 Let P be a program and L an atom. A deduction interpretation Zp of
P is a Herbrand Y-interpretation such that

Ipr ELiff P+ L.
The next lemma shows that the deduction interpretation Zp is an H>-model of P.

Lemma 3.4 Let P be a program. A deduction interpretation Zp of P is an HY-model of
P.

Proof. In order to prove that Zp is a model of P, we have to show Zp = L + G for
all clauses L <~ G in P = (X,CS). Let (L + G) € CS with G = Ly,...,L, and
0 be a ground substitution for L <— G. Suppose that Zp = L@ A ... A L,0. By the
definition of Zp, for 1 < i <n, P+ L;#. Then, we can get P+ L0 AN...ANL,0 — L6
by the substitution rule and P F L@ by the cut rule. By the definition of Zp, Zp = L6.
Hence, we have Zp = (I < G)6. Since Zp is a Herbrand Y-interpretation, by Lemma 3.3,
Ip E L+ Giff Ip = ground(L < G) iff Zp = (L < G)0 for all ground substitutions ¢
for L < G. Therefore, Zp = L < G.

Next, we will show that Zp is an HX-interpretation. Let Zp = (Mpyg, o) be a deduction
interpretation of P. For p C g € Dp, we assume that

{(alatl)a BRI (ana tn)} S IH(p.)
where t; € TERMy scp(a;)- Then, by Definition 3.9,
(PN ARG(q) xUg) U{(e1,ce: SCP(e1)), ..., (€k, Ce,: SCP(ex))} € 15(Iu(p®))

where p = {(a1,t1),...,(an,t,)}. Furthermore, by Definition 3.13, Zp = p*(f) with
p=A{ar = t1,...,a, = t,}. We can infer P - p*(f1) by the definition of Zp. Then
P+ o(¢*(in)) by the generalization rule for event predicates and therefore P = o(¢®(f))
by the definition of Zp. By Definition 3.18,

o(q* (1)) = q°(by = tp1,. .., by = tym, €1 = Cey: SCP(e1), ..., ex = Ce: SCP(ex)),

where ARG(p) N ARG(q) = {b1,...,bn}, for 1 < i < m, t); = t; with b; = a;, and
ARG(q —p) = {e1,-..,ex}. Hence,

{(b1,to1)s -+ -y (biny tom), (€1, Cey: SCP(e1)), - . ., (€ky Ce: SCP(ex))} € ITn(q®)
where {(by,tp1),- - (b, tom)} = {(a1,t1), .-, (an, tn)} N (ARG (q) x Ug).

In the case of property predicates, we assume that
{(ar,t1), ..., (an,ty)} € Iu(p*)
where t; € TERMy scp(a;)- Then, by Definition 3.9,
(0N ARG(q) xUg) U{(e1,d), ..., (er, di)} € b (Iu(p"))

for all di € TERMy scp(ey)s --->dn € TERMy scpe,) Where p = {(ai,t1),..., (an,tn)}.
Furthermore, by Definition 3.13, Zp | p*(i1) with g = {a; = t1,...,a, = t,}. We can
infer P F p*(;1) by the definition of Zp. Then P F (o(¢*(11)))0 where 6 is any ground
substitution for o(g*(f2)) by the generalization rule for property predicates and therefore
P = (o(¢*(j1)))0 by the definition of Zp. By Definition 3.18,
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U(qﬁ(ﬁ)) = qﬁ(bl = th1y oy O = tym, €1 = v1: SCP(e1), ..., e = vp: SCP(ey)),

where ARG(p) N ARG(q) = {b1,...,bn}, for 1 < i < m, t); = t; with b; = a;, and
ARG(q—p) ={e1,...,ex}. Hence,

{(bla tbl)a R (bmatbm)a (617 dl)a R (eka dk)} € [H(qﬂ)
fOI" all d1 - TEWO,SCP((’H)? .. .,dn c TER]WO,SCP(en) Where {(blatbl); ey (bm;tbm)} =
pN (ARG(q) xUg).

Moreover, for ¢ C p1,...,q C p, € Dp(n > 1) where py,...,p, are all predicates such
that ¢ Ck p;, we assume that

{(alatl)a SR (anﬂ tm)} € HPZGH[(p;)
where U<, ARG (p;) = {a1, ..., an} and t; € TERM; scp(a;)- Then, by Definition 3.9,
(PN ARG(q) x U ) U {(e1, ce,: SCP(e1)), . .., (ek, ce: SCP(ex))} € tg(Mpsenl (p}))

where p = {(a1,t1),..., (am,tm)} and IT = {p},...,p%}. By Definition 3.13 and 3.26, for
1 <i<n,Ip = pi(fye) where p = {a1 = t1,...,a, = tn}. We can infer P F pf(fiye)
for 1 < i < n by the definition of Zp. Then P + o(¢*(1)) by the specialization rule
for event predicates and therefore we have Zp = o(¢*()) by the definition of Zp. By
Definition 3.18,

(q* (1)) = q°(by = top1y. .., by = tpu,€1 = e, : SCP(e1),. .., ex = e, : SCP(ey)),

where {a,...,am} N ARG(q) = {b1,..., b}, for 1 <1 < u, tyy = t; with by = a;, and
ARG(q) —{a1,---,am} = {e1,...,e,}. Hence,

{(br,t51), - -+, (bu, tou), (€1, ce,: SCP(er)), - - ., (ex, ce,: SCP(ex)) € 1(q°)

where {(b1,tp1), -, (bu,tou)} = {(a1,t1), .., (@m,tm)} N (ARG (q) X Ug).

In the case of property predicates, we assume that
{(ar,t1), . (s t) } € Mo I ()

where Uy <;<,, ARG (p;) = {a1, ..., an} and t; € TERM scp(a;)- Then, by Definition 3.9,
(PN ARG(q) xUg) U{(e1,dr),..., (e, di)} € L;('_'pgenf(pg))

for all d; € TER]WO,SCP(Q), cee d, € TER]WO’SCP(%) where p = {(al, tl), . (am, tm)} and
T = {p},...,pt}. By Definition 3.13 and 3.26, for 1 < i < n, Ip |= pg(ﬂpg) where
p={a = ty,...,a, = tn}. We can infer P + pg(ﬂpg) for 1 < ¢ < n by the definition

of Zp. Then P  (o(¢*(12)))# where 0 is any ground substitution for o(¢*(jz)) by the
specialization rule for property predicates and therefore we have Zp = (o(¢*(j1)))f by the
definition of Zp. By Definition 3.18,

o(¢' (1)) = ¢*(by = t1, ..., by = tyu, €1 = v1: SCP(e1), . .., e, = vy SCP(ey)),

where {ai,...,an} N ARG(q) = {b1,...,b,}, for 1 <[ < w, t,; = t; with b, = a;, and
ARG(q) —{a1,---,am} = {e1,...,e,}. Hence,
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{(blatbl)a Ceey (bu;tbu); (el,dl), ceey (ek,dk)} € I(qﬂ)

for all dl € TER]W(]’SCP(Q), ceey dn € TER]WO,SCP(en) where {(bl, tbl); ceey (bu, tbu)} == {(al, tl),
o (s t)} O ARG(q) x U .

For any program P we can build a deduction interpretation Zp that is an H-model
of P. In the following theorem, the completeness of the Horn clause calculus is shown by
the fact that the deduction interpretation Zp is an HY-model of P (by Lemma 3.4).

Theorem 3.3 (Completeness of derivation) Let P be a program, L an atom, and 6
a ground substitution for L. If P \=gx, L@, then P+ L.

Proof. Let 7 be an HY-interpretation and P = (X,CS). Assume that P Epyx L6
(i.e. CS FEpx LO in X.) Then, by Lemma 3.4, Zp is an HY-model of P, that is Zp = L6.
By the definition of Zp, P = L# is proved. 1

3.3.5 Sorted unification

In order to develop a resolution for our extended order-sorted logic, we need to consider
the unification of order-sorted atoms to be embedded in the resolution. Let ¢(a; =
t,...,an = t,) and p(by = r1,...,b, = r,) be order-sorted atoms. To unify these atoms,
we apply a unification algorithm to the pair of sequences (¢y,...,t,) and (r],...,r!) where
rp=r;ifa; =b; for 1 <i,j <n.

We shall give an order-sorted unification algorithm (based on [10, 30]) by translations
on systems of equations. First, we introduce the basic notions of the equational system
in [45] as follows.

Definition 3.28 (Equational system)

(i) An equation is a pair of terms, denoted ast =t'. An equational system ES is a set
of equations. Let (t1,...,t,) and (ry,...,1,) be two sequences of terms. The set

{tl irl,...,tnirn}

of equations is an equational system.

(ii) The substitution 0 is a unifier of equation t = r if td = rf. The substitution 6 is
a unifier of equational system ES if t0 = r@ for every equation t = r € ES. We
write u(ES) for the set of unifiers of ES. The restriction of u(ES) to a set V' of
variables is defined by u(ES)TV = {0V | 0 € u(ES)}.

(iii) Let ES,ES" be equational systems. ES is more general than ES', written ES <
ES', if u(ES") C u(ES). ES and ES' are equivalent, written ES ~ ES', if
uw(ES) =u(ES"). We write ES ~y ES" if u(ES)TV = u(ESNMV.

The solved sets of equations (i.e. the solved equational systems) are constructed by
the following definition.
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Definition 3.29 The equational system ES = {x1:51 =t1,..., T, 8, = t,} is solved, in
the case

(i) x1:81,...,%n: Sy are pairwise distinct,
(i1) t; € TERM;, for 1 <i<mn, and
(tit) x;:s; & Var(t;) for 1 <i,j <n.

Condition (ii) indicates that ¢; is of sort s; so that z;:s; can be substituted with ¢;. A
substitution @ is idempotent if 00 = @, which is equivalent to Dom(6) N Var(Cod(0)) = 0.

Definition 3.30 Let ES = {x1:51 =t1,...,2,: 8, =t} be an equational system. If ES
is solved, then it determines a unique substitution Ops = {t1/x1: 81, .., tn/Tn: Sp}.

The next lemma indicates the essential properties of solved equational systems.

Lemma 3.5 Let ES be an equational system. If ES is solved, then Ogs is a most general
unifier of ES and idempotent.

Proof. By conditions (i) and (ii) in Definition 3.29, 0pg is well defined and a sorted
substitution. We show that fgg is a most general unifier of ES. By condition (iii) in
Definition 3.29 and the form of solved equational systems, we can say that (x;:s;)0ps =
ti0ps for all x;:s; =t; € ES, i.e., Ogg is a unifier of E'S.

Let v € u(ES) and y:s € V. If y:s = x;:5,(€ Dom(0gs)), then (x;:s;)y = t;iy =
(xi: si)0psy. Otherwise, (y: s)y = (y: s)0gsy since (y: s)0gs = y: s. Hence, for every other
unifier v of ES, we have 0gg < . Therefore, fps is most general.

The idempotence is shown by the definition of the composition of substitutions. Since
(a:i:sz-)GES = tz' = t,-GES, we have (y: S)HESHES = ((y S)HES)HES = (y:s)GES for every
[THENS V. Therefore, Orsfrs = Ogg. 1

Let X = (S,F,P,D) be a sorted signature with hierarchical predicates. If the sort-
hierarchy built by Ds in ¥ is not a lower semi-lattice, then the most general unifier of
two terms ty,ty € TERM may not be unique [52]. In the following unification algorithm,
we assume that every sort-hierarchy is a lower semi-lattice.

Definition 3.31 (Sorted unification algorithm) Let (ES;S) be a pair of equational
systems. A translation of (ES;S) in an order-sorted unification algorithm is defined by
the following rules:

Identity (ESU{t=1t};S) = (ES;S)
ifteg V.

Decomposition (ESU{f(t1,...,tn) = f(r1,...,ra)}; S) =
(ESU{t1 =r1,...,tp =1} 5)

if there exists at least one t; Z r;.

Transposition (ESU{t=u:s};S) = (ESU{x:s =1t};9)
iftgV ort € Vy with s’ <g s.
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Substitution 1 (ESU{z:s =t};S) = (EST;STU{1:5 =1t})
where T = {t/x: s} if t € TERM®and x:s & Var(t).

Substitution 2 (ESU{z:s1 =y:59};5) = (EST; STU {X:5] = 2:83,Y: 52 = 2:53})
where s3 = glb(sy, s2) and 7 = {z: s3/x: 81, 2 83/y: So.}
if s3 18 neither sy, sy, nor L.

We write (ES;S) =, (ES;S") if (ES';S") is derivable from (ES;S) by applying one
rule from the order-sorted unification algorithm. The following lemma demonstrates one
property of the order-sorted unification algorithm.

Lemma 3.6 Let ES be an equational system. For each equation t =t € ES, at most
only one rule from the order-sorted unification algorithm can be applied to it.

Proof.
Let t,t' € V with t = 2:s; and ' = y: s».

e If t =1, then the identity rule is applied.
e If 51 <g s9, then the transposition rule is applied.
e If 55 <g s1, then the substitution 1 rule is applied.
e If glb(sy, s2) = L, then no rule can be applied.
e Otherwise, i.e., when glb(s, s2) # $1 # so # L, the substitution 2 rule is applied.
Let t € V witht=x:sand t' ¢ V.
o Ift € Var(t') or t' ¢ TERM,, then no rule can be applied.
e Otherwise, the substitution 1 rule is applied.
Let t ¢V and t' € V.
e The transposition rule can be applied.
Let t,t" € V (i.e. t,t" are of the forms f(t1,...,t,) and g(ri,...,mm)).
e If t =1, then the identity rule is applied.

e If f = g (where must m = n) but ¢; # r; for some i € {1,...,n}, then the
decomposition rule is applied.

e Otherwise, i.e., when f # ¢, no rule can be applied. 1

We define the complexity of an equational system, represented as the number of sym-
bols occurring in it.

6Recall that TERM, contains not only the terms of sort s but also the terms of subsorts of s.
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Definition 3.32 The number of occurrences of function symbols and variables in a term
t is defined by

(i) ||z:s]|=1 and

(i) [1f (- ta) =l 4l [ 1

Furthermore, the number of occurrences of function symbols and variables in an equational
system ES = {t; =ry,...,t, =1,} is defined by

1ES|I= 30 (It + 7))

The set of variables occurring in an equational system ES is defined by ESVar(ES) =
Uy, =, eps(Var(t;)UVar(r;)). The set of equations of the form ¢ = x: 5 in S where t ¢ V or
t € Vg with s’ <g sisdefined by tp(ES) ={t =x:s € ES |t €V, ort € Vy s.t. s' <g s},
and the transposition rule is applicable to the equation form.

Definition 3.33 The complexity of an equational system ES is given by the triple
p(ES) = (|[ESVar(ES)|, | ES]], [tp(ES)])-

Let (ESo;Sp) = (FS1;51) =u ... = (ESp;S,) be a sequence of applications of
rules from the order-sorted unification algorithm. We define the set of used variables for
ES; U S; in the sequence as follows:

UV(ESl U Sz) == ESVGT(ESO U SO) U ESVGT(ESl U Sl) U---u ESVGT(ESZ U Sl)

The next two lemmas will be used to prove the correctness of the order-sorted unification
algorithm.

Lemma 3.7 Let (ESy; So) = (ES1;51) = .. =u (ESy; Sn) be a sequence of applica-
tions of rules from the order-sorted unification algorithm. If (ES;;S;) = (ES};S;) for
0<i<j<n, then ES; U S; ~UVar(ES;US;) ES] U Sj.

Proof. We will prove that if (ES;; S;) =, (ES;;S;), then w(ES; U S;)TUV(ES; US;) =
uw(ES;US;)1UV (ES;US;). Consider each case of the rules from the order-sorted unification
algorithm.

(a) Identity. We obtain ES;US; = (ES;—{t = t})US,; by this rule. Then u(ES;US;) =
u(ES; U S;) since t§ = 0 for all substitutions 6.

(b) Decomposition. We obtain ES; = (ES; — {f(t1,...,tn) = f(r1,...,rn)}) U{t1 =
r,...,tn, = rp} and S; = S; by this rule. By Definition 3.17, f(t1,...,t,)0 =
f(t10,...,t,0). Hence f(t1,...,t,)0 = f(ry,...,r,)0 if and only if t,0 = r;0 for
1 <i < n. It follows u(ES; U S;) = u(ES; U S;).

(c) Transposition. (x:s)f = tf if and only if t§ = (2: 5)0. Hence we have u(ES; U S;) =
’LL(ES] U S])

(d) Substitution 1. Let ES U {x:s = t} be an equational system. For all § € u(ES U
{z:s =t} US;), we have (z:5)0 = t. If t € TERMj, then {t/x:s} is a sorted
substitution. Then, for all t; € TERM, t;{t/z:s}0 = t;0.

By the substitution 1 rule, if ES; = ES U {z:s = t} then ES; = ES{t/z:s} and
S; = Si{t/x:s} U{x:s =t} where t € TERM, and x: s ¢ Var(t). Hence
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VRS u(ESz U Sz)

iff t0=r0forallty =r, € ES;US;

iff t{t/x:s}0 = ri{t/z: s}0 (by the above conclusion and (z: s)0 = t0)
for all tp{t/x:s} = ri{t/z:s} € (ESUS;){t/z:s}

iff t,0 =r.0 forallt, =r, € (ES;US;)

iff 6€¢ U(ES] U Sj)

(e) Substitution 2. Let ESU{x:s; = y: so} be an equational system. For all § € u(ESU
{z:51 = y: 59} US;), we have (x:51)0 = (y: 52)0. If glb(s1, s2) = s3 with glb(sq, s9) #
s1 # so # L, then {z:s3/2:51,2:83/y: 59} is a sorted substitution. Then, for all
t; € TERM, t;{z: s3/x: s1,2:83/y: sa}y0 = ;0 where v = {(x:51)0/2:s3} ((x:51)0 €
TERM;, since glb(sy, $2) = s3).

By the substitution 2 rule, if ES; = ES U {z:s; = y:s»} then ES; = EST and
Sj = S;iTU{x:8) = 2:53,y: 5 = z:53} where 7 = {2:53/x:51,2:53/y: s2}. Hence

iff t,0@=rfforallty,=r,€ ES;US;

iff  tp7v0 = ri7y0 for all tyr = rpr € (ESUS;)T
(by the above conclusion and (z: s1)v0 = (2: s3)v0 = (y: 52)7v0
where 7 = {z:s3/x: 51, 2: 53/y: so} and v = {(x:51)0/z: s3})

iff 0 =rv0 and (x:51)70 = (2:s3)70 = (y: s2)70 for all £}, =, € (ES; U S))
where 7 = {z: s3/x: 81, 2: 83/y: S2}

iff 0 € w(ES;US;) with v = {(x:5)8/z:s3}

Therefore, we have ES; U S; ~uver(es;us;) £5; U S;. I

Lemma 3.8 Let ES, ES' be equational systems, and let V, V' be sets of variables such
that V. CV'. If ES ~y: ES’, then ES ~y ES'.

Proof. We assume ES ~y ES'. That is, {01V’ | 0 € u(ES)} = {01V | 0 € u(ES")}.
Then

(V|0 € w(ES)} = {04V |0 € {01V'| 0 € u(ES)}}
= {01V |0 € {01V |0 € u(ES)))
= {01V |0 € u(ES")}.

Therefore ES ~v ES'. 1
The lexicographic ordering on tuples of natural numbers is defined by: (tq,...,t,) >
(r1,...,rp) iff there exists ¢ € {1,...,n} such that t; =r; for 1 < j <iand t; > r;. We

show that the order-sorted unification algorithm always terminates for any ordered pair
of equational systems.

Lemma 3.9 The order-sorted unification algorithm terminates, when a pair (ES;0) of
equational systems is given.
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Proof. We show that if (ES;S) =, (FS’;S"), then pu(ES) >; u(ES"). The identity and
the decomposition rules decrease || ES|| but dose not increase |ESVar(ES)|. By an ap-
plication of the transposition rule, both || ES || and |ESVar(ES)| are not decreased but
[tp(ES)| is lowered. The substitution 1 and the substitution 2 rules reduce the number
of variables in E'S. 1

The correctness of the order-sorted unification algorithm is shown in the following
theorem.

Theorem 3.4 (Correctness of sorted unification) Let (ESy; Sy) with Sy = () be a
pair of equational systems. Then there exists a finite sequence

(ESO; S()) =u (ESl; Sl) 2 (ESn, Sn)

of applications of rules from the order-sorted unification algorithm. If ES,, is empty, then
05, TUV (ESy) is a most general unifier of ESy. Otherwise, there exists no most general
unifier of ESy.

Proof. By Lemma 3.9, the sequence (ESy; So) = (ES1;51) =u ... = (ES,; S,) with
So = 0 is finite.

If ES,, is empty, then ES,, U S, is solved. Then, By Lemma 3.5, Ogg us, iS a most
general unifier of ES, U S,, and 0gg, s, TUV(ESy U Sy) € u(ES, U S,)TUV (ESy U Sp).
Thus Ogs, s, TUV (ESy U Sy) is a most general unifier of

{r:s=t€ (ES,US,)|x:s€ UV(ESyU Sp)},

i.e., Ops,us, TUV(ESy U Sy) is most general in u(ES, U S,)tUV(ESy U Sy). Then, by
Lemma 3.7, we have

’LL(ES() U SU)TUV(ESU U Sg) = U(ESI U Sl)TUV(ESO U S()),
u(E51 U SI)TUV(ESH U Sl) = ’LL(ESQ U SQ)TUV(ESl U Sl),
u(ESn_l U Sn_l)TUV(ESn_l U Sn—l) = u(ESn U Sn)TUV(ESn_l U Sn—l)-

Lemma 3.8 implies ’LL(ESO U SO)TUV(ESO U S()) == u(E51 U Sl)TUV(ESO U SO) = =
Therefore 05, UV (ESy) is a most general unifier of ESy since u( ESyUSy UV (ESyUSy) =
U(ES[) U Sg) and S() = ES’n = (Z)
Otherwise, E.S,, contains at least one of the following equations:

(1) f(tla . 7tn) = g(Tl, . .,Tm) where f §é g,

(ii) z:s =t where x:s € FVar(t) or t ¢ TERMj, or

(iii) x1:s1 = yo: 5o where glb(sy, s2) = L.
In the each case, FS,, is not unifiable. Therefore there exists no most general unifier of

ESyU Sy, since u(ESyU Sy) = u(ES, U S, tUV(ESyU Sy) = 0. 1

In the following example, we demonstrate how rules in the order-sorted unification
algorithm are applied to unify sorted terms.
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Example 3.12 Let ¥ = (S, F,P,D) such that S = {s1, 89,83, L, T}, F={f,c}, P =10,
and D = (Ds, D]:, Dp) with

Ds = {s3Cg 51,53 Cg 82, L Tgs3,8Cs 1,52 Cg T},
Dj: = {f S1 X 89 — S3,C.— 82},
DP = @

Given the equational system
{z:83 = f(w:81,C:89), 281 = y: S},

we can obtain the following finite sequence by applying rules from the order-sorted unifi-
cation algorithm.

({z: 51 = y: s, f(:51,¢:89) = z:53};0)
=, ({f(v:s3,c:89) = zis3};{x: 51 = v:83,y: 59 = vis3}) (by substitution 2)
= ({7183 = f(viss,c89)}; {w:s1 = vis3,y: 89 = visz}) (by transposition)
=y (0; {z: 51 = vis3,y: 89 = v:83,2:83 = f(vis3,¢8)}) (by substitution 1).

As a result, the sorted substitution
0 = {v:s3/x:51,0:83/y: S9, f(v:S3,¢:89)/2: 53}

is @ most general unifier of {z:s3 = f(x:s1, ¢ S9), 2181 = Y: S}

3.3.6 Resolution with predicate-hierarchy

In this section, we formalize a (Horn clause) resolution for our order-sorted logic with
hierarchies and eventuality that is based on the linear resolution in [16]. The Horn clause
resolution contains the following inference rules.

Definition 3.34 (Resolvent) Let P = (X,CS) be a program.

(i) Rl-resolution rule. Let G be a goal and L' < G' € CS. If 0 is a unifier of L € G
and L', then (G —{L})8 U G' is an unstricted resolvent of G with respect to L and
L'+ G'. We write

G Lsp (G —{L})OUG'S.

(ii) R2-resolution rule. Let G be a goal and (i) <+ G' € CS. If (p) = (¥), [¢] Cp
[¢Y] € Dp, and 0 is a unifier of Y (i) € G and o(P(i')), then (G — {(a)})0 U G0
is an unstricted resolvent of G with respect to (i) and p(i') < G'. We write

G Lo (G —{Y(m)})ouas.

(i7i) R3-resolution rule. Let G be a goal and ¢i(fiy) < Gy, ..., pn(fin) < G, € CS.
If (p1) = - = (pn) = () where [1],...,[pn](n > 1) are all predicates such that

[¥] Cb [#i] € Dp, and 0 is a unifier of (1) € G and o (Y (")) with p' = U+ Uiy,
then (G — {¢()})0 U (G1 U ...UG,)0 is an unstricted resolvent of G with respect

to (i) and pi(fir) < G, ..., ou(fin) < Gn. We write
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(W]

(6]

Figure 3.1 A subpredicate relation for R2-resolution rule

(61] [¢2] . .. Ll

(W]

Figure 3.2 A subpredicate relation for R3-resolution rule

G s (G = {() U (G1U...UG,).

Figure 3.1 (resp. Figure 3.2) shows a subpredicate relation as a condition for applying
the R2-resolution rule (resp. the R3-resolution rule). We write G Laifta L @&,

G -4 G, orG U r3 G'. An unstricted resolvent is a resolvent if the unifier # is most
general.

Example 3.13 The sorted signature ¥ comprises the following symbols
S = {si1,82,83, T,L},
F = A{fe}
P = {p1,p2q},

and the declaration D = (Ds, Dz, Dp) constructed by

Ds = {s3Cyg 51,53 Cg 52,

1 Cgs3,81 Cg T,8 Cs T},
Dr = {f:s1 X 93— 83,60 — Sa},
Dp = {p1Cpp2}U

{pr:{(l, M)},
pa: {1, T), (2, 83) },
¢ {(l,, T)} }.

The program P is the ordered pair (¥,CS) with
cs = {pﬁ(ll = y:89) < ¢"(lh = y:52)}.
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With respect to the program P, we have an unstricted resolvent of pg(ll = T:51,ly =
f(z:s1,c:89)) as follows

pg(ll = x:81,ly = f(2:51, ¢ 89)) img q*(ly = v: s3)

where O = {v: s3/x: 51,0 53/y: 59, f(0: 83, ¢ 52) /22 53} is a most general unifier of pi(l, =
z: 51,1y = (2151, 59)) and ph(ly = y: s0,1y = 2:53) (= o(ph(ly = y: 53)), which is the
result of Example 3.12.

Definition 3.35 (Resolution) Let P be a program. A finite sequence
01 0o 03 0r
P.Gy—G —G — -« 4G,

s an unstricted resolution of Go with respect to P wheren > 0. We denote it by P: G| Py
G, with =0y---0,.

A resolution is called successful if GG, = 0O, that is P:G) % 0. In that case, the
composition #:= 6 ---6, of the substitutions to the variables in the initial goal Gy is
called a computed answer substitution. An unstricted resolution is called a resolution if
the unstricted resolvents are resolvents.

Lemma 3.10 Let Z be a Y-interpretation, and let Fy,. .., F, be formulas. T |=VFy,...,
I EVF, if and only if T =Y (F] A ...\ E!) where F|,..., F! are variants of F,..., F,
such that FVar(F])N---N FVar(E}) = 0.

Proof. Let FY, ..., F! be variants of F\, ..., F, with FVar(F{)N---N FVar(F!) = 0.

T EVE,...,TEYE,

iff ZEVE,... . TkVYF

iff for 1 <i<mn,foralldy €I(s1),...,dp € I(sg),
Tldy /1 81, ..., di/xy: sg] E F! where FVar(F;) = {x1:s1, ..., 25 s}

ifft foralld| € I(s),...,d, € I(s,),
Zldy yr: sy oo dl Jyme s B FY, o Id Jyas st o dL yme ) = E
where FVar(F))U---UFVar(F)) ={y1: 8|, Ym: Sh, }

iff TEVY(F{A...NF)) 1

In order to prove the soundness of the resolution rules, we will generalize Lemma 3.2
in the following lemma.

Lemma 3.11 Let ¥ = (S, F,P,D) be a sorted signature with hierarchical predicates, o
the argument supplementation, and p,p1,...,pn,q € P Then, the following holds:

(1) If p Cp q € Dp, then
(a) Y(p* (7)) Ems Y(o(q* (7)) and
(b) Y(p* (1) FEms V(o (¢ (7))

where = {ay = t1,...,a, = t,} such that ARG(p) = {ai,...,a,} and t; €
TERM scp(a;)-
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(2) If ¢ CTp p1,...,q Cp pn € Dp(n > 1) where py,...,p, are all predicates such that
q Cp pi, then

(a) (V@3 (A1), - V(L)) } s V(o(g* (7)) and
(6) LY@ (1), - VWi, )} Ers V(o(d4 (1))

where p = {ay = t1,...,anm = tn} such that U <, ARG(p;) = {a1,...,an} and
t; € TER]WSCP(ai)-

Proof.

(1) (a) fZ = Yyi: 81 -y 5. (p* () where Z = (M, 3) and p = {a1 = t1,...,a, = t,},

then, for all uy; € I(sy),...,u, € I(s;), Z[uy/y1: S1,s - - -, Ur/Yr: S| = p°(2). By the proof of

Lemma 3.2, Z[uy /y1: S1, - - -, Up /Yr: Sp] = 0(q*(f1)). Therefore Z |= Vyi: 51 -+ -y, 5. (0(¢*(12)))
with FVar(o(q*(7))) € {y1:s1,-- -, yri s}

(b) T EVyi:si -y 5.(p* (1)) where T = (M, 8) and = {a1 = t1,...,a, = t,},
then, for all u; € I(s1),...,u, € I1(s,), Z[u1/vy1: 81, - -, U /Yy, 5] |E p*(71). By the proof
of Lemma 3.2, Z{u/y1: 81, U /Yr: 8:] | Voi:s) ... v sk(o(g*(ii))). Therefore T k=
Yy, si oy sy 8y vps sk (o(gf () with FVar(o(g* (i) C {y1: Sty -+ Yri Spy 01184, o0
Vg: )}

(2) (&) If Z = V(p;(fipe)) for 1 < i < n where Z = (M, [3), then, by Lemma 3.10,

T = Vyiisie Y sp (1 (fps )A- - Apy (fips ) With EVar (py (fips )A- - Apy (fips)) = {y1: 51, - - -,
Yr: s, . Hence, for 1 <4 < n, I[dy /y1: 51, - -, dp[yr: 80| = (D] ([ipe)) for alldy € I(s1),...,d,
€ I(s,;). By the proof of Lemma 3.2, Z[d,/y1:51,...,d./yr:s,] = 0(¢°(fi)). Therefore

T EVYyisi-yeise(o(g®(p))) with FVar(o(g*(n))) C {yiisi,. .o 48}

(b) f T = V(pg(ﬂpg)) for 1 < i < n where Z = (M, 3). Then, by Lemma 3.10,
T E=Yyi:s- -y sr(pL}(ﬂpul)/\. . -/\pgz(ﬂpi)) with FVar(pﬁ(ﬂpg)/\. . ./\pfl(ﬂpi)) = {y1:s1,...,
Yr: ST‘}' Hence, for 1 S i S n, I[dl/yl: Sty--+) dr/yr: ST] ): (pg(/j’pﬁ)) for all dl € [(81)7 R dr
€ I(s,). By the proof of Lemma 3.2, Z[d, /y1: 51, .. ., dr/y: 5] = Yoi: 8} .. vp: sho(gh(fn)).
Therefore Z = Vy1: 81 - - - yp: 5,011 8, ... 02 85 (0(¢*(71))) with FVar(o(¢*(i))) C {y1: s1,-- -,
Yt Spy U1 SY, o oo, Ukt S} ) 1

The soundness of the Horn clause resolution is proved as follows.

Theorem 3.5 (Soundness of resolution) Let P be a program and G a goal. If there
exists a successful resolution of G with computed answer substitution 6, then P =gy GO.

Proof. This theorem is proved by induction on the length n of a successful resolution. Let
P = (3,CS) be a program and let

0 0 0 0
PG—1>G1—2>G2—3> - — O

with 8 = 6, - - - 6,, be a successful resolution.
Base case: n = 1.
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(a)

(b)

If G 2p O, then, by Definition 3.34, 6, is a unifier of L' € C'S and L(= G),
i.e., L'#; = L6, . Suppose that Z = P where Z is an HY-interpretation. Then
T ): V(LIQI) Therefore P ):HZ Ggl since ngl == L@l (: Ggl)

If G %54y O, then, by Definition 3.34, ; is a unifier of ¢(a)(= G) and o(¢(g)),
e, (¢(p)0 = (o((f')))0 where (ii') € CS. Suppose that Z = P where T
is an H3Y-interpretation. We can get Z = Y(o(¢(@'))) by Lemma 3.11 (1) since
[¢] Cp [¢] € Dp and T = V(e(f')). Then, by Lemma 3.1, T = V((o(¢(i')))6h).
Therefore P =y GO, since (¢¥(12))01 = (o (¢ (1')))0.

If G 2 g3 O, then, by Definition 3.34, 6; is a unifier of 1(z)(= G) and o (1(i)) with
i = 0 -Upty, e ()00 = (0 ()00 where gu(7m).. .. on(fin) € CS. Sup-
pose that Z = P where 7 is an HX-interpretation. Since [¢] Tp [p1],...,[¢] Cp

[on] € Dp(n > 1) and T &= V(e1(f1)),..-,Z E Y(pn(fin)), we can obtaln T E
V(o(¢(f'))) by Lemma 3.11 (2). Then, by Lemma 3.1, Z = V((o(¢(7')))01). There-

fore P ):HZ Ggl since @Z)(ﬂ)gl = (U(@Z)(ﬂl)))gl

Induction step: n > 1.

(a)

If G 255 Gy, then
GO UG —{L})o 2 Gy 2 - IO

is a resolution of Gi(= G'0; U (G — {L})0,) where L € G and L' < G’ € CS
and L'0; = L6,. By the induction hypothesis, P =gy (G'6; U (G — {L})6,)0" with
0 =0y---0,. Then, P Eyx L'0:0'(= L6,0') since P Eyx (L' < G')6,60". Therefore
P Eys G610,

If G 25y Gy, then
G'0 U (G — {v()})o 2 Gy 2 - In D

is a resolution of G1(= G'0; U (G — {¢(n) })61) where ¢)(i1) € G and (i) < G’ €
CS, (o((i)))0r = (¥(i))01 and [¢] Tp [¢] € Dp. By the induction hypothesis,
P Egs (G'0, U (G — {¢(p)})6,)0" with @' = 0y---0,,. Then P =g ¢(ii')6,0" since
P Eups (p(i') < G")0,0". By Definition 3.2, P =gy (o(¥(i'))0.0'(= ¥ (f)6,0").
Therefore P Epy G616’

If G 253 Gy, then
(GLU-- UG UG — ()N 2 Gy 25 ... 20

is a resolution where () € G, ¢1(fi1) < Gy, .. .,gpm(ﬂm) — G, € CS, Y()h, =
(o (@ (i)))0r with ' = py U -+ U piy and [v] Ep [<P1] - [¥] Cp [om] € Dp. By
the induction hypothesis, P FEpux ((G4 -UGp)0 (G {()})61)0" with 0" =
92 .. gn Then, for 1 <1 < m, P ):HZ @z(ﬂz)glg since P ):HZ (Soz(ﬂz) — GZ)HIQI
By Definition 32, P ):HE (U(@Z}(ﬂl))glgl(: 1/)(/1)919) Therefore P ):HZ GQIQI‘ 1
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Let P = (X,CS) be a program and G a goal. We denote (X, CSU{G}) by (3,CS)UG.
We use the abbreviation L —» G when we do not need to emphasize the substitution 6

in L 25 G. In order to make the Horn clause resolution complete, we supplement the
following resolution rules.

Definition 3.36 Let P = (X,CS) be a program.

(i) R2"-resolution rule. Let G be a goal. If (p) = (V), [¢] Tp [¢] € Dp, and 0 is a

unifier of Y() € G and o(P(i')), then (G — {¢()})0 U {@w(i')}0 is an unstricted
resolvent of G with respect to V(i) and p(i'). We write

G Lo (G — {(D) 1O U {p(i)}9.

(ii)) R3T-resolution rule. Let G be a goal. If (p1) = -+ = (p,) = () where
[o1], ..., [@n](n > 1) are all predicates such that [] Ch [pi] € Dp, and 0 is a
unifier of $(5) € G and o(p(i)) with LS(¥) = Urcyen ARG((p1), then (G —
{(m) )0 U {poi(fi,), - - - onllii,,)}0 is an unstricted resolvent of G with respect to

(i) and o1(fy,)s - pn(fl,, ). We write

G —par (G = (DU {pa(,), - - onlfil, ) }0-

We write G i>+ G it G -2 G, G i>RQ+ G, or G i>R?,+ G'. We use the notation

P:L i»Jr G to denote an unstricted resolution with the R2%-resolution rule and R37-
resolution rule. The soundness of the Horn clause resolution with the rules R2*,R3% is
proved as follows.

Theorem 3.6 (Soundness of resolution with R2", R3") Let P be a program and
G a goal. If there exists a successful resolution of G with computed answer substitution 6

such that P: L i»Jr G, then P =gy G6.

Proof. This theorem is proved by induction on the length n of a successful resolution. Let
P = (%,CS) be a program and let

P:G4‘9+G14€+G24€+ A.FD

with 6 = 6, - - - 0,, be a successful resolution.
Base case: n = 1.

(a) If G LRl G, G LRQ G, G LR;), (4, then P |=gs GO by the proof of Theo-
rem 3.5.

(b) If G 0, wo+ O, then, by Definition 3.34, 6; is a unifier of Y(p)(= G) and o(Y(R)),
i.e., (¢(@))0 = (o(x(i')))0;. Suppose that Z = P where 7 is an H¥-interpretation.
We can get Z = V(o(¢(i2'))) by Lemma 3.11 (1) since [¢] Cp [¢)] € Dp and 7 |
V(¢(@')). Then, by Lemma 3.1, ZV((o(¢(@')))61). Therefore, P Epyx G6; since

(W ()0 = (o ((i')))0r.
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(c) fG s pa+ O, then, by Definition 3.34, 6, is a unifier of Y(p)(= G) and o(¢(i'))
with 4/ = py U+ U py, L., ()0 = (o((i')))6. Suppose that Z = P where
T is an HXY-interpretation. Since [¢)] Tp [p1],...,[¥] Cp [¢n] € Dp(n > 1) and

T E=Y(pi(f1)),...,Z = Y(pn(fin)), we can obtain Z = V(o (1(f'))) by Lemma 3.11
(2). Then, by Lemma 3.1, Z = Y((o(¢(@')))#1). Therefore P =px GO, since

()b = (o (¢ (a')))0:-

Induction step: n > 1.

(a) If G Lop Gi, G Lspo Gi, G Loy Gy, then P s GO by the proof of Theo-
rem 3.5.

(b) IfG i>1?,2+ GG1, then
(G = {p(W) N0 U {0 B, Gy -5, .. . O

is a resolution of Gy (= (G — {¢(f1) })0 U {p(')}01) where (i) € G, o(¢Y(i'))0 =
Y(m)h1, and [p] Tp [¢] € Dp. By the induction hypothesis, P Eys (G —

{w(ﬂ)})elLJ{QO( )}91)9’ with ¢/ = 92 Hn By Definition 32, P ):HE (U(w(ﬂ’)))ﬁlﬁ’(:
1/)(/1)919,) Therefore P ):HZ Gglg

(C) IfG i)]ggﬁ Gl, then

(G = {W(@NO UL,y s (B, )00 31 Gy B, - U, O

is a resolution where w(ﬂ) € G,Y(n)h = o(Y(i))6 with LS(i') = Uy<jen ARG([¢1]),
and [¢] Cp [¢1],---,[¥] Tp [¢m] € Dp. By the induction hypothesis, P ps
((G—{w(ﬂ)})ﬁlu{gol(ﬂ D)y Pm(f, ) }01)0" with 0" = 0y - - - 0, By Definition 3.2,
P Eux (a(z/)(ﬂ’))ﬁlﬁ’(: ()010). Therefore P gy G616. 1

By the completeness of the Horn clause calculus and the following two lemmas, we
will prove the completeness of the Horn clause resolution.

Lemma 3.12 Let P be a program and G a goal. P: L —», O for all L € G if and only

Proof. (<) Trivial.
(=) By the hypothesis, the resolution P: G —, O can be built. 1

Lemma 3.13 Let P = (X,CS) be a program and L < G a ground clause. If P+ L <+ G,
then P: G —», O implies P: L —», 0.

Proof. We prove this lemma by induction on the length n of a derivation for P + L < G.
Suppose that P: G —», O.

Base case: n = 1. Since L < G can be derived by the substitution rule, there must be
a clause L' <~ G' € CS such that (L' < G')0 = L < G. Hence, if P:G —», O, then
P:L i)]ﬂ G — .

Induction step: n > 1.
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(a) If L «— G is derived by the cut rule, then
PHL+GU{L'}and P-L + G"

where G = G' UG". By the induction hypothesis, P:G" U {L'} —», O implies
P:L —», O and P:G" —», O implies P: L' —», O. If P:G' UG" —», O, then
P:G'"U{L'} —», O. Therefore P: L —», O.

(b) If L <~ G with L = (f1) is derived by the generalization rule for event predicates
(or property predicates), then

PrEo(p) <G

where [p] Cp [¢] and (o(¢(7)))0 = (). By the induction hypothesis, P: G —»,
O implies P: (') —s4 O. Then, we can obtain the resolution P: ¢)(i1) —= po+ o (i1')
since p(f') is ground. Hence if P: G —», O, then P: ¢ (f) SN e(p') —» O.

(c) If L < G with L = 1)(jio) is derived by the specialization rule for event predicates
(or property predicates), then

P+ 901(/7’901) < G17 .- '7P = SOM(/]LPm) — Gm

where [p1], ..., [pn] are all predicates such that [¢] CL o], p = {a1 = t1,...ap =
tm} such that Uy, ARG([f1y,]) = {ai,...,ax} and t; € TERMy scp(a;), and
(o) = (o(¥(R)))0. By the induction hypothesis, for 1 < i < m, P:G; —»; O
implies P: ;(ji,;) —»+ O. Then we can obtain the resolution P:(fi) s rgt
{1(Lpy)s - - - Pmlfip,, ) } since ©1(fig,), - - -, Pm(fy,,) are ground. Therefore, if P: G U
- UG —»¢ O, then P: ¢(jio) s pse {01(iip)s - - - » @m(fipy, )} —o 0. I

We prove the completeness of the Horn clause resolution for ground goals.

Theorem 3.7 (Ground completeness of resolution with R2", R3™)
Let P be a program and G a goal. If G is a ground goal such that P |=ys G, then there
exists a successful resolution of G with respect to P such that P: L —», G.

Proof. Suppose that P =gy G(= Ly,...,L,) where G is a ground goal. Then P =gy
Li,...,P Epy L,. By Theorem 3.3, we have P - Ly,...,P + L,. By Lemma 3.13,
pP:Ly—, 0O ..., P: L, —», O. Therefore, by Lemma 3.12, P:G —», O. 1

The following lemma guarantees that there are resolvents for unstricted resolvents.

Lemma 3.14 Let G be a goal. If G has an unrestricted resolvent with respect to L € G
and a clause C' (or clauses Cy,...,Cy) such that L ihr G, then G has a resolvent with
respect to them.

Proof. By the hypothesis, there is an unstricted resolvent G’ of goal G such that L ihr G.
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(a) If G —Lp G with G = Gof U (G — {L})0, then L € G, Ly + Gy € CS, and
LO = Lyf. Let 0" be a most general unifier of L and Ly;. We have a resolvent
G gy Gotf U (G — {L})#' with respect to L and Lo + Go.

(b) If G Ly G with G' = Gof U (G — {1b(n)})0, then ¢ (n) € G, (i) « Gy € CS,
(o(p(F)))0 = ¥ ()0, and [¢] Cp [¢] € Dp. Let 6’ be a most general unifier of ¢(f)
and o(1(f')). There exists a resolvent G s o Gy U (G —{9(i)})0" with respect
to (1) and () + Go.

(c) fG s ps G with G = (G1U---UG,,)0U(G—{y()})0, then (i) € G, p1(f1) +
Gl,---a@n(ﬂn) — Gn S CS, and 1/)(/1)9 = (0(1/)(/1,)))9 with :U’I = 1 U Uy,
[Y] Cp [p1],- -, [¥] Cp [pm]- Let 6 be a most general unifier of ¢(zz) and o(¢(i')).
We have a resolvent G —2 s (GLU--- UG U (G —{y(a)})d with respect to
(i) and 1) < G-, on(fin) < Gn.

d) If @ s poe G or G —Ls g3+ @, then similar to (b) and (c). 1

The following two lemmas are needed to prove the completeness of the Horn clause
resolution for general goals.

Lemma 3.15 (One step lifting) Let Gy, G, G’ be goals. If G is an unstricted resolvent

of Goby with Gyb, —0>+ G, then G' is a resolvent of Gy with Gg i>+ G where there exists
a substitution y such that (0TCVar(Gy))0 = 0, and G = G'y.

Proof. Assume that Gy, —9>+ G with respect to L € Gyfy and clauses C4,...,C,,.
Since C'Var(Gy) N CVar(Cy) N ...N CVar(Cy) = 0, we have C;(6,1CVar(Gy)) = C; for

1 < ¢ < m. Hence, Gy (GOT%EFGO))G G. By Lemma 3.14, Gy has a resolvent G’ (with
respect to L and C,...,Cy,) with Gy l>+ G' where there exists a substitution ~ such
that (0y1CVar(Gy))0 = €', and G = G'. 1

Lemma 3.16 (Lifting) Let P be a program. If P has an unstricted resolution
P:Goflo 5. G, B, Gy -5, .. G,

then P has a resolution
PGy A aBoa B o

where vy = by and, for 1 < i < n, there exists a substitution ~; such that (v;_1 7T
CVCLT(Gi_l))gi = 9;’)/1, and Gz = G;’)/Z

Proof. This lemma is proved by induction on the length n of an unstricted resolution of
Goby.

n = 1: By Lemma 3.15, this is clear.

n > 1: By the induction hypothesis, there exists a resolution

’ ! ! 9/
PGy B, Boa B e
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where 79 = 6y and, for 1 < ¢ < n — 1, there exists a substitution ; such that (v; ;1
CVar(G;41))0; = 0., and G; = Gvy;. By Lemma 3.15 and P:G, ﬁJr G,, with

)

Gn-1 = G),_,7i-1, we have a resolution P:G!,_, 40+ G, where there exists a substitu-
tion 7y, such that (v,_11CVar(G,-1))0, = 0. v,, and G,, = G V. 1

The next lemma shows the completeness of the Horn clause resolution with a ground
substitution fy for goal GY.

Lemma 3.17 Let P be a program, Gy a goal, and 6y a ground substitution for Gy. If
Gy is a goal such that P \=py, Goby, then there exists a successful resolution of Gy with a

computed answer substitution 6" such that P: L L’»Jr G and Gy = Gob'.

Proof. Suppose P =g Gobly. Then, by Theorem 3.7, P: Gb, —9»+ O with 6 =6,---0,.
Hence, by Lemma 3.16, P: G —9,»+ O with ' = 0] -- -6/, where vy = 6 and, for 1 < i <n,
there exists a substitution ~; such that (y,-1 T CVar(G;—1))0; = 0}v;. Then we have
G060 = GO~ by the proof of Theorem 5.37 in [16]. Since §1CVar(GO) = O (by the fact
that 6 is a ground substitution for G), we can obtain G0y = Gobfy. Therefore 0"1CVar(G)
is a computed answer substitution such that G6y, = G#'. I

In the following theorem, we shows that the Horn clause resolution with the R2%-
resolution rule and R3%-resolution rule is complete.

Theorem 3.8 (Completeness of resolution with R27, R3") If P =yx GO where 0
1s a sorted substitution, then there exists a successful resolution of G with a computed

answer substitution 0" such that P: L i»Jr G and GO = GO'y.

Proof. Let 8 = {Cz,.5,:51/%1: 81,y Capesyt Sn/Tn: Sn} where CVar(GO) = {zy:sq,...,
Tnt S} and Cgp.s,0 81, .., Coy st S are new constants. If P =gy GO, then P gy GOB.
By Lemma 3.17, there exists a successful resolution G —»; O with a computed answer
substitution 6" such that GO = G6'vy. Because the new constants ¢z, .s,: 1, .., Cp,:5,." Sn
do not occur in G, we have c¢,.5,/Y1: 51, Capis,/Un: Sn € 7. Let vy be defined by
(yirsi)vo = xizs; for 1 < i < mand v = (v — {Cops1 /Y1551, -+ Capisn /Ynt Sn}) U Yo
Let GO = G'[x1:51,..., 2Ty 8p]. We have GO’y = G'[x1:51,...,2,: 8, = GO. Therefore,
GO = Ggl’)/l. 1

Let us look at resolution processes with respect to the two examples (Example 1 and
Example 2) we saw in Section 2.1.3. The sort-hierarchies and predicate-hierarchies are
expressed in sorted signatures, the facts in logic programs are described as clauses and
the queries are given by goals.

Example 3.14 The sorted signature ¥, comprises the following symbols

S = {person,man,woman, T, L},
f
P = {rob.with_violence, hit, steal, illegal _act},

{john, mary, c},
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and the declaration D = (Ds, Dg, Dp) constructed by

Ds = {man Cg person,woman Cg person,wallet Cg thing,
1 Cg man, L Cg woman, L Cg wallet,
person Cg T,thing Cs T },
Dy = {john:— man, mary: — woman, c: — wallet},
Dp = {hit Cp illegal_act} U
{hit: {(agt, person)},
illegal_act: {(agt, person), (coagt, person)} }.

The argument structure of hit consists of one argument labeled with agt, and the argument
structure of illegal_act consists of two arguments labeled with agt, coagt. The program Py
is the ordered pair (X,,CSy) with

CS, = {hit*(agt = john:man)}.
hit*(agt = john:man) means that “the agent john hit.” With respect to the program,
the resolution of the goal illegal_act®(agt = john: man, coagt = mary: woman) fails as
follows

illegal_act®(agt = john: man, coagt = mary: woman) — fail,
but we have a resolution of the goal illegal_act®(agt = john:man, coagt = y: person) as
follows

illegal_act®(agt = john: man, coagt = y: person) i>R2 a

where § = {Ccoaqr: person/y: person}.

Furthermore, the sorted signature ¥ = (S, F, P, D') is obtained by replacing D in 3,
with D' = (Ds, Dx, D) where
Dy = {robwith_violence Cp hit,
rob_with_violence Cp steal,
hit Cp illegal _act,
steal Cp illegal_act} U
{rob_with_violence: {(agt, person), (coagt, person), (obj, thing)},
hit: {(agt, person), (coagt, person)},
steal: {(agt, person), (obj, T)},
illegal_act: {(agt, person)} }.
The argument structure of rob_with_violence consists of three arguments labeled with agt,
coagt, obj, and the argument structure of illegal_act consists of one argument labeled
with agt. The argument structures of hit and steal consist of two arguments labeled with
agt, coagt and agt,obj respectively. The program P is the ordered pair (X7, CSy) with
CS; = {hit*(agt = john: man, coagt = mary: woman),
steal®(agt = john: man,obj = c:wallet)}.
hit*(agt = john:man, coagt = mary: woman) means that “the agent john hit the coaent

mary,” and steal®*(agt = john:man,obj = c:wallet) means that “the agent john stolen
the wallet c¢.” With respect to the program, we have the following resolutions
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illegal_act® (agt = john: man) —go O,

rob_with_violence®(agt = john: man,
coagt = mary: woman, obj = c:wallet) — p3 O,

rob_with_violence® (agt = x: person, coagt = y: person, obj = z:thing) img O
where § = {john: man/x: person, mary: woman/y: person, c: wallet/z: thing}.

Example 3.15 The sorted signature Yo comprises the following symbols

S = {penguin,crow,bird,animal, T, L},
F o= {ch
P = {fly, move, walk},

and the declaration D = (Ds, Dz, Dp) constructed by

Ds = {penguin Cg bird, crow Cg bird, bird Cg animal,
1 Cg penguin, L Cg crow, L,animal Cg T},
Dy = {c:— bird},
Dpr = {fly Cp move,
walk Cp move} U
{fly:{(sbs, T)},
walk: {(sbj, T)},
move: {(sbj, T)} }.
The program Py is the ordered pair (X9, C'Ss) with

CSy = {fly*(sbj = c:bird),
fly*(sbj = x:bird)}.

fly*(sbj = c:bird) means that “a bird c is filing,” and fly*(sbj = x:bird) means that “all
birds have the property of fight” (or “all birds can fly”). With respect to the program, a
successful resolution of the goal move®(sbj = y: animal) (with the event predicate move®)
15 derived as follow

fly*(sbj = y: animal) O

where 01 = {c:bird/y: animal}, but the resolution of the goal move®(sbj = y: penguin)
fails as follows

move® (sbj = y: penguin) —s g fail.
And a successful resolution of the goal move®(sbj = y: animal) is derived as follows
move®(sbj = y: animal) %5 gy O

where 03 = {c: bird/y: animal}.

In contrast to the above goals with event predicates, we consider resolutions of goals
with property predicates. A successful resolution of the goal fly*(sbj = y:animal) (with
the property predicate fly*) is obtained as follow
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0/
fly?(sbj = y: animal) —>p, O

where 0 = {: bird/y: animal}, a successful resolution of the goal move®(sbj = y: penguin)
s obtained as follow

9/
move®(sbj = y: penguin) — gy O

where 0, = {y: penguin/z:bird}, and a successful resolution of the goal move*(sbj =
y: animal) is obtained as follow

0[
move? (sbj = y: animal) — gy O
where 05 = {x: bird/y: animal}.

However, we do not require that there are successful resolutions of fly*(sbj = y: animal)
and movef(sbj = y:animal) because we have contended that their answers should be
no. In the next section, we will present a query system that is based on the Horn clause
resolution with hierarchies and eventuality, which solves this problem.

3.4 Evaluation

In Section 3.4, we evaluate the capability of our logic as a knowledge representation
system. Hence, we show that a query system defined by the resolution we develop provides
the reasoning mechanism required in our motivational examples given in Chapter 2, and
give an example of its application to a legal reasoning.

3.4.1 Query system

As we have mentioned in Section 2.1.3, we are finally concerned with a knowledge repre-
sentation system (called a query system) that can be asked questions about a knowledge
base (given as a program). A PROLOG-like logic programming language is regarded as
a kind of query system. If a user inputs a query

7-pl(args_1),...,pn(args_n).

where args_i is a sequence (t1,...,t,) of arguments, then the answer yes or no must
be returned. In the Horn clause resolution proposed in the previous section, the goal G
corresponds to a query ?-Q where both G and Q are formed by a sequence (L4, ..., L,) of
atoms. Furthermore, if the goal G and the query 7-Q have the same logical meaning, then
we can directly define our expected query system by the Horn clause resolution. However,
the query system in our motivational examples quantifies each variable (occurring in the
queries) alternatively as existential or universal.
In Example 2. in Section 2.1.3, the query

7-fly# (sbj=>X:bird) .

with a property predicate (where we denote event and property predicates in queries by
p* and p# respectively) indicates “Do all birds have the property of flight?” or “Can all
birds fly?” In contrast, the query
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7-fly*(sbj=>X:bird) .

with an event predicate indicates that “Is a bird flying?” Clearly, the first and second
queries include differently quantified variables where an existential variable occurs in
event atoms and a universal variable in property atoms. However, the goal G used in
resolutions seems to be a query with existential variables, since we can obtain P =gy G0
but not P [y G if there exists a successful resolution of goal G with a computed answer
substitution 6.

Thus, we will present a query system based on the Horn clause resolution for ex-
tended order-sorted logic with hierarchies and eventuality. It not only gives the answer
yes or no to a user’s question with respect to a program P but also allows us to express
query terms (or formulas) that distinguish between existential variables z: s and univer-
sal variables X:s. In the following, we introduce the language Lo for a query system
that extends an order-sorted first-order language £. Vg, is a set of universal variables
Xi:s,Xots, ..., Xy, s of sort s where Vg, and V, (regarded as a set of existential vari-
ables) are disjoint. We denote by Vg the union of sets Vg s,, Vo5, - -, Vo.s, for all sorts
S1589, -+, Sp.

Definition 3.37 (Query language) Given an order-sorted first-order language L, the
query language Lg is constructed by adding Vq.

In the same manner as sorted terms, we build query terms by adding universal variables
in which the existing variables in £ are regarded as existential variables.

Definition 3.38 (Query terms) Let ¥ = (S, F, P, D) be a sorted signature with hier-
archical predicates. The set QTERM, of query terms of sort s is defined by:

(1) An ezistential variable x:s € V is a term of sort s,
(2) A universal variable X:s € V¢ is a term of sort s,
(8) A constant c: s is a term of sort s where ¢ € Fy and ¢: — s € Dy,

(4) If t1,. .., t, are terms of sorts si,...,Sp, then f(ti,...,t,):s is a term of sort s
where f € F, and f:s1 X ... X s, = s € Dr,

(5) If t is a term of sort s', then t is a term of sort s where s' Cg s € Dg.

Remark 3.3 The existential and universal variables are distinctively defined in the query
terms, but treated equally in resolution processes for our order-sorted logic. Thus, if these
variables are free variables, then they can be equally substituted for sorted terms (or query
terms).

We denote by QTERM the set U,cs QTERM; of all query terms. The set QFORM of all
query formulas is inductively defined by the terms in QTERM in the same way that FORM
was constructed from TERM. We use query formulas to express goals G' or substituted
clauses C' but not clauses in a program P. We call a clause form expressed by query
atoms a query clause and write QCL for the set of all query clauses.

In the following, we define the function UVar as assigning any query term to the set
of universal variables occurring in it.
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Definition 3.39 The function UVar from the set QTERM of query terms into 2Y2 is
defined by:

(1) UVar(xz:s) =0,
(11) UVar(X:s) = {X:s},
(iii) UVar(f(ty,...,t,):s) = UVar(t;) U---UUVar(t,).

The function FVar: FORMs+ — 2V is defined by Var in Definition 3.7. Similarly, the
function FUVar: QFORM — 2Y2 is defined by UVar and the function CUVar: QCL —
2Y¥e by FUVar. Moreover, the function EVar (assigning any query term to the set of
existential variables occurring in it) is defined by EVar(t) = Var(t) — UVar(t). We define
FEVar(E) = FVar(E)—FUVar(F) and CEVar(E) = CVar(E)—CUVar(F). We develop
a query system with a query language L, (where the language contains existential and
universal variables) as follows.

Definition 3.40 (Query system) Let P be a program and let G be a goal. The query
system Query is defined by the following query rule.

(i) If there exists a successful resolution P: G 50 and Dom(0) NCUVar(G) = 0, then
Query(G) = yes.

(ii) Otherwise, Query(G) = no.
The components of the above query system are described in Figure 3.3.

Remark 3.4 In our query system, a query with existential variables x: s implies inquiring
whether the statement holds for an instance (corresponding to a ground term), and a query
with universal variables X : s implies inquiring whether the statement holds for all instances
(corresponding to a free variable). The following theorem includes this consideration.

Theorem 3.9 (Correctness of query system) Let P be a program and let G be a goal
as a query formula. Then, the following holds:
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o If Query(G) = yes, then there exists a ground substitution 0 for CEVar(G) with
Dom(0) N CUVar(G) =0 and P =xx GO.

o If Query(G) = no, then P feps GO for all ground substitutions 0 for CEVar(G)
with Dom(0) N CUVar(G) = 0.

Proof. Suppose that Query(G) = yes. By Definition 3.40, we can obtain a successful

resolution P: G 2 O with Dom(0)NCUVar(G) = 0. Hence, by Theorem 3.5, P v G9.
We define a ground substitution 6" for CEVar(G) where 6 < ¢ (0 is more general than
') and Dom(0") N CUVar(G) = (. By Lemma 3.1 and # <6, P Epyx GO'.

Suppose that P =gx GO where 0 is a ground substitution for CEVar(G) with Dom(0)N
CUVar(G) = 0. By Theorem 3.8, we have a successful resolution of goal G with a
computed answer substitution 6’ such that G = G@'~y. By the hypothesis (Dom(6) N
CWWar(G) = 0) and 0"1CVar(G) < 01CVar(G), Dom(6') N CUVar(G) = (). Therefore,
by Definition 3.40, Query(G) = yes. 1

The following two examples give the answers to queries for the programs in Exam-
ple 3.14 and Example 3.15.

Example 3.16 Given the program P, = (X1,CS)) in Ezample 3.14, we can obtain the
following answers

Query(illegal _act®(agt = john: man, coagt = mary: woman)) = no,
Query(illegal —act®(agt = john: man, coagt = y: person)) = yes

by applying the query system to the results of the resolutions in Example 3.14. Given the
program P = (X,CS}) in Example 3.14. The following answers

Query(illegal _act®(agt = john: man)) = yes,

Query(rob_with_violence® (agt = john:man,
coagt = mary: woman, obj = c: wallet)) = yes

are derived from the results of the resolutions in Example 3.14.

Example 3.17 Given the program Ps in Example 3.15, the answer to the query fly®(sbj =
y: animal) is

Query(fly*(sbj = y:animal)) = yes,

since we have the successful resolution G LRl O with G; = fly*(sbj = y:animal),
6, = {c:bird/y: animal} and therefore Dom(6,) N CUVar(G1) = 0 in Example 3.15. The
answer to the query fly*(sbj = y: penguin) is

Query(fly®(sbj = y: penguin)) = no,

as the resolution of the goal move®(sbj = y: penguin) fails in Example 3.15. Moreover,
the answer to the query move®(sbj = y: animal) is

Query(move®(sbj = y:animal)) = yes,
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by the successful resolution G ARQ O with G3 = move®(sbj = y:animal), 03 =
{c:bird/y: animal} and therefore Dom(63) N CUVar(G3) = () in Ezample 3.15.

Next we give the answers to queries that include property formulas. The answer to the
query fly*(sbj = Y:animal) is

Query(fly*(sbj = Y:animal)) = no,
because although we can obtain the successful resolution G Lm O with G, = fly*(sbj =

Y:animal) and 0, = {z:bird/Y:animal}, Dom(0}) N CUVar(G}) = {Y:animal} in
Ezample 3.15. The answer to the query fly*(sbj = Y:penguin) is

Query(move?(sbj = Y: penguin)) = yes,
0!
since we have the successful resolution GY, — g, O with GY, = move*(sbj = Y: penguin),

0, = {Y:penguin/x:bird} and therefore Dom(6,) N CUVar(GY) = 0 in Example 3.15.
Moreover, the answer to the query movef(sbj = Y:animal) is

Query(move*(sbj = Y:animal)) = no,

because although we have the successful resolution G 9—’3>R2 O with G = move (sbj =
Y:animal) and 05 = {x:bird/Y:animal}, Dom(0y) N CUVar(GY) = {Y:animal} in
Ezxample 3.15.

These results show that the query system for L, gives the answers required in Example
1 and Example 2 in Section 2.1.3.

3.4.2 The application of the query system to a legal reasoning

This section shows the the query system we have proposed is useful for other knowledge
representation cases. In the following, we consider the application of our query system to
two legal reasoning examples.

A criminal case:

We describe the first legal case in our order-sorted first-order language. The sorted sig-
nature ¥ with hierarchical predicates is an ordered quadruple (S, F, P, D) with

Ds = {man Cg person,woman Cg person,bat Cg thing,

1 Cg man, L Cg woman, L Cg bat, person Cg T,thing Cg T},
Dy = {john:— man, mary: — woman, c: — bat},
Dp = {die Cp legal_act, hit Cp illegal_act,

murder Cp illegal_act,illegal _act Cp act} U
{die: {(agt, person)},

legal_act: {(agt, person)},

illegal_act: {(agt, person)},

hit: {(agt, person), (coagt, person), (tool, thing), (place, T)},
murder: {(agt, person), (coagt, person)},

intent_to_murder: {(agt, person), (coagt, person)},

act: {(agt, person), (coagt, person)} }.
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The program P is an ordered pair (X, F'U R) with

F = {hit*(agt = john: man, coagt = mary: woman, tool = ¢: bat,
place = cy: home),
die®(agt = mary: woman),
intent_to_murder®(agt = john: man, coagt = mary: woman) },
R = {murder®(agt = x:person, coagt = y: person) <—
act®(agt = x: person, coagt = y: person), die®(agt = y: person),

intent_to_murder®(agt = x: person, coagt = y: person) }.

Given the program P as a legal knowledge base, our query system will give the following
answers. First, the query “Did John murder a person” yields the answer yes. Second,
the query “Did John commit an illegal act?” also yields the answer yes as follows.

?7-murder* (agt=>john:man,coagt=>Y:person) .
yes.
?7-illegal_act*(agt=>john:man) .

yes.

where we denote existential and universal variables in queries by Y and (Y) respectively.
In the query system we propose, we will explain the inference process of the query

?7-illegal_act*(agt=>john:man) .

In order to obtain the answer yes from this query, there must exist a successful resolution
of the goal illegal_act®(agt = john:man). With respect to the program P, the empty
clause is derived as follow

illegal _act®(agt = john:man)

LRZ act®(agt = john: man, coagt = mary: woman),

die®(agt = mary: woman),

intent_to_murder®(agt = john: man, coagt = mary: woman)

~p1 die®(agt = mary: woman),

intent_to_murder®(agt = john: man, coagt = mary: woman)

R intent_to_murder®(agt = john: man, coagt = mary: woman)

€

—p1 U

where 0, = {mary: woman/x: person,y: beer /y: alcoholic, z: bar / z: space}. Furthermore,
since there exists a successful resolution of goal G where G = illegal_act®(agt = john: man)
and therefore Dom(0;) N CUVar(G) = 0, the answer to the query illegal_act®(agt =
john:man) is

Query(illegal _act® (agt = john:man)) = yes

where Query is the query system defined in the previous section.
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Underage drinking:

We give the second legal case as follows. The sorted signature > with hierarchical predi-
cates is an ordered quadruple (S, F, P, D) with

Ds = {adult Cg person, minor Cg person, beer Cg alcoholic,
alcoholic Cg thing, bar Cg space,
1 Cg adult, L Tg minor, L Cg beer,
person Cg T,thing Cg Tspace Cg T},

Dy = {peter: — minor, mary: — adult},

Dp = {underage-drinking Cp illegal_act,legal_act Cp act} U
{illegal_act: {(agt, person)},
drink: {(agt, person), (obj, thing), (place, T)},
underage_drinking: {(agt, person)},
act: {(agt, person), (coagt, person)} }.

The program P is an ordered pair (X, FFU Ry U Ry) with

F = {drink*®(agt = peter: minor, obj = y: beer)},

R, = {underage_drinking®(agt = x: minor) <«

drink®(agt = x:minor, obj = y: alcoholic) },

Ry, = {drink*(agt = x:adult, obj = y: alcoholic) }.
In the set Ry in P, a legal rule interpreted as “Adults have the right to drink alcoholic” is
declared. Thus, the first query “Does Mary have the right to drink alcoholic?” will give
the answer yes in our query system. The answer to the more concrete query “Does Mary

have the right to drink beer in a bar” is also yes. However, the third query “Did Mary
drink alcoholic?” will yield no.

?-drink#(agt=>mary:adult,obj=>(Y) :alcoholic,place=>(Z):T).
yes

7-drink#(agt=>mary:adult,obj=>Y:beer,place=>Z:bar) .

yes

?7-drink* (agt=>mary:adult,obj=>Y:alcoholic).

no
In the following, we explain the inference process of the query
?7-drink#(agt=>mary:adult,obj=>Y:beer,place=>Z:bar) .

To derive the answer yes from this query, there must exist a successful resolution of
the goal drink®(agt = mary: adult, obj = y:beer, place = z:bar). With respect to the
program P, the empty clause is derived as follow

drink*(agt = mary: adult, obj = 1: beer, place = z: bar) iﬂﬂ O.
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where 0, = {mary: adult/x: adult, y: beer [y: alcoholic, z: bar [ z: space}. Moreover, since
there exists a successful resolution of goal G where G' = drink*(agt = mary: adult, obj =
y: beer, place = z: bar) and therefore Dom(6,) N CUVar(G) = (), the answer to the query
drink*(agt = mary: adult, obj = y: beer, place = z: bar) is

Query(drink*(agt = x:mary, obj = y: beer, place = z:bar)) = yes

where Query is the query system defined in the previous section.

Considering the query “Did Peter commit an illegal act?” with regard to Peter’s
drinking, the answer yes, since the answer to the query “Does Peter have the right to
drink alcoholic?” is no as follows.

7-illegal_act* (agt=>peter:minor) .

yes

?7-drink# (agt=>peter:minor,obj=>(Y) :alcoholic).

no

The query system proposed in the previous section can be used as a legal reasoning

system that deduces logical conclusions from legal cases, legal rules, and background
knowledge. In the query language in this system, a legal case is written by ground clauses
indicating event assertions, a legal rule is represented by sorted clauses and classified

as laws concerning an event or a property, and background knowledge corresponds to a
sort-hierarchy and a predicate-hierarchy.
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Chapter 4

Implicit negations in a sort-hierarchy

Chapter 4 presents an order-sorted logic that includes the complex sort expressions of
implicit negations. In Section 4.1, we give an account of structured sorts, sort relations,
and contradiction in a sort-hierarchy. These notions can be used to declare the properties
of implicitly negative sorts in a sort-hierarchy. Section 4.2 and Section 4.3 present the
formalization of order-sorted logic with structured sorts, and systems of clausal deduction,
clausal resolution, and structured sort constraints. Section 4.4 evaluates the usefulness of
the knowledge representation system to deal with implicit negations. This will be shown
by derivations (using a hybrid inference system obtained by combining the systems we
propose) for the examples in Chapter 2.

4.1 Implicitly negative sorts

In order to deal with implicitly negative sorts in a sort-hierarchy, we introduce structured
sorts, sort relations, and contradiction in a sort-hierarchy into an order-sorted logic. These
notions can be used to declare the properties of implicitly negative sorts in a sort-hierarchy.

4.1.1 Structured sorts

We consider the representation of sorts in a hierarchy whose names are declared as lexical
negations (classified as negative affixes or lexicons with negative meaning). In this thesis,
a sort denoted by a word with negative affix is said to be a negative sort and a sort
denoted by a lexicon with negative meaning is said to be an opposite sort. In general, we
call these sorts implicitly negative sorts. To represent these negative sorts, we introduce
the notation of structured sorts and relations between sorts whereby a negative sort is
defined by the structured sort with strong negation operator [48] [49] and an opposite
sort is defined by exclusivity. In particular, we denote an opposite sort as exclusive to
its antonymous sort in a hierarchy, so that these two sorts exclude each other but neither
sort is negative. In fact, we should not say that an opposite sort is negative, rather we
should say that these two sorts are opposite in meaning.

Structured sorts are constructed from atomic sorts, the connectives M, LI, and the
negative operators —, ~ as follows.

Structured sorts:
angry M hungry Conjunction
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winner L loser Disjunction

happy Complement (classical negation)
~happy Negative sort (strong negation)
T Greatest sort

il Least sort

In the above structured sorts, the sorts angry, hungry, winner, loser, happy, T, and
T are atomic sorts. angry M hungry denotes the conjunction of angry and hungry that
means the elements are in angry and hungry. winner LI loser denotes the disjunction of
winner and loser that means the elements are in winner or loser. happy denotes the
complement (corresponding to the classical negation) of happy that means the elements
are not in happy, and ~ happy denotes the negative sort (corresponding to the strong
negation) of happy that means the elements are in feeling opposite to happy (or unhappy).
T and L are the greatest sort and the least sort in a sort-hierarchy.

When we denote by winner the complement of the sort winner, it corresponds to the
negative formula —winner(x) in first-order predicate logic. Thus, if we use the structured
sort winner as a sort predicate, then the formula expressed by winner(z) is semantically
equivalent to the negative formula —winner(z)'!. On the basis of this expression, an
assertion with the unary predicates expressed by structured sorts (i.e. the sort predicates)
is written as the following.

Assertion:
angry M hungry(bob) (= (angry M hungry)(bob)),
~winner(tom) (= (~winner)(tom)).

Note that ~winner(tom) is the abbreviation of (~winner)(tom) but not ~(winner(tom))
because ~winner is used as a sort predicate.

4.1.2 Negations by sort relations

We now give several relations between structured sorts in order to represent implicitly
negative sorts embedded in a sort-hierarchy. ‘Cg’ denotes a subsort relation between
structured sorts where Cg is a partial order (i.e. reflexive, anti-symmetric, and transitive).
Furthermore, ‘=g’ denotes an equivalence relation between structured sorts, ‘||” denotes an
exclusivity relation between structured sorts, and |;,” denotes a totality relation between
structured sorts as follows.

Sort relations:

sCg s Subsort relation
s =g ¢ Equivalence relation
s s Exclusivity relation

Totality relation

The subsort relation s Cg s" declares that the structured sort s is a subsort of structured
sort s'. The equivalence relation s =g s’ declares the equivalence of the two sorts, and
the exclusivity relation s || s declares the mutual exclusivity of elements in the two sorts.
The totality relation s |5, s’ declares that the union of s and s’ is equivalent to the sort s;.
Hence, the equivalence relation, exclusivity relation, and totality relation are defined by

IThis semantic equivalence will be discussed in Section 4.2.
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Figure 4.1 Totality and exclusivity relations between structured sorts
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feeling person
happy unhappy pl ayer
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Figure 4.2 A sort-hierarchy built by sort relations

(sCg ')A (s Cgs), (sMs') =g L, and (s Us') =g s; respectively. We use the notation
in Figure 4.1 to illustrate the exclusivity and totality relations in a sort-hierarchy.

Using these sort relations, we can define the following properties (totality, partiality,
and exclusivity) to be used for declaring various negations (in particular, lexical nega-
tions).

Totality:

WINNEr |piayer loser
Partiality:

(happy U unhappy) Cs feeling
Exclusivity:

happy || unhappy, winner || loser

The totality expression indicates the property that every element in player is at the
least one of the two sorts winner and loser, and the partiality expression indicates the
property that some elements in feeling are not in the two sorts happy and unhappy.
The exclusivity expression indicates the property that all elements in happy are not in
unhappy and all elements in unhappy are not in happy. For example, Figure 4.2 shows a
sort-hierarchy built by these properties and the subsort relation.

The properties characterize three types of negations (complement, negative sort, and
opposite sort) in a sort-hierarchy built up using structured sorts. Table 4.1 gives the
properties and expressions of these negations in a sort-hierarchy. On the basis of the
law of excluded middle (A V —A) in classical logic, the sort happy and its complement
happy have the properties totality in the greatest sort T and exclusivity axiomatized
by the sort relations in (1) of Table 4.1. The negative sort ~happy has the properties
partiality and exclusivity axiomatized by the sort relations in (2) of Table 4.1. Since a
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Table 4.1 Three negations

Negation type Expression | Relationship Property

(1) Complement happy happy |+ happy (in Axioms) totality
(classical negation) happy || happy exclusivity

(2) Negative sort ~happy ~happy || happy  (in Axioms) exclusivity
(strong negation) ~happy Cg happy partiality

(3) Opposite sort sad sad || happy (in Declarations) | exclusivity
(antonym)

negative sort has the same properties as the strong negation, the word unhappy with
negative affix can be defined by the equivalence relation between ~happy and unhappy
(i.e. ~happy =g unhappy). Moreover, the opposite sort sad of happy must be declared
by the exclusivity relation sad || happy in (3) of Table 4.1. Although complement (1)
and negative sort (2) are semantically equivalent to the classical negation and the strong
negation respectively, opposite sort (3) does not correspond uniquely to either one of them.
Furthermore, it is not necessary to establish this correspondence. In addition, opposite
sort (3) without a negative operator is not syntactically regarded as a negation and so
its exclusivity must be defined as a declaration. In Figure 4.3, we show a sort-hierarchy
with negative sorts and complement sorts. In Figure 4.4, we show a sort-hierarchy with
opposite sorts and complement sorts.

In a sort-hierarchy, the explicit location of the three negations is obtained from the
relations to their positive sorts, so that it can be used to provide a reasoning mechanism
from implicitly negative sorts (specifying lexical negations) and the classical negation.
Therefore, the representation of lexical negations and their reasoning can be generated
from the axioms and declarations of the three types of negations, where an axiom is
a premise in a knowledge base and a declaration is a background knowledge each user
defines.

4.1.3 A contradiction in a sort-hierarchy

We present a contradiction in a sort-hierarchy containing the three negations (comple-
ment, negative sort, and opposite sort) that we have explained. Unlike simply introducing
a new negative operator, an opposite sort is not regarded as a negation in a knowledge
base. Thus, we cannot syntactically decide whether there is a contradiction between an
opposite sort and its antonymous sort and we cannot establish the relations to their com-
plements and negative sorts. For example, a contradiction between the sorts winner and
loser could not be determined and the relationship between loser and winner could not
be established.

A deductive system with implicitly negative sorts has to determine a contradiction in
a sort-hierarchy in order that it can provide a sound inference mechanism derived from
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Figure 4.3 A sort-hierarchy with (a) negative affix and (b) complement

the three negations and their relations to each other. In classical logic, we can say that a
set A of formulas is contradictory if a formula A and the classical negation = A as below

A, —A

are simultaneously derivable from A. In this case, we can syntactically establish the con-
tradiction, because A indicates the negation of A by the negative operator =. Given the
opposite sorts s and s’ (e.g. winner and loser), we should also say that A is contradictory
if the following formulas

s(x), s'(x)

denoted by the sort predicates s and s’ are simultaneously derivable from A. This indicates
that the sort symbols s and s’ have a negative relation to each other in our language
definition in the same way that a negative operator is recognized as a negative sign in all
logics. Note that contradictions should be determined not from the fact that the sorts s
and s’ are semantically opposite in meaning but from in the logic the fact that they are
defined to be syntactically exclusive.

Using an exclusivity relation between sorts, we give a definition of contradictions in
a sort-hierarchy that supports deduction from the three negations. A set A of formulas
is said to be contradictory if there exist sorts s, s’ such that s || s’ and s(¢) and s'(¢) are
derivable from A. In section 4.2, we will redefine the notion of contradiction in a sort-
hierarchy that enables our deduction system to ensure the consistency of a knowledge
base with sort-hierarchy through the sort relations.
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Figure 4.4 A sort-hierarchy with (a) opposite sort and (b) complement

4.2 An order-sorted logic with structured sorts

On the basis of the specification we propose in Section 4.1, we define the syntax and
semantics (using the notation in [9]) of an order-sorted logic with structured sorts. The
formalization contains the following notions:

(1) Syntax

e A structured sort signature X that includes the set ST of structured sorts and
function and predicate declarations on S*.

e Structured sort terms and formulas that are obtained by expanding atomic sorts
into structured sorts.
(2) Semantics

e A Y'-structure that consists of the universe and an interpretation of the structured
sorts and the function and predicate symbols in X, and satisfies the function and
predicate declarations on S*.
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(3) Inference system

e A sort-hierarchy declaration that consists of the set ST of structured sorts and a
finite set D of subsort declarations.

e A structured sort constraint system with a sort-hierarchy declaration that contains
axioms and inference rules for subsort declarations.

e A clausal inference system with sort predicates that contains inference rules of sort
predicates related to subsort declarations.

4.2.1 Structured sort signature

Given a set S of sort symbols, every sort s; € S is called an atomic sort. We define the set
of structured sorts composed by the atomic sorts, the connectives 1, LI, and the negative
operators —, ~ as follows.

Definition 4.1 (Structured sorts) Given a set S of atomic sorts, the set ST of struc-
tured sorts is defined by:

(1) If s € S, then s € ST,
(2) If s,s" € ST, then (s1s'), (sUs'), (5), (~s) € ST.

The structured sort s is called the classical negation of sort s and the structured sort ~s
is called the strong negation of sort s. For convenience, we can denote sMs', slls', 5
and ~s without parentheses when there is no possibility of confusion. The next example
presents structured sorts composed of atomic sorts.

Example 4.1 Given the atomic sorts male, student, person and happy, we can give
structured sorts as follows.

student M male,

personld ~happy.

The structured sort studentlmale means “students that are not male,” and the structured
sort, personll ~happy means “individuals that are persons or unhappy.”

We define a sorted signature on the set S* of structured sorts. F, is a set of n-ary
function symbols (f, fo, f1,...), and P, is a set of n-ary predicate symbols (p, po, p1,- . .).
Let 8T = {s1,...,8,} be the set of structured sorts built by S. We introduce the sort
predicates ps,, ..., ps, (discussed in [10]) indexed by sorts si, ..., s, where p;, is a unary
predicate (i.e. ps, € P;) and equivalent to the sort s;. We simply write s for p; when this
will not cause confusion. For example, instead of the formula py(t) where ¢ is a term, we
use the notation s(t). We denote by Ps+ the set {ps € Py | s € ST — {T,L}} of the sort
predicates indexed by all sorts in ST in P;.

We define a sorted signature on St extended to include structured sorts and sort
predicates.

Definition 4.2 (Sorted signature on S*) A sorted signature on ST (which we call
a structured sort signature) is an ordered quadruple ¥t = (8T, F, P, D) satisfying the
following conditions:
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(1) St is the set of all structured sorts constructed by S.
(2) F is the set U,>o Fn of all function symbols fi, fo,. ..
(8) P is the set U,>o Pn of all predicate symbols p1,ps, . ..
(4) D is a set of sort declarations such that:
(i) If f € F,, then fisy X ... xX s, — s € D. In particular, if ¢ € Fy, then

c:— s eD.

(i) If p € P,, then p:sy X ... x s, € D. In particular, if p; € Ps+ and s € ST,
then ps: T € D.

The sort declarations of functions (called function declarations) and the sort declarations
of predicates (called predicate declarations) are given by structured sorts in S*. The
structured sort signatures do not include subsort declarations.

In the following two examples, we show structured sort signatures for Example 3 and
Example 4 in Section 2.2. Given a set S of atomic sorts, the set St of structured sorts is
constructed as follows.

Example 4.2 Negative affix: unhappy
Let

S = {feeling, happy, unhappy, very_happy, slightly_happy, very_unhappy,

person, woman, man, T, 1}.

Consider the structured sort signature X+t = (§T,F, P, D) that comprises the following
symbols

St = SuU{feeling M happy, feeling U happy, feeling, ~feeling, . ..},
F = {bob},

P = {pfeelingaphappyapunhappya .. -}7
D = {bob:— person} U

{pfeeling: T7 phappy: Ta punhappy: T7 ce }

where Preeling, Phappys Punhappy GT€ sort pr@dicat@s and Pfeeling: T7 Phappy- Ta Punhappy- T are
the predicate declarations.

For all the structured sorts in S, their sort predicates and the predicate declarations are
declared in P and D. The declarations of sort predicates must be of form p: T.

Example 4.3 Lezicon with negative meaning: loser
Let

S = {person, player, winner, loser, T, 1.}
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Consider the structured sort signature X = (S*,F, P, D) that comprises the following
symbols

St = SuU {person M player, person L player, person, ~person, . . .},
F = A{tom, father},
P = {ppersona Pplayer, Pwinners Ploser - - '}7
D = {tom:— person, father:person — person} U

{pperson: T7 Pplayer- T7 Pwinner: T) Pioser: T) .. }

where Ppersons Pplayer s Pwinners Ploser AT€ sort predicates and Pperson: T) Pplayer: T) Pwinner: T7
Dioser: 1 are the predicate declarations.

An alphabet for an order-sorted first-order language Ls+ of structured sort signa-
ture ©T contains the following: the set V¥ = [J,cs+ Vi of variables for all structured
sorts (where VI is a set of variables x1: s, x5: s, ... for structured sort s), the connectives
-, A, V, —, the quantifiers V,3, and the auxiliary symbols ‘(’, ¢)’, ‘,’. The sort of each
variable is denoted by a structured sort. For instance,

x: (s MU ~s"

is a variable of structured sort (s M s')U ~s".

4.2.2 Structured sort terms and formulas

In this section, we give the expressions structured sort term and formula for our order-
sorted first-order language with structured sorts. Structured sort terms (resp. formulas)
are sorted terms (resp. formulas) whereby the simple sort expressions are expanded into
structured sorts.

First, we define terms over structured sort signatures in the usual manner of order-
sorted predicate logics.

Definition 4.3 (Structured sort terms) Let X" = (S8, F, P, D) be an structured sort
signature. The set TERMy+ ¢ of terms of structured sort s is defined by:

(1) A variable x: s is a term of structured sort s where s € S*.
(2) A constant c: s is a term of structured sort s where s € ST, ¢ € Fy, and ¢:— s € D.

(3) If ty,. .., t, are terms of structured sorts sy, ..., Sy, then f(t1,...,ty): s is a term of
structured sort s where s € S*, f € F,, and f:s, X ...x 8, =+ s € D.

We denote by TERMjy+ the set of all structured sort terms Uscg+ TERMy+ 5. In the
definition of structured sort terms, the set TERMy+ ; of terms of structured sort s contain
no terms of their subsorts because there are no subsort declarations in the structured sort
signature X. For the sorted substitutions, subsort declarations will be derived using a
sort, constraint system in order to substitute variables with terms of the subsorts.

Example 4.4 For the structured sort signature ¥ of Example 4.3, we give an example
of structured sort terms shown as

x: loser M player,

father(tom: person M player).
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x:loser M player is a variable of structured sort loser M player whose domain is the set
of individuals that are players and losers. The function father(tom:person M player)
expresses “tom’s father where tom is a person but not a player.”

We define the function Sort(t) giving the sort of structured sort term ¢. Since a
structured sort term carries its sort information in the form ‘:s’; the sort can be easily
obtained from it.

Definition 4.4 Let ¥t = (8T, F,P,D) be a structured sort signature. The function
Sort: TERMs,+ — S is defined by

(1) Sort(z:s) = s where s € ST,
(2) Sort(c:s) = s where s € ST,
(3) Sort(f(ti,...,tn):s) =s where s € ST.

This function Sort is used to indicate the conditions of inference rules in the deduction
and resolution systems which we will present in Section 4.3.

We define formulas over structured sort signatures in the usual manner of order-sorted
predicate logics.

Definition 4.5 (Structured sort formulas) Let X = (8T, F,P,D) be a structured
sort signature. The set FORMs+ of structured sort formulas is defined by:

(1) If ty,...,t, are terms of s1,...,S, , then p(ti,...,t,) is an atomic formula (or
simply an atom) where p € P, and p:s1 X ... x s, € D,

(2) If A and B are formulas, then (mA), (AN B), (AV B), (A — B), (Vx:sA), and

(Fz: sA) are formulas.

We write ATOMs+ (C FORMs-+) for the set of all structured sort atoms, and write
ATOMs:+ p_, for the set of all structured sort atoms defined by Ps+, i.e. ATOMy+p , =
{p(t) € ATOMsx+ | p € Ps+}. We can omit parentheses from formulas when it is clear
from the context.

In the following example, a sort synbol is used as not only a component of structured
sorts but also a predicate, i.e., the sort predicate.

Example 4.5 For the structured sort signature ¥ of Example 4.3, we give an example
of structured sort formulas shown as

winner(x: person M player),

—player(tom: person) V player(tom: person),

loser Ll winner(x: person) — —player(x: person).

The first formula means that “x is a person and player that is a winner.” The second
formula means that “the person tom is either a player or not a player.” The expression
player is used as a sort in the first formula, but it is used as a predicate (i.e. the sort
predicate) in the second formula. The third formula means that “if person x is neither a
loser nor a winner, then x is not a player.”

We introduce literals in order to represent formulas in clause form. A positive literal
is an atomic formula p(¢q,...,t,), and a negative literal is the negation —p(ty, ..., ¢,) of
an atomic formula. A literal is a positive or a negative literal.
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Definition 4.6 Let Ly,...,L,(n > 1) be literals. The following formula is said to be a
clause form (or simply a clause).

Lyv...VL,

For instance, the following expression given in Example 4.5
—player(tom: person) V player(tom: person)

is of clause form where —player(tom: person) is a negative literal and player(tom: person)
is a positive literal. We denote by C'Sg+ (C FORMy+) the set of all clauses.

In our logic, we cannot completely declare subsort relations on ST because the set of
subsort declarations representing a subsort relation must be infinite. Hence, we first give
a finite set of subsort declarations, so that the subsort relation should be derived by a
sort, constraint system. For this purpose, we want to deal with subsort declarations as
subsort formulas but not as static expressions in signatures. Let ¥ = (8%, F, P, D) be
a structured sort signature. For s,s' € 8T, s Cg s is a subsort declaration over ¥ that
indicates s is a subsort of s’. For instance,

player Mwinner Cg person

is a subsort declaration over the structured sort signature in Example 4.3. We denote by
Ds+ = {s Cg §'|s,s' € ST} the set of all subsort declarations on S™.

4.2.3 Yt-structure

As in the semantics of standard order-sorted logics, we consider a structure that consists
of the universe and an interpretation over ST U F U P and satisfies the function and
predicate declarations on S*. The interpretation of atomic sorts are defined by subsets
of the universe (in particular, the greatest sort T is interpreted by the universe and the
least sort L is interpreted by the empty set). Hence, the interpretation of structured
sorts is constructed by the interpretation of atomic sorts and the operations of set theory.
Function symbols and predicate symbols are interpreted by functions and predicates over
the universe.

Definition 4.7 Given a structured sort signature ¥ = (ST, F, P, D). A ST -structure
is an ordered pair M+ = (U, I'") such that

(1) U is a non-empty set,
(2) IT is a function on ST UF UP where
- [+(S) C U (in particular, I*(T) =U and I*(L) =0),
sMs')=1I7(s) N It(s"),
§) = I"(s) U I (),

I
I't(suU
IT(5) =T*(T) = I'(s),
It (~s) CTE(T) = I'(s).
— IT(f): T (s1)x...xI"(s,) = I"(s) where f € F, and f:s1X...X8, — s €D.
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—It(p) C I'(s1) x ... x I™(s,) where p € P, and p:s; X ... X s, € D (in
particular, I (ps) = I (s) where p; € Ps+ and ps: T € D).

The strong negation ~s of sort s is interpreted as a subset of the classical negation 5. For
instance, we can obtain

I't (~happy) C I't (happy)

for the structured sorts ~ happy and happy. The sort predicates p, are semantically
equivalent to the sorts s, i.e., I (ps) = I (s).

A variable assignment (or simply an assignment) in a X *-structure M+ = (I7,U) is
a function a™: V™ — U where a™(z:s) € I7(s) for all variables x:s € V*. Let a™ be
an assignment in a X t-structure M = (I7,U), z:s a variable in VT, and d € I7(s).
The assignment ot [d/z: s] is defined by a™[d/x: s] = (o™ —{(x:s,at(2:5))}) U{(x: s,d)}.
We write at[dy/x1: 81, ..., dy /Ty 5] for (((aF[dy/xq: s1])[da/x2: $2]) - . )[dn/Tn: $5]. That
is, if y:s = x;:s; for some i € {1,...,n}, then at[di/z1:s1,...,dp/ 2 83)(y: s) = d;.
Otherwise, at[dy/x1:81,...,dp/n: sp](y:s) = a¥(y:s). For instance, if there exists an
assignment « such that

a(y:s) =d,
then we have
ald [y:s](y:s) = d.

We now define an interpretation over structured sort signatures ¥ . If an interpreta-
tion Z" consists of a X T-structure M ™ and an assignment ot in M, then Z* is said to
be a Y T-interpretation.

Definition 4.8 Let It = (M™*,a") be a Xt -interpretation. The denotation [ ], is
defined by

(1) [z:5] 0 = at(x:s),
(2) [e:s],+ = I (c) with I*(c) € I7(s),
(3) [f(te, .- tn):s]e = IH(F)([tal sy - - -5 [tnl 4 )-

We formalize a satisfiability relation indicating that a X *-interpretation satisfies struc-
tured sort formulas and subsort declarations.

Definition 4.9 Let 7t = (M™*,a™) be a ST -interpretation and F a structured sort for-
mula or a subsort declaration in FORMs+ U Dg+. We define the satisfiability relation
T = F by the following rules:

(1) T E pltss o t) iff ([tid o - [t os) € T (),
(2) T+ | (- 4) iff T A,

(3) T+ = (AAB) iff T+ = A and T+ = B,

(4) T £ (AVB) iff T+ = A or T+ = B,
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(5) Tt = (A — B) if T+ £ A or T+ = B,

(6) T+ b= (Va: s)A iff for all d € I*(s), T+[d/x: s] = A holds,
(7) T+ b= (3w s)A iff for some d € I*(s), T*[d/x: 5] |= A holds,
(8) Tt | s T s iff I'(s) C I*(s').

Let F' be a structured sort formula or a subsort declaration and let I' C FORMs+ U Dg+.
IfZT | F, then T is said to be a ¥"-model of F'. We denote Zt =T if ZT |= F for every
FeT. IfZT T, then Z" is said to be a ¥"-model of T'. If every X *-interpretation
It is a ¥ -model of F, then F is said to be ¥ t-valid. We write (D,A) s+ F (F is
a consequence of (D, A) in the class of X*-structures) if every ¥ t-model of (D, A) is a
Y*t-model of F' (€ C'Ss+ U Dg+).

The next lemma shows that we can use the connectives I, LI as the logical connectives
A,V and the negative operator — as the logical negation = when we build structured sort
formulas.

Lemma 4.1 Let Z" be a X" -interpretation , s, s’ structured sorts, and t a structured sort
term. The following statements hold.

(1) I* Est) ANS'(t) iff TT | s s'(t).
(2) T+ = s(t) Vv $'(t) iff T+ = s U s'(2).
(3) I* = =s(t) iff T E5(0).

(4) If T [=res(t), then T = —s(t).

Proof. By Definition 4.7, 4.8, and 4.9, this is clear. 1

Note that the structured sorts s, ', 5, ~s, sMs’ and sLls’ are used as the sort predicates.
We can say that ~s(t) implies —s(¢) by the above lemma.

4.2.4 Sort-hierarchy declaration

We require to build a sort-hierarchy over S*, instead of subsort declarations in sorted
signatures of typical order-sorted logics. In the next definition, the sort-hierarchy is
obtained by a finite set of subsort declarations.

Definition 4.10 (Sort-hierarchy declaration) A sort-hierarchy declaration is an or-
dered pair H = (S*, D) where

(1) St is the set of structured sorts constructed by S,

(2) D is a finite set {s; Cg s}, 52 Cg sh,...} of subsort declarations on S*.
Furthermore, we denote a sort equivalence relation by =g, an exclusivity relation by ||,

and a totality relation by |s,. The declarations of these relations are defined by subsort
declarations as follows.
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Definition 4.11 A sort equivalence declaration, an exclusivity declaration and a totality
declaration are defined respectively by

e s=¢5 iff sCgs and s' Cg s.
e s s iff (sms) =5 L.
e s, s iff (sUS) =g s;.

We use the abbreviation s | s’ to denote s |1 s'. For instance, we denote happy |t happy by
happy | happy. By the above definition, we can represent a sort equivalence declaration,
an exclusivity declaration and a totality declaration as the subsort declarations in D
with a sort-hierarchy declaration H = (ST, D). These notations are useful for declaring
complicated sort relations.

Example 4.6 The sort-hierarchy declaration H = (S, D) consists of the set ST of struc-
tured sorts constructed by

S = {person,winner,loser,player, L, T}
and the finite set D of subsort declarations with

D = A{winner Cg player, player Cg person,
loser Cg player,
winner |payer loser,

winner || loser}.

The sorts winner and loser are subsorts of player, and the sort player is a subsort of
person. The totality declaration winner |pqyer loser indicates that winner and loser
have the property totality in the sort player. The exclusivity declaration winner || loser
indicates that winner and loser are mutually exclusive.

Let H = (8, D) be a sort-hierarchy declaration and A a set of clauses. If T is a
Yt-model of both D and A, then Z7 is said to be a ¥T-model of (D, A), denoted by
It = (D,A). If (D, A) has a ¥-model , then (D, A) is Xt-satisfiable. If (D, A) has no
Y*t-model , then (D, A) is YT -unsatisfiable. In the deduction and resolution systems we
will present in the next section, their rules are applied to clauses in A (which expresses
an assertional knowledge base), related to a subsort relation derivable from H.

4.3 Deduction and resolution with structured sorts

In this section, we present deduction and resolution systems (which we call hybrid infer-
ence systems) combined with a structured sort constraint system. These systems adopt
the method of coupling a clausal knowledge base and a sort-hierarchy proposed in the hy-
brid knowledge representation system [10] in which every sort can be used to express the
sort predicate which is therefore included in clauses. First, we introduce two structured
sort constraint systems. Next, we build a deduction system with structured sorts, and
then we design a resolution system with structured sorts that is based on the inference
rules of the deduction system.

88



4.3.1 Structured sort constraint system

We develop two constraint systems with respect to a subsort relation on the set ST of
structured sorts. These constraint systems includes axioms and inference rules for subsort
declarations on S*. The first constraint system is an axiomatic system that is based on
the basic laws of Boolean algebra for sets and the properties of classical negation, strong
negation and subsort relations.

Definition 4.12 Let s,s', 8" be structured sorts. The axioms and rules of structured sort
constraint system CSy are given by:

Reflexivity

sCg s

Idempotency

sCgslls sCgsls

Commutativity

(sMs)Cs(s'Ms) (sUs)Cg (s'Us)

Associativity

(sMs)Ms" CgsM(s'Ms") (sUs)Us" Cgsl(s'Us")

Distributivity

(sUs)Ms"Cg (sns")U(s'Ms")  (sNs)Us"Cs(sUs”)M(s'Us")

Conjunction

(sMs')Cs s (sMT)Cs s (sml)Cs L

Disjunction

sCg(sUs') (sUT)Cs T (sUL)Cgs

Least and greatest sorts

1L Css sBs T

Classical negation

s|'s s| s
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Strong negation

s ||~s ~sCg s
~(sMs") Cgrusl ~vs' ~(sUs") Egrosll ~s'
Absorption

(sMs)UsCgs (sUs)MsCgs

Transitivity rule

s ES Sl SI ES S”

s ES S”

In these axioms the difference between classical negation and strong negation is specified
by the subsort declaration ~s Cg 3, the exclusivity declarations s || § and s ||~s and
the fact that the totality declaration s | 3 are axiomatized for classical negation but the
totality declaration s | ~s is not axiomatized for strong negation. For example,

happy | happy

is an instance of axiom scheme s | §, but no axiom scheme exists for

happy | ~happy.

The next constraint system improves the applicability of axioms and inference rules
in comparison with the constraint system C'S.

Definition 4.13 Let s,s', 8" be structured sorts. The axioms and rules of structured sort
constraint system CSy are given by:

Reflexivity, Idempotency, Commutativity, Associativity, Distributivity, Least
and greatest sorts, Transitivity rule

Introduction rule
sCg s
s"MsCgqgs"Més

Elimination rule
sUs Cgss” s|s s ¢

SI ES 8”

The constraint system C'S, is obtained by adding introduction and elimination rules to the
axioms and inference rules of the constraint system C'S;. These additional rules are useful
for deriving subsort declarations that are either reduced or built up. The introduction
rule adds a sort s” to the premise s Cg s’ so that

s'"MsCgs"Ms

can be derived. The elimination rule deletes the sort s from the premise s Lls' Cg s Ll s"
when s || s' and s || s” are derived so that
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Sl ES S”

can be derived. Therefore the second constraint system C.S; is more suitable for the
derivation of subsort declarations than the axiomatic constraint system C'S.

We have to define the notion of a derivation for any inference system X. A derivation
of an expression (a clause or a subsort declaration) from a sort-hierarchy declaration is
defined as follows.

Definition 4.14 (Derivation with structured sorts) Let H = (S7,D) be a sort-
hierarchy declaration and A a set of clauses. A derivation of F, in a system X from
(D, A) is a finite sequence Fy, F, ..., F, such that

(i) F; € D,
(i) F; € A,
(iii) F; is an aziom of system X, or
(iv) F; follows from F;(j < i) by one of the rules of system X.

We write (D, A) Fx F if F has a derivation from (D, A) in the system X. A refutation
is a derivation of the empty clause O from (D, A), written as (D, A) Fx O. This notion
of derivations can be used for the structured sort constraint systems C'S;, C'Ss, and the
clausal inference systems which we will present. The following example shows a derivation
in the structured sort constraint system C'S;.

Example 4.7 Given the ordered pair (D, () with the finite set D of subsort declarations
in Bxample 4.6, we can say

(D,0) Fes, loser Cg player

by loser Cg player € D and
(D,0) Fes, player Eg T

by the axiom least and greatest sorts. Therefore, we can obtain
(D,0) kg, loser Eg T

by the transitivity rule.

We define a structured sort substitution with respect to a subsort relation derivable
in a structured sort constraint system X. That is, the subsort declarations are obtained
by an application of the rules from X so that the substitution is defined via the subsort
declarations.

Definition 4.15 (Structured sort substitution) Let X be a structured sort constraint
system. A structured sort substitution is a function 6 mapping from a finite set of vari-
ables to the set TERMyx+ of all structured sort terms where 6(x:s) # x:s and 0(x:s) €
TERMy+ ¢ with s' # L and (D,A) Fx s’ Cg s.
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The condition s’ # L indicates that none of the terms of sort L can be substituted for
variables. If there does not exist s’ Cg s such that (D,A) Fx s’ Cg s with s’ # s for all
sorts s, then the structured sort substitutions in the system X correspond to many-sorted
substitutions (i.e. not order-sorted substitutions).

Example 4.8 Given the ordered pair (D, () in Example 4.7, we have (D, 0) Fcs, loser Cg
T. Then,

0 = {c:loser/z: T}
is a structured sort substitution in the constraint system CSy. That is, 0(x: T) = c: loser.

We define an extension of structured sort substitution @ to structured sort terms and
formulas (containing clauses).

Definition 4.16 Let A, B be structured sort formulas, s a structured sort, and 0 a struc-
tured sort substitution. EB is defined by:

e I[fE=x:s and x:s € Dom(0), then E0 = 0(x: s),

o If E=x:s and x:s ¢ Dom(0), then Ef = x: s,
If E = f(t1,...,tm):s, then EO = f(t10,...,1,0):s,
If E =p(t1,...,tm), then EO = p(t10, ... t,0),

o I[f E =—A, then EO = —A#,

e If E=AxB forx € {A,V}, then EQ = Af x BY,

o If E =xA for x € {Vx:s,3x:s}, then E§ = «A(MFVar(xA)),

A structured sort substitution 6 is a unifier of A and B if A9 = B where A and B are
structured sort formulas in FORMy+.

4.3.2 Clausal inference system with sort predicates

We present, two clausal inference systems (deduction and resolution systems) for clauses
in structured sort formulas. The clauses may include sort predicates, e.g., p(t1,t2) V s(t)
where s is a sort predicate. We denote atomic formulas by s(¢) to emphasize the sort
predicates in them.

Definition 4.17 (Cut rule) Let L, L’ be positive literals and C,C" clauses.
-LvC L'v(C
(Cvche

where there ezists a unifier 6 for L and L' (i.e. LO = L'0).

The cut rule is one of the usual rules included in clausal inference systems. We use the
cut rule as an inference rule in both the deduction and resolution systems. In addition to
the cut rule, the deduction and resolution systems have to include inference rules of sort
predicates related to subsort declarations. First, we define inference rules in the deduction
system as follows.

Definition 4.18 (Deduction rules with sort predicates) Let s, s be structured sorts
or sort predicates, t a structured sort term, and C' a clause. Deduction rules with sort
predicates are given as follows.
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Subsort rule
CVs(t) sCgs CV-s(t) sCgs
CV s(t) CvV —s'(t)

Sort predicate rule

s'Cg s

s(t)

where s' = Sort(t).

We write deduction system DS for the system defined by the cut rule in Definition 4.17
and the deduction rules in Definition 4.18. The following example shows an application
of the subsort rule.

Example 4.9 Given the ordered pair (D, A) with the set D in Example 4.7 and
A = {loser(tom: person)},

the subsort rule is applied as follows.

loser(tom: person) loser Cg player

player(tom: person)

That is, we have (D, A) Fpg player(tom: person) by the above application of the subsort
rule to (D, A) Fpg loser(tom: person) and (D, A) Fpg loser Cg player.

On the basis of the above deduction system, we design inference rules in the resolution
system. The inference rules in the resolution system are proof procedures to delete two
contradictory literals (e.g. —s(¢) and s(¢)) from their premises, similar to the cut rule.
For s € 8*, we use the notation Neg.s to denote 5 or ~s. Neg.s informally means the
negation of sort s.

Definition 4.19 (Resolution rules with sort predicates) Let s,s',s; be structured
sorts or sort predicates, L, L' positive literals, t,t' structured sort terms, and C,C" clauses.
Resolution rules with sort predicates are given as follows.

Subsort rule
—s(t)yvC §({t)yvC' ' Cgs

(cvche
Neg.s(t)vC s{H)vC" s Cgs —Neg.s'(t'yvC' =s(t)vC s Cgs
(Cvee (CvCHe

where there ezists a unifier 6 fort and t' (i.e. t0 =1'0).

Sort predicate rule

—s(t)yvC §'Cgs Neg.s(t)yvC s Cgs
C C

where s' = Sort(t).
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Negation rule
Neg.s(t)yvC s(t') v - Neg.s(t) vC =s(t') v
(cveh (Cvche

where there exists a unifier 6 for t and t' (i.e. t0 =1'6).

Disjunction rule
sus'(t)yvec =—s(t)vc!
(s'"(t)yvCvCHo

sUs'(t)yvC Neg.s(t')vC' - Neg.(sUs)(t)vC =—s(t')vC
(s'"(t)yvCvCHo (s'(t)yvCvCH

where there ezists a unifier 6 fort and t' (i.e. t0 =1'0).

Exclusivity rule

s(tyvC SHHYyve s s

(cveh
-Neg.s(t)yvC s'{t)vC s| s —Neg.s(t)vC —Neg.s'({t')vC s| s
(cvche (cvche

where there exists a unifier 0 fort and t' (i.e. t =1'0) 2.

Totality rule

sityvC =s(t)vC' s 8
(s'(t)yvCvCH
si(t)VC  Neg.s(t')vVC" sl s —Neg.s;(t) VC —s(t')vVC" sl s
(s'(t)yvCvCH (s'"(t)yvCvCHo

where there ezists a unifier 6 fort and t' (i.e. t0 =1'0).

In particular, the exclusivity rule and the totality rule are useful for resolutions with
respect to negations embedded in a sort-hierarchy. The exclusivity rule will be applied
when an opposite sort is declared as s || s'. We write resolution system RS for the system
defined by the cut rule in Definition 4.17 and the resolution rules in Definition 4.19. The
following example shows an application of the exclusivity rule.

Example 4.10 Given the ordered pair (D, A) with the set D in Example 4.7 and
A = {winner(z: person), loser(tom: person)},

the exclusivity rule is applied as follows.

2In one rule, Neg.s and Neg.s' must indicate the same negation type, i.e. 3, s’ or ~s, ~s'
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player(x: person) V winner(x: person) loser(tom:person) winner || loser

player(tom: person)

with the unifier @ = {tom: person/x: person} for the terms x: person and tom: person.

That is, we have
(D, A) s player(tom: person)
by the above application of the exclusivity rule to

(D,A) Frs player(z: person) V winner(z: person),
(D,A) Frs loser(tom:person),

(D,A) Fprs winner || loser.

4.3.3 Hybrid inference system with clauses and structured sort
constraints

We define a hybrid inference system obtained by combining a clausal inference system
with a structured sort constraint system. The deduction and resolution rules in the
hybrid system are applied to clauses including sort predicates, so that it can deal with
sort-hierarchy information in an assertional knowledge base where the subsort declarations
are derived from an application of the rules in the structured sort constraint system.

Definition 4.20 (Hybrid inference system) A hybrid inference system is a system
obtained by adding the axioms and rules in a constraint system into a clausal inference
system. We write X +Y for the hybrid inference system obtained from a clausal inference
system X and a constraint system Y .

Therefore, the hybrid inference system X + Y can be regarded as an extension of the
clausal inference system X. We write (D, A) Fyyy F if F has a derivation from (D, A)
in the hybrid inference system X + Y.

The next lemma shows the validity of the axioms in the structured sort constraint
systems CSq,CS,.

Lemma 4.2 The axioms of the structured sort constraint systems C Sy, CSy are valid.
Proof. We will prove that the axiom (sM_L) =g L is valid. Suppose that Z# = (M™*,a™) is
a YT -interpretation. By Definition 4.7, I (L) = () implies I (sML) = I't(s)NIH (L) = 0.

Then we have Z% = (sM L) Cg L and Z% = 1L Cg (s L). Similarly, the validity of the
other axioms can be proved. 1

Similar to Lemma 3.1, we prove that an instance C'# of clause C' is a consequence of
the clause C' in the class of X-structures as follows.

Lemma 4.3 Let T be a X -interpretation, C' a clause, and 0 a structured sort substi-

tution. If T+ | C, then Tt = CO. That is, C l=x+ C6.
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Proof. As for Lemma 3.1. 1

The next lemma shows the soundness of the inference rules in the structured sort
constraint systems CSy,CS,.

Lemma 4.4 Let F, FY, ..., F, be subsort declarations. The conclusion F' of each rule in
the structured sort constraint systems C'Sy, C'Ss is a consequence of its premise { Fy,. .., F,}
in the class of Xt -structures. That is, {F,..., F,} Ex+ F

Proof. For each rule we show {Fy,...,F,} Es+ F

1. Transitivity rule. Suppose that I (s) C I'"(s') and I*(s") C (s"). Therefore I (s) C
It(s").

2. Introduction rule. Assume that a Y T-interpretation Z+ = (M*,a™) with M =
(U, I'") satisfies s Cg s'. Since I7(s) C I1(s") holds, we can obtain I*(s" Ms) C
It(s"Ms') by Definition 4.7. Hence Z7 £ §" Ms Cg 8" M. Therefore s Cg &' s+
s"MsCgqs"Més.

3. Elimination rule. Suppose that I (s)UI*(s") =I"(s)UIT(s"), IT(s)NIT(s") =10,
and It(s) N I*(s") = 0. Let d € I'(s"). Since I*(s") C IT(s) UIT(s") C
IT(s) UTI*(s"), we have d € IT(s) U It (s"). d € I(s') and IT(s)NIT(s) =0
imply d & I (s). Therefore d € I*(s"). 1

The next lemma shows the soundness of the inference rules in the structured sort
constraint systems DS, RS.

Lemma 4.5 Let F,Fy,..., F, be clauses or subsort declarations. The conclusion F

of each rule in the clausal inference systems DS, RS is a consequence of its premise
{Fi,...,F,} in the class of " -structures. That is, {Fy,...,F,} Ex+ F.

Proof. For each rule, we show {Fy,..., F,} Es+ F.

1. Cut rule. Suppose that Z© = C V=L and Z* |= L' v C'. There exists a structured
sort substitution # such that L = L'0, and ZT = (C' V —=L)§ and ZT = (L' v C")6.
If TF [£ LB, then ZT |~ L'0. So IT = C'§ holds. If Tt |= L@, then I [~ —L#.
Then we have ZT |= §C. Therefore Tt |= C0 Vv C'f. Is follows that the conclusion
of the cut rule is a consequence of its premise.

2. Deduction rules with predicate sorts:

(1) Subsort rule. (i) Suppose Z* | §'(t) and Tt = §' Cg s. If T = §'(t), then
[t].« € I(s"). By IT = s’ Cg s, we have [t],+ € I(s). Therefore, T |= s(t).

(ii) Suppose ZF |= —s(t) and It = s’ Cg s. If I |= —s(t), then [t] .+ & I(s).
By It = ¢’ Cg s, we have [t] .+ & I(s"). Therefore, T = —s(t).

(3) Sort predicate. Let ZT be a ¥*-model of s’ Cg s. Since Sort(t) = s’ we have
[t].,+ € I(s"). Then I(s") C I(s) implies [t], € I(s). Hence I = s(t).

3 Resolution rules with predicate sorts:
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We now prove the statement only for the first type of each resolution rule (the
statement for the other types can be proved by Lemma 4.1 and the proof of the first

type).

Case Neg.s = 5:

(1)

(2)
(3)

Subsort rule. Assume that Z* =35(t)VC, IT E({')vC', and IT = s Cg s
Let # be an structured sort substitution such that 6(¢t) = 0(¢'). By I'"(s') C
It(s), [t0],+ & I (s) implies [t'0] .+ & IT(s'). HZIT |= (5(t))0, then T = C'6.
If 7% |~ (5(t))0, then ZF = CO. Therefore T+ = (C' v C")6.

Sort predicate rule. Assume ZT E5(t)VC and It Es' Cgs. It E ¢ Cg s
implies Z }= 5(1).

Negation rulel: Assume that Z* = 35(t) VC and Z7 | §'(¢') vV C'. Let 6
be an structured sort substitution such that 6(¢t) = 0(¢). By Definition 4.7,
[t0].,+ € I*(S) implies [t'0] + & I*(s). If T = (5(t))0, then I = C'0. If
It ¥ (5(t))0, then I = CH. Therefore T | (C Vv C")6.

Disjunction rule. Assume that Zt = sUs'(t)vVC and ZT =35(¢') VC'. Then, by
Lemma 4.1, 77 | s(t)Vs'(t) VC and T |= —s(t') VC'. Let 0 be an structured
sort substitution such that 6(¢t) = 0(¢'). Similar to the proof of the cut rule,
we can obtain Zt = §'(t)§ v CO v C'0.

Exclusivity rule. Suppose that Zt = s(t) v C, ZT = §'(¢') v C', and IT(s) N
It(s") = 0. Let 0 be a structured sort substitution such that 6(¢t) = 6(t).
SoZT E (s(t) vC)h and IT = (s'(t') vV C"). By IT(s) N I1(s") = 0, either
It E s(t)d or Tt | §'(¢')0 does not hold. By the hypothesis, Z# = C8 or
It = C"0. Therefore I+ = CO v C'6.

Totality rule. Assume that Zt = s;(¢) VC, It E(t')VC',and IT = s |, ¢,
Le. IT(s)UIT(s") =1I%(s;). Let 0 be a structured sort substitution such that
O(t) =0(t'). It (s)UIT(s") =1"(s;), then T = s(t) vV '(¢') vV C. Similar to
the proof of the cut rule, we can obtain Z+ = §'(t)0 v C8 Vv C'f. Therefore the
conclusion is a consequence of its premise.

Case Neg.s(t) =~s: This is proved by Lemma 4.1 and the result of above (1)-(6).y

The soundness of the structured sort constraint systems C'Si,CSs, the deduction
system DS and the resolution system RS can be shown by proving the soundness of
each axiom and inference rule.

Theorem 4.1 Let H = (8, D) be a sort-hierarchy declaration, A a set of clauses, and
X a system. If (D,A) Fx F, then (D,A) s+ F.

Proof. By Lemma 4.2, 4.4, and 4.5, this is proved. 1

We give the notion of contradiction in an exclusivity relation from the sort-hierarchy.
This notion is defined by deciding whether there is a contradiction between an opposite
sort and its antonymous sort.
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Definition 4.21 Let H = (S, D) be a sort-hierarchy declaration, A a set of clauses, and
X a system. (D,A) is said to be contradictory on an exclusivity relation if there ezists
structured sorts s, s such that (D,A) Fx s || s and (D,A) Fx s(t) and (D,A) Fx §'(t).
(D, A) is said to be logically contradictory if (D,A)Fx A and (D,A) Fx —A.

The contradiction between A and —A (corresponding to “logically contradictory” in the
above definition) is defined in the usual manner of logics. We say that (D, A) is consistent
if (D, A) is neither contradictory on an exclusivity relation nor logically contradictory.

Theorem 4.2 Let H = (S8, D) be a sort-hierarchy declaration and A a set of clauses.
If (D, A) has a X" -model, then (D, A) is consistent.

Proof. Suppose that Z% is a X"-model of (D, A). If (D, A) is contradictory on an exclu-
sivity relation, then there exists s, s’ such that (D,A) Fx s || s' and (D, A) Fx s(t) and
(D,A) Fx §'(t). By Theorem 4.1, 7" |= s || s' and then Z7 |= s(t) and T |= /(). Then
IT(s)NI*t(s") =0but [t] € I"(s) and [t] € IT(s'). If (D,A) is logically contradictory,
then Z+ = = A and Z* = A. Hence, the both cases are contradiction to the hypothesis.
Therefore (D, A) is consistent. 1

In this thesis we especially require resolution systems that are more efficient than
deduction systems. The next corollary guarantees that the hybrid inference systems
CSy+ RS and CS5 + RS are sound.

Corollary 4.1 Let CS be the structured sort constraint system C'Sy or CSy, H = (ST, D)
a sort-hierarchy declaration, and A a set of clauses. If (D, A) Fcsyrs O, then (D, A) Ex+
.

Proof. When the empty clause O is derived, the final rule applied in the refutation must
be one of the rules in the resolution system RS. We consider each case as follows:

1. Cut rule. There exists a structured sort substitution # such that LO = L'#, and
(D,A) Fesirs 7L and (D, A) Fesirs L'. So, by Theorem 4.1, we have (D, A) Eg+
=L and (D,A) Es+ L. Now assume that ZT is a ¥t-model of (D,A). Then
It = LO and I [~ L'0(= LO) contradicts our assumption. Since (D, A) has no
Yt-model, (D, A) Ex+ O is proved.

2. Resolution rules. Similar to 1. I

4.4 Evaluation

Section 4.4 evaluates the usefulness of our hybrid inference system for the knowledge
representation to deal with implicit negations. This will be shown by derivations (using a
hybrid inference system obtained by combining the systems we propose) for the examples
in Chapter 2.
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4.4.1 Examples of refutations

We will adopt the notion of a proof tree in order to represent a derivation process from
an ordered pair (D, A) where D is a set of subsort declarations and A is a set of clauses.
By the following definition, a derivation process of F' from (D, A) can be described by a
tree with the root labeled with F'.

Definition 4.22 Let X be a system and F a clause or a subsort declaration. Given an
ordered pair (D, A) where D is a set of subsort declarations and A is a set of clauses. A
proof tree T for F' s a finite labeled tree satisfying the following:

(1) The root is labeled with F,
(2) The nodes are labeled with clauses or subsort declarations,
(3) The leaves are labeled with azioms in X or elements from (D, A),

(4) If a node is labeled with F', then the children must be labeled with F,. .., F, such
that
F,...F,
F/
15 a rule in X.

In particular, a refutation process of the empty clause O from (D, A) is shown by a proof
tree with the root 0. The proof trees are applicable to derivations in any inference system
we have proposed.

In Example 3 and Example 4 in Section 2.2, A , B means that a conclusion B
is derivable from a premise A in a sort-hierarchy h. We consider the refutation for the
ordered pair (Dp,, A4 ) corresponding to A ), B where the set D), of subsort declarations
expresses h and the set Ay p of clauses represents A and the negation of B. We can
establish the validity of the clause B for A by the refutation of Ay p =S4 U{—B} where
Sa is a consistent set of clauses corresponding to A. This clause B is called a goal for the
refutation. Recall that every goal is expressed by a finite sequence L, ..., L, of atoms
that corresponds to the negation —(L; A ... A L,) of the conjunction of the atoms. We
define the translation of goal G into the negative disjunction of the atoms Lq,..., L, in
G as follows.

Definition 4.23 The function T: (ATOMsx+)" — CSs+ is defined by:
T(G):—lLl\/—!Lg\/...\/—!Ln
where G is a goal with G = Ly, ..., L,.

The translation T'(G) results in the clause form of G to which inference rules in clausal
inference systems can be applied. In the following example, we show refutations corre-
sponding to the derivability relations (in Example 3)

unhappy(bob) F,  feeling(bob),

—happy(bob) 4, feeling(bob),
unhappy(bob) 4, —happy(bob),

—happy(bob) 4, unhappy(bob),
—feeling(bob) Fp,  —happy(bob) A —unhappy(bob)

from the sort-hierarchy h; shown in Figure 2.5.
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Example 4.11 Let X7 be the structured signature of Example 4.2. We define the con-
sistent sets S1,So, S35 of clauses and the finite set D of subsort declarations such that

S

Sy =
Sy =
D =

{unhappy(bob: person)},

{=happy(bob: person)},

{—feeling(bob: person)},

{happy Cs feeling, very_happy Cs happy, slightly-happy Cs happy,
unhappy Cgs feeling, very_unhappy Cs unhappy,

unhappy =s~happy}.

The sets S1,So, S35 of clauses represents the premises in the derivability relations in Exam-
ple 3, and the set D of subsort declarations expresses the sort-hierarchy h,. We attempt
to decide the validity of the following goals:

G

Gy, =
G3:

Gy

feeling(x: person),

happy (z: person),

unhappy(x: person),

happy(x: person), unhappy(x: person).

These goals are the conclusions of the derivability relations in Example 3. Then we can
obtain the following clause forms of G1,Gs, G35, Gy.

~

(G1)
(G2)
(G3)
T(Gy)

~

~
N

= = feeling(x: person),

= —happy(z: person),

= unhappy(x: person),

= —happy(x: person) V —unhappy(z: person).

Using the consistent sets S, S9,S3 of clauses, the set D of subsort declarations and the
clause forms T(G1),T(G2),T(G3), T(G4), we consider the refutations of (D, Ay), (D, Ay),
(D, Az) and (D, Ay) where

The following proof trees describe refutation processes of (D, A1), (D, As), ...,(D,As) in
the hybrid inference system C'Sy+ RS (obtained by combining the systems C'Sy and RS).
We use the abbreviations

H

UH =

happy,
unhappy,

feeling,
x: person,

bob: person.
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(1) unhappy(bob) -, feeling(bob)
A refutation process from (D, Ay) with Ay = Sy U{T(G1)} is shown by the following proof
tree.

~F(z,) UH(b,) UHCgF
O

(51)
(2) —happy(bod) 17y, feeling(bob)
The refutation process from (D, Ay) with Ay = Sy U{T(G1)} fails as below.

-F(z,) —H(b,) HLCgF
fail

(8) unhappy(bod) -1, —happy(bod)
A refutation process from (D, Ag) with As = Sy U{T(G3)} is shown by the following proof
tree.

UH=s~H

HNUH =g HN ~H H|UH H|~H

—-H(z,) UH(b) H || UH
O

(E)

(E2)

(4) —happy(bob) t7n, unhappy(bob)
A refutation process from (D, Ay) with Ay = Sy U{T(G3)} is failed below.

UH =g~H (1)
HNUH =g HN ~H H| UH H |~H
UH(x,) ~H(b,) H || UH
fail

(E)

(5) = feeling(bob) Fp, —happy(bob) A —unhappy(bob)
A refutation process (D, As) with Ay = S3U{T(G4)} is shown by the following proof tree.

~H(x,) v -UH(x,) —F(h) UHCsF
~H(b,) ( )ﬁF(b,,) HCsF
- (53)
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In the above proof trees, the applied inference rules in the hybrid inference system C'S; +
RS are denoted as follows:

(T)  Transitivity rule,
(I)  Introduction rule,
(E)  Elimination rule,
(C)  Cut rule,
(S1) ~ (S3)  Subsort rule,
(P1) ~ (P2)  Sort predicate rule,
(N1) ~ (N2)  Negation rule,
(D1) ~ (D3)  Disjunction rule,
(E1) ~ (E3)  Exclusivity rule,
(T1) ~ (T3)  Totality rule.

In the following example, we show refutations corresponding to the derivability rela-
tions (in Example 4)

Fn, player(tom),

Fh, player(tom),
Fr, —winner(tom) A —loser(tom),

(tom)
(tom)
(tom)
player(tom) Fp, winner(tom) V loser(tom),
(tom) ty, winner(tom),
(tom)

Fn, —player(tom)

from the sort-hierarchy hs shown in Figure 2.6.

Example 4.12 Let X be the structured sort signature of Example 4.3. We consider the

consistent sets Sy, ..., S¢ of clauses and the finite set D of subsort declarations such that
S1 = {loser(tom: person)},
Sy = {—winner(tom: person)},
Sy = {-player(tom: person)},
Sy = {player(tom: person)},
Ss = {player(tom: person), —loser(tom: person)},
Se = {—winner(tom: person), —loser(tom:person)},
D = A{winner Cg player, player Cg person,
loser Cg player,
winner |payer loser,
winner || loser}.
The sets Si,...,Ss of clauses represents the premises in the derivability relations in Ez-

ample 4, and the set D of subsort declarations expresses the sort-hierarchy hy. We attempt
to decide the validity of the following goals:

G1 = player(x: person),
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Gy = winner(x:person), loser(x: person),
Gs = winner(x:person),

G4 = loser(x:person),

Gs = player(z: person).

These goals are the conclusions of the derivability relations in Example 4. Then we can
obtain the following clause forms of G1,Gs, Gz, G4, G5.

T(Gy) = -player(x:person),
T(Gy) = —winner(xz: person) V —loser(z: person),
T(G3) = -—winner(z: person),
T(Gy) = -loser(x:person),
T(Gs) = -—player(z:person)
Using the consistent sets Si,...,S¢ of clauses, the set D of subsort declarations and the

clause forms T'(G1),...,T(Gs), we can consider the refutations of (D, A1), (D,As), ...,
(D, A7) where

AI - 51U{TG1
Ay = SU{T(G,

A7 == SGU{T(G5)}

The following proof trees describe refutation processes of (D, A1), (D,As), ..., (D,Ay)
in the hybrid inference system CSy + RS (obtained by combining the systems C'Sy and
RS). We use tha abbreviation

W = winner,
L = loser,
PL = Dplayer,
T, = x:person,
t, = tom:person.

(1) loser(tom) Fy, player(tom)
A refutation process from (D, Ay) with Ay = S;U{T(G1)} is shown by the following proof
tree.

~L(z,) PL(t,) LCg PL
O

(S1)

(2) —winner(tom) t/y, player(tom)
A refutation process from (D, Ag) with Ay = Sy U{T(G1)} is failed below.
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~L(z,) W) WL
fail

(3) —player(tom) tp, ~winner(tom) A =loser(tom)
A refutation process from (D, Az) with Az = S3U{T(G2)} is shown by the following proof
tree.

-W(x,)V-L(x,) -P(t,) W CgPL
~L(z: P) (53) -P(t,) LCgPL

O

(4) —player(tom) F, winner(tom)
A refutation process from (D, Ay) with Ay = Sy U{T(G3)} is shown by the following proof
tree.

~Wi(z,) PL(t,) WlpL L
O

(T2)

(5) player(tom) t, loser(tom)
A refutation process from (D, As) with As = SyU{T(G4)} is shown by the following proof
tree.

ﬁW(.ﬁUp) V PL(tp) w |PL L
L(ty)

TV 1)

- (©)

(6) player(tom) A —loser(tom) -, winner(tom)
A refutation process from (D, Ag) with Ag = SsU{T(G3)} is shown by the following proof
tree.

PL(tom: P) —L(tom:P) W |p, L
_‘W(tp) W(tp)
(]

(T1)

(©)

(7) —winner(tom) A —loser(tom) p, —player(tom)
A refutation process from (D, A7) with Ay = S¢ U{T(G5)} is shown by the following proof
tree.
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_'ﬁ(tp) _‘W(tp) W|PLL
L(t,)

(Tg)_‘L(tp)

- (©)

The derivability relation player(tom) ty, winner(tom) V loser(tom) is established by the
above proof tree (4) or (5).
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Chapter 5

Conclusions and future work

This chapter discuss conclusions and future work. We summarize the major results of
this thesis and suggest extensions to the logics we have proposed.

5.1 Conclusions

This thesis has presented two novel order-sorted logics that can respectively deal with
(i) the classification of predicates and (ii) implicit negations in a hierarchy, to represent
various structured information.

First, we have proposed an extended order-sorted logic that includes not only a sort-
hierarchy but a predicate-hierarchy that can be used to provide reasoning mechanisms
(property inheritance, event reasoning, and derivation of general and concrete expres-
sions). In particular, predicate-hierarchy reasoning with flexible argument structures
enhances the usefulness and the feasibility of the knowledge representation system. In
order to derive hierarchical predicates with different argument structures, the inference
machinery includes the manipulation of argument supplementations that can precisely
distinguish event from property as two different aspects of a predicate. By defining a
new supplementation operation in the two hierarchy inference rules (specialization and
generalization rules of the predicate-hierarchy), we are able to deal successfully with ar-
gument manipulation. Thus we have defined an inference system based on a Horn clause
resolution with hierarchical predicates. In the semantics of our logic, we interpret the
predicate-hierarchy by introducing a restricted sorted structure (which we call the H3-
structure). This structure ensures the soundness and the completeness of the resolution
for our extended order-sorted logic with hierarchical predicates and eventuality. In addi-
tion, we have developed a query system constructed by the Horn clause resolution that
provides the reasoning mechanism for the two examples (based on human reasoning)
shown in Section 2.1.3.

Second, we have presented a hybrid inference system comprising of a clausal infer-
ence system and a structured sort constraint system. This system includes structured
sort, expressions composed atomic sorts, connectives, and negative operators, in order to
deal with negative sorts implicitly embedded in a sort-hierarchy. To represent the im-
plicitly negative sorts, we have proposed the notation of sort relations (subsort relation,
equivalence relation, exclusivity relation, and totality relation) on the set of structured
sorts, where the properties (based on lexicon negations in natural language) of implicitly
negative sorts are axiomatized and declared by the exclusivity, partiality, and totality
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relations to their positive sorts. Therefore, the structured sort constraint system can
derive conclusions from the relationship between classical negation, strong negation, and
antonyms in a sort-hierarchy. Furthermore, contradiction in the sort-hierarchy as defined
by the exclusivity relation allows us to establish the relationship between opposite sorts
and prove the consistency of our logic with structured sorts. This consistency allows a
sound inference from a sort with respect to not only positive meaning as a subsort of the
general expression but also with respect to negative meaning as an exclusive sort to its
antonymous sort.

5.2 Future work

The extension to knowledge representation, the implementation of typed logic program-
ming languages and the remaining work of formalization are discussed as follows.

(1) Knowledge representation

In addition to the event/property distinction for a predicate, we need to investigate the
proper treatment of negation in predicate-hierarchy reasoning. Because of the ambiguity
of predicate expressions, the meaning of negation and its reasoning is not always the same
as follows:

e The negative meaning of an event is stronger than the negation of a property.

e Supplementary arguments to positive and negative assertions are differently quan-
tified.

Moreover, the semantic models of any logic extended to treat negation in predicate-
hierarchy reasoning must be newly proposed, in the same way that the Kripke semantics
of constructive logic [3] with the strong negation (as a non-classical negation) was defined.

(2) Typed logic programming language

We plan to develop a logic programming language for our logic with structured sorts by
restricting the structured sort formulas to the definite clause forms, and this will contribute
to the implementation of a knowledge system with implicit negations. However, a program
with implicit negations may cause the problem that a set of definite clauses with structured
sorts is inconsistent. In some case, even though it has no negative literal a definite clause
may represent a negative assertion in which an implicitly negative sort is used as the sort
predicate. Programs including this would lose the property in logic programming that all
the sets of definite clauses are consistent.

The integration of the two logics separately presented in this thesis is needed to im-
plement a logic programming language that includes the notions of predicate-hierarchy,
eventuality and implicit negation. In the formalization of this logic, we must consider a
sorted signature with hierarchical predicates and structured sorts for the integrated lan-
guage. Moreover, we must give the syntax and semantics of the language and present an
extended resolution system. Although the work seems to be difficult, we contend that
such notions are significant in representing knowledge naturally and precisely in logic
programming languages.
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(3) Formalization

The completeness of the Horn clause resolution with hierarchies and eventuality can be
proved by adding the R2"-resolution rule and R3*-resolution rule. However, we might
say that the proof procedures of these rules are semi-resolutions because not all of the
clauses in the premises are reduced by an application of the rules. Therefore, we need
to present a complete resolution system without the rules R2% and R3". To do this, we
must extend the R2-resolution rule and R3-resolution rule to include the derivations of
the rules R2* and R3™.

Furthermore, the remaining work for our order-sorted logic with structured sorts is to
prove the completeness theorem for the hybrid inference systems we have proposed. Since
the derivations of clauses are extended to include rules of sort predicates related to subsort
declarations, we have to consider the correspondence of the derivability to X *-models in
semantics.
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Appendix A

Syntax

Let ¥ = (S, F,P,D) be a sorted signature with hierarchical predicates. The order-sorted
terms and formulas in this thesis are defined by the following syntax rules:

A.1 Order-sorted terms

s,8',81,...,8, €S : sort symbols

feF,: n-ary function symbols

ris € Vs sorted variables

t,t sorted terms of sort s, s’
ty,... 1, : sorted terms of sort si,..., s,

to=ais | f(ty, ..., tn):s |t

where f:s; X ... X85, s € Drand s Cg s € Ds.

A.2 Order-sorted formulas

pEP,: n-ary predicate symbols
ris € Vs sorted variables
ay,...,0, € AL : predicate argument labels
ty,... b, : sorted terms of sort si,..., s,
A A Ay sorted formulas
AV, = the connectives
v,3: the quantifiers
Au=pa; = t1,...,00 = t,) | Pa1 = t1,. .. an = 1) |

_|A|A1/\A2|A1\/AQ|A1—>A2 |Vx:SA|E|a::SA

where p: {(ala 51)7 ) (ana Sn)} € DP-
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Let ¥ = (S8*,F,P,D) be a structured sort signature. The structured sorts, terms,
and formulas in this thesis are defined by the following syntax rules:

A.3 Structured sorts

Sp €S : atomic sort symbols

5,81,80 € ST : structured sorts

MU, —,~ the connectives
su=50| S| ~s|s1Msy|s1Usy

A.4 Structured sort terms

5,81,...,8, € ST : structured sorts

feF,: n-ary function symbols
r:s € Vi sorted variables

t: structured sort terms of s
ty,... 1, : structured sort terms

to=x:s | f(ty,...,tn):s

where f:s1 X ... x s, > s € D.

A.5 Structured sort formulas

pEP,: n-ary predicate symbols
(ps € Ps+ : sort predicate symbols)
ris € Vi sorted variables

tty,... 1, : structured sort terms
A AL A sorted formulas

AV, = the connectives

v, 3: the quantifiers

A= plty, ..., tn) | ps(t) |
_|A|A1/\A2|A1\/AQ | A1%A2 |Vx:sA | dr:sA

where p:s; X ... X s, € D.
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Appendix B

Examples

B.1 Predicate hierarchy 1

Background knowledge

Sort-hierarchy:

Predicate-hierarchy:
Function declaration:

Predicate declaration:

Knowledge base

Horn clauses:

man Cg person, woman Cg person,wallet Cg thing,
1L Cgman, L Cg woman, L Cg wallet,

person Cg T,thing Cg T.

hit Cp illegal_act.

john: — man, mary: — woman, c: — wallet.

hit: {(agt, person)},
illegal_act: {(agt, person), (coagt, person)}.

hit*(agt = john:man).

B.2 Predicate hierarchy 2

Background knowledge

Sort-hierarchy:

Predicate-hierarchy:

Function declaration:

man Cg person,woman Cg person,wallet Cg thing,
1 Cgman, L Cs woman, L Cg wallet,
person Cg T,thing Cg T.

rob_with_violence Cp hit,
rob_with_violence Cp steal,
hit Cp illegal_act,

steal Cp illegal_act.

john: — man, mary: — woman, c: — wallet.
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Predicate declaration:  rob_with_violence: {(agt, person), (coagt, person), (obj, thing)},
hit: {(agt, person), (coagt, person)},
steal: {(agt, person), (obj, T)},
illegal _act: {(agt, person)}.

Knowledge base

Horn clauses: hit*(agt = john: man, coagt = mary: woman),
steal®(agt = john:man, obj = c:wallet).
B.3 Event and property interpretations

Background knowledge

Sort-hierarchy: penguin Cg bird, crow Cg bird, bird Cg animal,
bot Cs penguin, L Cg crow, L,animal Cg T.

Predicate-hierarchy: fly Tp move,
walk T p move.

Function declaration: c: — bird.

Predicate declaration:  fly: {(sbj, T)},
walk: {(sbj, T)},
move: {(sbj, T)}.

Knowledge base

Horn clauses: fly*(sbj = c: bird),
fly*(sbj = : bird).

B.4 A criminal case

Background knowledge

Sort-hierarchy: man Cg person, woman Cg person, bat Cg thing,
1 Cgman, L Cg woman, L Cg bat, person Cg T,thing Cg T.

Predicate-hierarchy: die Cp legal_act,
hit Cp illegal_act,
murder Cp illegal_act,
wllegal_act Cp act.

Function declaration:  john: — man,
mary: — woman,
c: — bat.
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Predicate declaration:  die: {(agt, person)},
legal_act: {(agt, person)},
illegal_act: {(agt, person)},
hit: {(agt, person), (coagt, person), (tool, thing), (place, T)},
murder: {(agt, person), (coagt, person)},
intent_to_murder: {(agt, person), (coagt, person)},
act: {(agt, person), (coagt, person)}.

Knowledge base

Horn clauses:
hit*(agt = john: man, coagt = mary: woman, tool = ¢y : bat, place = ¢y : home),
die®(agt = mary: woman),
intent_to_murder®(agt = john: man, coagt = mary: woman),
murder®(agt = x : person, coagt =y : person) <
act®(agt = x : person, coagt =y : person),
die*(agt =y : person),
intent_to_murder®(agt = x : person, coagt =y : person).

B.5 Underage drinking

Background knowledge

Sort-hierarchy: adult Cg person, minor Cg person, beer Cg alcoholic,
alcoholic Cg thing, bar Cg space,
1 Cg adult, L Tg minor, L Cg beer,
person Cg T,thing Cg Tspace Cg T,

Predicate-hierarchy: underage_drinking Cp illegal _act,
legal_act Cp act.

Function declaration:  peter: — minor, mary: — adult,,

Predicate declaration:  {illegal_act: {(agt, person)},
drink: {(agt, person), (obj, thing), (place, T)},
underage_drinking: {(agt, person)},
act: {(agt, person), (coagt, person)}.

Knowledge base
Horn clauses:
drink®(agt = peter: minor, obj = y: beer)},

underage_drinking®(agt = x: minor) < drink®(agt = x: minor, obj = y: alcoholic),
drink*(agt = x: adult, obj = y: alcoholic).
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B.6 Negative affix: unhappy

Background knowledge

Sort-hierarchy: unhappy =s~ happy,

happy Cs feeling,
unhappy Cg feeling.

Function declaration:  bob: — person.

Predicate declaration:  preeing: Ts Phappy: 15 Punhappy: |5 - - -
Knowledge base

Clauses:
(1) unhappy(bob: person), — feeling(x: person).
(2) —happy(bob: person), — feeling(x: person).
(3) unhappy(bob: person), —happy(bob: person).
(4) —happy(bob: person), unhappy(x: person).
(5) —feeling(bob: person), —happy(bob: person) V —unhappy (bob: person).

B.7 Lexicon with negative meaning: loser

Background knowledge

Sort-hierarchy: winner Cg player,
loser Cg player,
winner |payer loser,
winner || loser.

Function declaration:  tom: — person,
father: person — person.

Predicate declaration:  pperson: T Pplayer: |5 Pwinner: | Ploser: |- -

Knowledge base

Clauses:

(1) loser(tom: person), —player(x: person).
(2) —winner(tom: person), —player(x: person).
(3) —player(tom: person), —winner (x: person) V —loser (x: person).
(4) player(tom: person), ~winner(x: person).
(5) player(tom: person), —loser(x: person).
(6)
(7)

6) player(tom: person), —loser(tom: person), ~winner(x: person).
7) —winner(tom: person), —loser(tom: person), —player(x: person).
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