
1

An Upper Ontology of Event Classifications

and Relations

Ken Kaneiwa and Michiaki Iwazume
National Institute of Information and Communications Technology (NICT), Japan

Ken Fukuda
National Institute of Advanced Industrial Science and Technology (AIST), Japan

2

Objectives

 Providing an infrastructure for designing event knowledge

bases.

 Understanding what events are and what the differences

are between events and other entities in knowledge

representation.

 Defining errors from event assertions and event

sequences in the knowledge bases.

3

Event Knowledge Bases

Event assertions

e1, e2, e3, ….

Event sequences

e1 -> e2 -> e3 -> …

Upper event-ontology

Event knowledge base

Input

Event descriptions

Output

Event components

e1(o1,o2), …

Guide

Knowledge

representation

Help

understanding

KB users

4

Our Approach

 An upper-level event-ontology is constructed by a sort-

hierarchy in order-sorted logic and by logical formulas in

modal logic.

 The sort-hierarchy builds event classifications such a way

that each event class is denoted by a sort.

 The modal logical formulas represent the semantic

functions of events, i.e., each event functionally affects

objects and the real world.

 Event relations (event class and instance relations) are

variously defined in order to describe event sequences.

5

Related Work
SUMO [IEEE Standard Upper Ontology Working Group]

• Suggested Upper Merged Ontology(20,000 terms and 60,000 axioms)

• Process => Physical => Entity

WordNet 2.1 for Win [2005]

• A large lexical database of English

• Nouns, verbs, adjectives and adverbs as cognitive synonyms

• Conceptual-semantic and lexical relations: ISA and Part-Of relations

• Process => Activity => Event => Psychological feature => …. => Entity

OpenCyc 1.0 [2006]

• Terms and assertions relating the terms to each other (6,000 concepts and 60,000 facts)

• Event => Temporal Thing & Intangible => Individual

DOLCE 2.1 [Guarino’s group]

• Description Ontology for Linguistic and Cognitive Engineering

• Described using first-order logic, and translated to OWL

• Process, Event, Phenomena, Activity and State => Perdurant (Occurrence) => Entity

BFO [Smith & Grenon]

• Basic Formal Ontology

• SNAP (ontologies for substances like 3-D objects)

• SPAN (a single ontology for processes and space and time)

• In SPAN, Process => Processual Entity => Occurrent

GEM [Worboys 2004]

• Geospatial Event Model

• The introduction of events into object-based paradigm

• Object-object, object-event, event-object, and event-event relationships

6

Overview: An Upper Event Ontology

Events

Event

Components

Event Semantic

Functions

Event

Relations

Event Class

Relations

Event Instance

Relations

Binary

Relations

Entity

7

Ontology Description

We describe an ontology by using the following sort-hierarchy:

Sort s1

Subsort s2

Subsort s3

Subsubsort s4

Subsort relation:

s4<s3, s3<s1, s2<s1

N-ary predicate declaration:

E:<s1,…,sn>

s1

s3

s4

Tom helped John.

s2

Help:<Person,Person>

Tom instance-of Person

John instance-of Person

Event Instance
Argument structures

8

Event Classifications

Event

Natural Event

Occurrence1: <Time,Location>

Occurrence2: <Object,Time,Location>

Artificial Event

Action1: <Agent,Object,Time,Location>

Action2: <Agent,Time,Location>

Action3: <AgentGroup,Time,Location>

Dynamic State

Object State: <Object,Time,Location>

Environment State: <Time,Location>

Static State

Object State: <Object, Time,Location>

Environment State: <Time,Location>

9

Three Types of Artificial Events

Action1: <Agent,Object,Time,Location>

agent object

Action2: <Agent,Time,Location> agent

Action3: <AgentGroup,Time,Location>

agent

agent

agent

agent
Conference

Walking

Pushing

the argument

structures

of predicates

Semantic Functions of Events

Event Semantic Functions

State Change

Temporal Existence Change

Spatial Existence Change

Cardinality Change

Comparison

Object Identification Change

Logical formulas define what an event acts on or changes

in the real world.

event2

event4

event5

event3

event6 event7

event1 State Change

Temporal Existence Change

Group1

Group2

Real

World

F1→○F2

□P（￢E（ｘ）∧E（ｘ））

￢E（ｘ）∧◆E（ｘ）

∃（i,x）F（ｘ）→ ○∃（>i,x）F（ｘ）

Value（y） ＜ r

∃y（x ＝ｙ → ○（ｘ≠ y））

11

Example: Semantics Functions
(1) State Change

(2) Temporal Existence Change

(3) Spatial Existence Change

Go（ｘ） Act（ｘ）→○（￢E（ｘ）∧◆E（ｘ））

Cure（ｘ,ｙ）
￢Healthy（y）∧（Act（x,y）∨Affect（x,y））→○Healthy（y）

Die（ｘ）
◇P（□P(￢E（ｘ）)∧E（ｘ））∧S（E（ｘ）,￢E（ｘ））∧□F￢E（ｘ）

“if y is not healthy, and x acts against or affects y, then y will become

healthy the next time.”

“x will not exist in the future.”

“if x acts, then x will not exist here but will exist in some other place.”

12

(4) Cardinality Change

(5) Comparison

(6) Object Identification Change

Increase（ｘ）
∃i（Nat（i）∧∃（i,x）Countable（ｘ）→ ○∃（>i,x）Countable（ｘ）

High（ｘ,y）∃r（Rel（r） ∧ Value（ｘ）=r ∧Value（y）＜ r）

Change（ｘ）∃y（x＝ｙ → ○（ｘ≠y））

“if there exist i objects, then there will exist more than i objects the

next time.”

“the value of x is r, and the value is less than r.”

“if an object x is identical to y, then the event makes them different

the next time.”

13

Binary Relations

Binary Relation

Object Relation: <Object,Object>

Event Relation: <Event,Event>

Causal Relation: <Object∪Event,Object∪Event >

Causal

Relations

Event Class

Causal Relations

Event Instance

Causal Relations

Event-Object

Causal Relations

<Event,Event> <Event,Object>

<Object,Event>

14

Event Relations

Event Relation

Event Instance Relation

Event Temporal Relation

Event Spatial Relation

Next Event Relation

Instance Part Of Relation

Instance Causal Relation

Event Class Relation

Disjoint Relation

Subclass Relation

Class Part Of Relation

Class Causal Relation

15

Event Instance Relations

(1) Next Event Relation

e1 →next e2 if e2 occurs after e1.

(2) Instance Part Of Relation

e1 <po e2 if e2 temporally includes e1 and e1 occurs in a

spatial part of e1.

(3) Instance Causal Relation

e1 →causes e2 if e1 causes e2.

16

Causal Relations over Time

Disjoint causal relation

e1 e2

Continuous causal relation

e1 e2

Overlapping causal relation

e1 e2

Partial causal relation

e1
e2

An earthquake caused a giant

tsunami.

Example:

A gas explosion destroyed a

building.

Heavy rain caused a flood.

Volcanic activity caused a volcanic

eruption.

17

Conclusions

 A classifying event types in an ontology that is based on

their component structures.

 A definition of the semantic functions of events, which

uses many logical operations in formulas.

 A modification of the event class relations and event

instance relations (proposed by Barry Smith).

18

Future Work

 A logical reasoning system from even relations that derive

adds implicit expressions from event knowledge bases if

we input event sequences.

 A consistency checking algorithm that finds ontological

errors, based on the upper event ontology.

19

Example: Event Relations

Heavy rain FloodOverflow

Increasing

the river volume

Buildings

damaged

Drought

Disaster

cause
nextpart-of

subclass

disjoint cause

cause

subclass
subclass

Rain stop

20

Example: Event Functions
Event predicates Quantified modal formulas

Cure（x,y） ￢Healthy（y）∧（Act（x,y）∨Affect（x,y））→○Healthy（y）

Drink（x,y） （InMouth（y）∧ Swallow（x,y）∧￢Bite（x,y））→○InBody（y）

Stop（x,y） Active（y）∧（Action（x,y）∨Affect（x,y））→○￢Active（y）

Die（x） ◇P（□P￢E（ｘ）∧E（ｘ））∧S（E（ｘ）,￢E（ｘ））∧□F￢E（ｘ）

Go（x,y） Act（ｘ）→○（￢E（ｘ）∧◆E（ｘ））

BeBorn（x） □P(￢E(ｘ)) ∧ E（ｘ）

High（x,y） ∃r（Rel（r） ∧ Value（ｘ）=r ∧Value（y）＜ r）

Change（x） ∃y（x ＝ｙ → ○（x≠ y））

Increase（x,y） ∃i（Nat（i）∧∃（i,x）Countable（ｘ）→ ○∃（>i,x）Countable（ｘ）

Make（x,y） ∃z（Act（x,z）→ ○(BeBorn(y) ∧ y≠z ∧ Valuable(y) ）

21

Event Class Relations

(1) Disjoint Relation

E1 || E2 if each instance of E1 and E2 cannot occur

simultaneously.

(2) Subclass Relation

E1 < E2 if every instance of E1 belongs to E2.

(3) Class Part Of Relation

E1 <po E2 if there exists an instance e’ of E2 such that e’

<po e for every instance e’ of E1.

(4) Class Causal Relation

E1 →causes E2 if there exists an instance e’ of E2 such

that e’ →causes e for every instance e’ of E1.

