
Logical Aspects of Events: Quantification, Sorts, Composition and

Disjointness

Ken Kaneiwa1 Satoshi Tojo2

1National Institute of Informatics, Japan
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Email: kaneiwa@nii.ac.jp
2Japan Advanced Institute of Science and Technology
1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan

Email: tojo@jaist.ac.jp

Abstract

An event, as opposed to an atemporal property, has
its own time and location and occurs once. Although
the notion of events has been found in researches on
ontology, logic, linguistics, artificial intelligence and
deductive databases, the different approaches to this
notion do not seem to capture the various logical as-
pects of events. This paper proposes an event logic
with expressions such as quantification over events,
event sort-hierarchy, and composition and disjoint-
ness of events. In the logic, events are regarded
as constants, sorts, predicates and variables in an
order-sorted second-order language, which provides
knowledge representation and reasoning for event as-
sertions. In order to implement a query answering
system, we present a sorted tableau calculus for the
refutation of event formulas in logic.
Keywords: event-ontology, taxonomy, quantification,
reasoning

1 Introduction

The notion of events is one of the entities classi-
fied in philosophical ontology, and in order to de-
scribe actions and changes in the real world, the for-
mal representation of events has been investigated
in logic, linguistics, artificial intelligence and deduc-
tive databases. In (Davidson 1980, Sadri & Kowalski
1995), event sentences are expressed by predicate
formulas including event identifiers. For example,
(∃e)Kicked (Shem, Shaun, e) states an event e such
as ‘Shem kicked Shaun.’ Events as linguistic con-
structions (van Benthem 1983) have been understood
to be a useful perspective for representing natural lan-
guage sentences. According to Allen et al. (Allen &
Ferguson 1994) events were methods used to classify
useful and relevant patterns of change rather than en-
tities in the real world. Sowa (Sowa 2000) categorized
events as changes that occur in the discrete steps of
a process. Landman (Landman 1991) gave semantics
of events by structures, where each structure com-
prises a set of events and precedence, inclusion and
overlap relations over events. Events in active object-
oriented database (Gatziu & Dittrich 1994, Galton &
Augusto 2002) have also been studied. The database
system SAMOS (Gatziu & Dittrich 1994) provides
event specification facilities to describe the complex
events constructed by disjunction, conjunction, se-
quence of events, negative events, etc. Galton and

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at the Australasian Ontology Workshop (AOW
2005), Sydney, Australia. Conferences in Research and Prac-
tice in Information Technology (CRPIT), Vol. 58. T. Meyer,
M. Orgun, Eds. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

Augusto (Galton & Augusto 2002) attempted to com-
bine the two kinds of event definitions of knowledge
representation and databases.

However, these approaches have the following two
drawbacks. First, they do not sufficiently capture the
various logical aspects of events since each approach
treats only a sole aspect of events. In fact, using log-
ical languages, event entities can be regarded differ-
ently as constants, sorts, predicates and variables in
knowledge representation. Second, these approaches
do not adequately define the syntax, semantics and
reasoning mechanisms of event logic. Logical formal-
ization enables a rigorous analysis of the features of
events in ontology and information systems.

In this paper, by extending the order-sorted
logic (Kaneiwa 2004, Kaneiwa & Mizoguchi 2004,
Kaneiwa & Mizoguchi 2005, Kaneiwa & Tojo 2001),
we present an event logic that provides knowledge
representation and reasoning for different aspects of
events. Due to the sorted expressions with variables
and predicates, order-sorted logic is useful as a basic
logical language to specify a diversity of events.

This paper is arranged as follows. In Section 2,
we consider that the use of events leads to various
kinds of logical expressions, and propose a method
of representing event assertions by extending order-
sorted logic. In Section 3, we introduce the basic no-
tions of order-sorted logic. In Section 4, we define the
syntax and semantics of an order-sorted event logic.
Section 5 develops a sorted tableau calculus that in-
cludes additional inference rules with respect to pred-
icate arguments and quantification, composition and
disjointness over events. In Section 6, we give conclu-
sions and discuss future work.

2 Logical aspects of events

In this section we analyze different logical aspects
caused by the use of event entities, and consider an
extension of expressions in order-sorted logic in or-
der to handle the diversity of events. The notions of
constants, sorts, variables and predicates can be used
for suitably expressing event assertions and rules in a
logical language.

2.1 Constants, sorts, variables and quantifi-
cation

The content of an event ei can be represented by a
predicate formula

p(o1, . . . , on)

where p is an n-ary predicate and o1, . . . , on are in-
dividuals. We call this formula p(o1, . . . , on) a (de-
tailed) description of an event constant ei (or an
event identifier). In knowledge representation, it is

necessary to distinguish such event descriptions from
the property descriptions of the formula p(o1, . . . , on)
(representing properties p of individuals o1, . . . , on).
However, both types of descriptions are identically
defined as sets of tuples of individuals in first-order
semantics.

Any event constant can correspond to the occur-
rence of an event. Hence, if the predicate formula
cook(John, meat) is a description of ‘John cooked
meat’ of an event constant e1, then it is possible that
numerous other event constants are described by the
same formula:

e1 = cook(John, meat),
e2 = cook(John, meat),

. . . ,

en = cook(John, meat).

In line with this observation, the predicate cook, as
a binary relation of the individuals John and meat,
can play another role as a sort and unary predicate of
event constants. In other words, there are sorts and
unary predicates over events (called event sorts and
event predicates). For example, e1 : cook expresses an
event constant e1 of the event sort cook, and cook(e1)
implies that an event constant e1 has a property of
the event predicate cook. The expressions of sorts
and predicates over events are conceivable as a natu-
ral extension of sorts and predicates over individuals.
In (Kaneiwa & Tojo 1999, Tojo & Kaneiwa 2003),
Kaneiwa and Tojo formalized an expressive logical
language with event sorts (or event predicates) that
contains two types of sort-hierarchies such that one
hierarchy is constructed by sorts over individuals and
the other is constructed by sorts (or predicates) over
events. Let ES denote the set of event sorts. We now
discuss the structural feature of events using event
sorts. Let boil, cook, act ∈ ES be event sorts. Then,
the declaration

boil �
E

cook �
E

act

represents a hierarchical relationship among event
sorts. An event sort-hierarchy refers to a pair (ES,�

E
)

of the set ES of event sorts and a partial order over
ES. As discussed above, each event sort indicates a
set of event constants. Thus, if cook(e1) holds true,
then act(e1) can be derived from cook �

E
act. More-

over, provided that the predicate formula cook(John,
meat) is a detailed description of an event constant e1,
a less informative description act(John, meat) of the
event e1 can be inferred in the event sort-hierarchy.
It should be noted that the symbol is employed not
only as a binary predicate over individuals but also
as a sort or unary predicate over events.

Apart from expressions of individuals, we have
thus far explained the existence of constants, sorts
and predicates with regard to the notion of events.
Let E1 be an event sort, e1 be an event constant,
and o1, . . . , on be individuals. We express an event
assertion as follows:

e1 :E1(o1, . . . , on).

This signifies that an event constant e1 belongs to an
event sort E1; furthermore, E1(o1, . . . , on) is a de-
tailed description of the event constant e1. For exam-
ple, e1 : cook(John, meat) expresses that the event
description ‘John cooked meat’ took place as an event
constant e1.

The means of representing event rules require vari-
ables and quantifications over events. We formalize
an event constant by a predicated symbol and an
event variable by a predicate variable, respectively.

By generalizing an event assertion e1 :E1(o1, . . . , on),
we obtain an open event assertion X :E1(o1, . . . , on),
including an event variable X ; by quantifying this
event variable,

(∀X :E1)X :E1(o1, . . . , on)

states that for every event X in E1, the event X con-
sisting of (o1, . . . , on) occurred. Using event variables
and quantifications, the following event rule can be
described:

(∀X :heat)X :heat(water)→(∃Y :boil)Y :boil(water).

This rule means ‘if water is heated, then water will
boil.’ More precisely, ‘for every event X of water
being heated, there exists an event Y such that it
boils.’

2.2 Occurrence, composition and disjointness

We take implicit or explicit account of the time and
location of event assertions. Suppose that an event
assertion e1 : E1(o1, . . . , on) holds. Then, the time
and location at which event e1 occurred should also
hold. Let t and l denote the time and location. These
symbols can be added to the predicate arguments as
follows:

e1 :E1(o1, . . . , on, t, l).

If the time and location are missing or omitted, then
the event assertion e1 : E1(o1, . . . , on) should be in-
terpreted as implicitly asserting

(∃x : tim)(∃y : loc)e1 :E1(o1, . . . , on, x, y).

This is motivated by the case in which two differ-
ent events e1, e2 have the same description in e1 :
E1(o1, . . . , on) and e2 :E1(o1, . . . , on) but their times
and locations are not exactly the same. For exam-
ple, although e1 :twinkle(star) and e2 :twinkle(star)
are embodied by the same description ‘a star is twin-
kling,’ the two event constants e1, e2 are denoted dif-
ferently. Hence, these events might occur at separate
times and locations, such as e1 : twinkle(star, t1, l1)
and e2 :twinkle(star, t2, l2).

Regarding event assertions wherein the time and
location are explicit, we attempt to deal with an event
operation (a composition of two events) and an event
relation (disjointness between two events). Let the
following event assertions be assumed:

e1 :E1(o1, . . . , on, t1, l1),
e2 :E2(o′1, . . . , o′m, t2, l2).

A prerequisite to composing the two events is that
their argument components: individuals, time and lo-
cation are identical; more formally, o1 = o′1, . . . , on =
o′m(n = m)1 and t1 = t2, l1 = l2. When this prereq-
uisite is satisfied, the composed event is obtained as
follows:

e1 ◦ e2 :E1 � E2(o1, . . . , on, t1, l1).

For example, if the event assertions

e1 :talking(john, mary, t, l),
e2 :angry(john, mary, t, l).

hold true, then the composed event

e1 ◦ e2 :talking � angry(john, mary, t, l)
1In this study, we assume that the order of argument roles is

prearranged, e.g., o1 is a subject, o2 is an object, o3 is a tool, etc.

expresses ‘John is angrily talking with Mary.’ How-
ever, the composition operation does not work for
event assertions in cases where their times and lo-
cations are not specified. In this situation, a mini-
mum requirement is that the two events occur simul-
taneously and at the same location even without an
explicit time and location. For the simultaneity, tem-
poral and locational relations over events are stated
as follows:

e1 :E1 ≈t e2 :E2,

e1 :E1 ≈l e2 :E2.

The former implies that the events e1, e2 occurred
simultaneously, and the latter implies that they oc-
curred at the same location.

The disjointness between events indicates that
their respective events cannot take place simulta-
neously, unlike the disjointness between classes (or
sorts) in object-oriented modeling languages, e.g.,
UML class diagrams (Berardi, Cali, Calvanese &
Giacomo 2005, Kaneiwa & Satoh 2006). The disjoint-
ness can be specified by event sorts but not by event
constants. Let E1, E2 be event sorts. Then, the dis-
jointness relation between E1 and E2 will be declared
by

E1||EE2.

For instance, we can assume the disjointness
win||

E
lose where win and lose are event sorts, i.e.,

no one can win and lose at the same time. It should
be noted that even if there are two disjoint events,
they can take place at the same location when their
times are different. As an example, the event asser-
tions e1 :win(John, t1, l) and e2 : lose(John, t2, l) im-
ply that ‘at location l, John won at time t1 but he lost
at time t2.’ In some cases, win and lose may be an
identical event if the agent and its counter-agent al-
ternate. Suppose John and Bob had a boxing or sumo
wrestling match. Then, win(John, Bob) ‘John won to
Bob.’ can be the exact same event as lose(Bob, John)
‘Bob lost to John’. However, in our formulation in the
following section the arguments are sensitive to their
order, and as far as the first arguments of two events
coincide win and lose cannot be compatible.

The disjointness provides us with yet another pre-
requisite of event composition such that the sorts of
composed events must not be disjoint. Events in the
event sorts angry and talking can be composed as
e1 ◦ e2 : angry � talking because their sorts are not
disjoint, whereas the composition e1 ◦e2 :win� lose is
inadequate due to the disjointness of the event sorts
win and lose. The event composition prohibits dif-
ferent components in the descriptions of target event
assertions. However, this condition appears to be too
strong because it excludes the compositions of many
event assertions if their descriptions are predicate for-
mulas comprising various argument structures. For
example, the composition of e1 :drive(John, car) and
e2 :eat(John, food) is impossible since the second ar-
guments car and food cannot be unified. In order
to resolve this problem, we look to argument manip-
ulations (proposed by Kaneiwa and Tojo (Kaneiwa
& Tojo 1999)) that enable us to obtain the following
event composition. First, we delete a surplus argu-
ment from the descriptions of the two events and then
conclude less informative event assertions. In the ex-
ample below, by deleting both the second arguments
in the event descriptions, the less informative asser-
tions e1 :drive(John) and e2 :eat(John), which state
that ‘John is driving’ and ‘John is eating’ can be in-
ferred. Hence, if the event sorts drive and eat are not
disjoint, and the simultaneity of e1 : drive ≈t e2 : eat
and e1 : drive ≈l e2 : eat holds, then we can obtain

the event composition e1 ◦ e2 :drive� eat(John) that
states ‘John is eating while driving.’

Regarding temporal relationships between events,
we introduce two relations over events: �t (time in-
clusion) and ≺t (time precedence). In the above rep-
resentation, these relations are declared by the follow-
ing:

e1 :E1 �t e2 :E2,

e1 :E1 ≺t e2 :E2.

The former declares that an event e2 temporally
includes an event e1, and the latter declares that an
event e1 temporally precedes an event e2. For exam-
ple, e1 : boil �t e2 : evaporate expresses ‘evaporating
for the time boiling.’ More precisely, it means that
an event e2 of evaporating temporally includes an
event e1 of boiling.

We incorporate these features of events into a log-
ical language and present a query answering system
in a reasoning mechanism for event assertions. In
the formalization of our logic, order-sorted logic and
second-order predicate logic provide us with syntac-
tic notions that are relevant to event representation.
Sorted signatures in order-sorted logic formally clar-
ify the sort declarations of symbols denoting events;
predicate constants and predicate variables in second-
order predicate logic are suitable for representing con-
stants and variables over events.

3 Preliminaries

First, we define first-order predicate logic with sort-
hierarchy, called order-sorted logic (Schmidt-Schauss
1989, Socher-Ambrosius & Johann 1996, Kaneiwa &
Mizoguchi 2004).

Definition 1 (Sorted language)
A sorted first-order language contains the set S of
individual sort symbols s1, s2, . . . , the set F of func-
tion symbols f1, f2, . . . , the set P of predicate symbols
p1, p2, . . . , the connectives ∧,∨,→,¬ and the quanti-
fiers ∃,∀.

In particular, Fn denotes the set of n-ary function
symbols, and Pn denotes the set of n-ary predicate
symbols. Vs is the set of variables x :s, y :s, . . . of sort
s, and V =

⋃
s∈S Vs is the set of variables of all sorts.

Definition 2 (Sorted signature)
A signature (called a sorted signature) of a sorted
first-order language is a tuple Σ = (S,F ,P , D) where

1. (S,�
S
) is a partially ordered set of sorts includ-

ing the least sort ⊥
S

and the greatest sort
S
.

2. If f ∈ Fn, then there is a function declaration
f :〈s1, . . . , sn, s〉 ∈ D.

3. If p ∈ Pn, then there is a predicate declaration
p :〈s1, . . . , sn〉 ∈ D.

We denote by si �sj and si �sj the greatest lower
bound for si and sj and the least upper bound for si
and sj respectively.

Definition 3 (Sorted terms)
Let Σ = (S,F ,P , D) be a sorted signature. The set
of sorted terms is defined inductively by the following
rules:

1. Every sorted variable x :s is a sorted term of sort
s.

2. If f ∈ Fn with 〈s1, . . . , sn, s〉 ∈ D and
r1 : s1, . . . , rn : sn are sorted terms of sorts
s1, . . . , sn, then f(r1 : s1, . . . , rn : sn) : s is a
sorted term of sort s.

Definition 4 (Sorted formulas)
Let Σ = (S,F ,P , D) be a sorted signature. The set of
sorted formulas is defined inductively by the following
rules:

1. If p ∈ Pn with p : 〈s1, . . . , sn〉 ∈ D and
r1 : s1, . . . , rn : sn are sorted terms of sorts
s1, . . . , sn, then p(r1 : s1, . . . , rn : sn) is a sorted
formula.

2. If A and B are sorted formulas, then ¬A, A∧B,
A∨B, A → B, (∀x :s)A and (∃x :s)A are sorted
formulas.

Definition 5 (Σ-structure)
A sorted structure (called a Σ-structure) for a sorted
signature Σ is a pair M = (Uind, I) of a non-empty
set Uind (the universe of M) and an interpretation
function I for S ∪ F ∪ P such that

1. I(s) ⊆ Uind where I(⊥
S
) = ∅ and I(

S
) = Uind,

2. I(si) ⊆ I(sj) for si �S
sj ∈ Σ,

3. I(f) : I(s1) × · · · × I(sn) → I(s) where f :
〈s1, . . . sn, s〉 ∈ D.

4 An order-sorted event logic

Based on the specification in Section 1, we define the
syntax and semantics of an event logic with quan-
tifiers over events, event sorts and composition and
disjointness of events. A sorted event language con-
tains the set E of event constant symbols e1, e2, . . . ,
the set ES of event sort symbols E1, E2, . . . , the bi-
nary event predicate symbols �t,≺t,≈t,≈l, the bi-
nary event function symbol ◦ (event composition) and
the symbols of a sorted first-order language (the set
S of individual sort symbols s1, s2, . . . , the set F of
function symbols, the connectives ∧,∨,→,¬ and the
quantifiers ∃,∀). EV〈s1,... ,sn〉 is the set of event vari-
ables X, Y, . . . of predicate declaration 〈s1, . . . , sn〉,
and EV is the set of event variables of all predicate
declarations.

Definition 6 (Event sort-hierarchy)
An event sort-hierarchy with disjointness is a tuple
(ES, �

E
, ||

E
) where ES is the set of event sorts (in-

cluding ⊥E and E), �E (event subsort relation) is a
partial order on ES and ||

E
(event disjoint relation) is

a binary relation on ES.

The event disjoint relation Ei||EEj implies that
events in the event sorts Ei, Ej do not take place si-
multaneously.

Definition 7 (Event signature) A sorted signa-
ture (called an event signature) of a sorted event lan-
guage is a tuple Σev = (S,F , E , ES, T ,L,D+) such
that

1. Σ = (S,F , E , D) is a sorted signature with D ⊆
D+, where (S,�

S
) is a partially ordered set of

sorts and D is a set of function declarations
f : 〈s1, . . . , sn, s〉 and predicate declarations e :
〈s1, . . . , sn〉.

2. T is the set of times (denoted t1, t2, . . .), and L
is the set of locations (denoted l1, l2, . . .).

3. ≺t (time precedence) is a linear order on T , and
�t (time inclusion) is a partial order on T .

4. If e ∈ E, then there are |e| = (t, l), e : E ∈ D+

and e :〈s1, . . . , sn〉 ∈ D.

In the event signature, each event constant is de-
clared as a constant of an event sort E, and at the
same time it is declared as an n-ary predicate of
〈s1, . . . , sn〉. Thus, the event constant is restricted
by two different kinds of sort declarations:

(i) e :E as in a set of events (an event sort)

(ii) e :〈s1, . . . , sn〉 as in the set of n-ary predicates of
〈s1, . . . , sn〉

Moreover, |e| denotes the time and location at which
the event e occurs, and |e|t = tk and |e|l = lk if |e| =
(tk, lk) in Σev. In the following, event expressions in a
sorted event language: event term and event formula
are introduced. The function ‘| |’ is expanded to event
variables and event compositions in the definition of
event terms.

Definition 8 (Event terms)
Let Σev = (S,F , E , ES, T , L,D+) be an event signa-
ture. The set of event terms te : E is defined induc-
tively by the following rules:

1. Every event constant e : E with e : E ∈ D+ and
e : 〈s1, . . . , sn〉 ∈ D is an event term of 〈s1, . . . ,
sn〉.

2. Every event variable X :E with X ∈ EV〈s1,... ,sn〉
is an event term of 〈s1, . . . , sn〉, and |X | =
(x, y).

3. If te1 : E1 and te2 : E2 are event terms of
〈s1, . . . , sn〉 and 〈s1, . . . , sm〉 (n ≤ m) and |te1|
and |te2| are unifiable, then te1 ◦ te2 : E1 � E2 is
an event term of 〈s1, . . . , sn〉, and |te1 ◦ te2| =
mgu(|te1|, |te2|).

In Statement 2 of Definition 8, the pair (x, y) indi-
cates a pair of variables of times and locations such
that x and y can be substituted with any time tk and
location lk.

The event formulas are constructed by two kinds of
atomic formulas: n-ary predicate over individuals and
relation of event terms, and by logical connectives,
first-order quantifiers and second-order quantifiers.

Definition 9 (Event formulas)
Let Σev = (S,F , E , ES, T , L,D+) be an event signa-
ture. The set of event formulas is defined inductively
by the following rules:

1. If te : E is an event term of 〈s1, . . . , sm〉 and
r1 : s1, . . . , rn : sn (n ≤ m) are sorted terms of
sorts s1, . . . , sn, then te :E(r1 : s1, . . . , rn : sn) is
an event formula.

2. If te1 : E1 and te2 : E2 are event terms, then te1 :
E1 ≺t te2 : E2, te1 : E1 �t te2 : E2, te1 : E1 ≈t te2 : E2
and te1 :E1 ≈l te2 :E2 are event formulas.

3. If A and B are event formulas, then ¬A, A∧B,
A ∨ B, A → B, (∀x :s)A and (∃x :s)A are event
formulas.

4. If A is an event formula, then (∀X : E)A and
(∃X :E)A are event formulas.

We use the abbreviation te1 : E1 ≈ te2 : E2 for
te1 : E1 ≈t te2 : E2 and te1 : E1 ≈l te2 : E2. The seman-
tics of our order-sorted event logic is defined by sorted
structures restricted on the conditions of an event sig-
nature Σev. Let �d = (d1, . . . , dn, t, l), each di of which
is a member of the set Uind of individuals. We define
sb(�d) = {(d1, . . . , di, t, l) | 1 ≤ i ≤ n} in order to

Let A,B be event formulas.

A ∧ B
A;B

(∧1)
¬(A ∧ B)
¬A | ¬B

(∧2) A ∨ B
A | B

(∨1)
¬(A ∨ B)
¬A;¬B

(∨2)

A → B
¬A | B

(→ 1)
¬(A → B)

A;¬B
(→ 2) ¬¬A

A
(¬¬)

Let A be an event formula. If s′ �
S

s ∈ Σ, then

(∀x :s)A[x :s]
A[r :s′]

(∀1)
¬(∀x :s)A[x :s]

¬A[c :s′]
(∀2)

(∃x :s)A[x :s]
A[c :s′]

(∃1)
¬(∃x :s)A[x :s]

¬A[r :s′]
(∃2)

where r :s′ is any sorted term of sort s′ and c :s′ is a new constant of sort s′.

Figure 1: Tableau rules in order-sorted logic

give semantics that corresponds to eliminating argu-
ments, and define arg-tim(sb(�d)) = {(d1, . . . , di, t) |
(d1, . . . , di, t, l) ∈ sb(�d)} without location l.

Definition 10 (Σev-structure)
A sorted structure (called a Σev-structure) for an
event signature Σev is a tuple M+ = (Uind, Ut,
Ul, I

+) of non-empty sets Uind, Ut and Ul with Uind∩
Ut ∩ Ul = ∅ and an interpretation function I+ for
S ∪ F ∪ E ∪ ES ∪ T ∪ L ∪ {≺t, �t} such that

1. M = (Uind, I) with I ⊆ I+ is a Σ-structure,

2. (Ut, I
+(≺t)) = (T ,≺t) and (Ul, I

+(�t)) =
(L,�t),

3. I+(◦)(sb(�d1), sb(�d2)) = sb(�d1) ∩ sb(�d2),

4. I+(E) ⊆ {sb(�d) | �d ∈
⋃

{s1,... ,sn}⊆S
I+(s1) × · · · ×

I+(sn) × Ut × Ul},

5. I+(Ei) ⊆ I+(Ej) for Ei �E
Ej in Σev,

6. I+(⊥
E
) = ∅, and I+(Ei � Ej) = (I+(Ei) ∩

I+(Ej)) ∪ {I+(◦)(sb(�di), sb(�dj)) | sb(�di) ∈
I+(Ei), sb(�dj) ∈ I+(Ej)},

7. arg-tim(sb(�di)) ∩ arg-tim(sb(�dj)) = ∅ for
sb(�di) ∈ I+(Ei) and sb(�dj) ∈ I+(Ej) where
Ei||EEj in Σev,

8. I+(e) ∈ I+(E) where e :E ∈ D+,

9. I+(e) = sb(�d) with �d ∈ I+(s1) × · · · × I+(sn) ×
{I+(t)} × {I+(l)} where |e| = (t, l) and e :
〈s1, . . . , sn〉 ∈ D.

A variable assignment α over individuals is a map-
ping from sorted variables to individuals (in Uind)
where α(x :s) ∈ I+(s). Let I+(E〈s1,... ,sn〉) = I+(E)∩
{sb(�d) | �d ∈

⋃

1≤i≤n

I+(s1)× · · · × I+(si)×Ut ×Ul}. A

variable assignment Ω over events is a mapping from
event variables to subsets of

⋃

i∈N

(U i
ind×Ut×Ul) where

Ω(X :E) ∈ I+(E〈s1,... ,sn〉) for X ∈ EV〈s1,... ,sn〉.

Definition 11 (Σev-interpretation)
A Σev-interpretation is a tuple I = (M+, α,Ω) where
M+ is a Σev-structure, α is a variable assignment

over individuals and Ω is a variable assignment over
events. The denotation [[]]α,Ω for sorted terms and
event terms is defined by:

1. [[x :s]]α,Ω = α(x :s),

2. [[f(r1 : s1, . . . , rn : sn)]]α,Ω = I+(f)([[r1 :
s1]]α,Ω, . . . , [[rn :sn]]α,Ω),

3. [[e :E]]α,Ω = I+(e),

4. [[X :E]]α,Ω = Ω(X :E),

5. [[te :⊥E]]α,Ω = ∅,

6. [[te1 ◦ te2 : E1 � E2]]α,Ω = I+(◦)([[te1 : E1]]α,Ω, [[te2 :
E2]]α,Ω).

We define arg(sb(�d)) = {(d1, . . . , di) | (d1, . . . , di,

t, l) ∈ sb(�d)} as without time t and location l, and
define tim(sb(�d)) = t and loc(sb(�d)) = l if �d =
(d1, . . . , dn, t, l).

Definition 12 (Satisfiability) Let I = (M+, α,Ω)
be a Σev-interpretation and F be an event formula.
The satisfiability relation I |= F is defined by the
following rules:

1. I |= te : E(r1 : s1, . . . , rn : sn) iff ([[r1 :
s1]]α,Ω, . . . , [[rn :sn]]α,Ω) ∈ arg([[te :E]]α,Ω).

2. I |= te1 : E1 ≺t te2 : E2 iff (tim([[te1 :
E1]]α,Ω), tim([[te2 :E2]]α,Ω)) ∈ I+(≺t).

3. I |= te1 :E1�tt
e
2 :E2 iff (tim([[te1 :E1]]α,Ω), tim([[te2 :

E2]]α,Ω)) ∈ I+(�t).

4. I |= te1 : E1 ≈t te2 : E2 iff tim([[te1 : E1]]α,Ω) =
tim([[te2 :E2]]α,Ω).

5. I |= te1 : E1 ≈l te2 : E2 iff loc([[te1 : E1]]α,Ω) =
loc([[te2 :E2]]α,Ω).

6. I |= ¬A iff I �|= A.

7. I |= A ∧ B iff I |= A and I |= B.

8. I |= A ∨ B iff I |= A or I |= B.

9. I |= A → B iff I |= A implies I |= B.

10. I |= (∀x :s)A iff for all d ∈ I+(s), I[x :s/d] |= A.

Argument rules: Let te :E be an event term of 〈s1, . . . , sn〉 and let 1 < m ≤ n.

te :E(r1 :s1, . . . , rm :sm)
te :E(r1 :s1, . . . , rm−1 :sm−1)

(a1)
¬te :E(r1 :s1, . . . , rm−1 :sm−1)

(∀x :sm)¬te :E(r1 :s1, . . . , rm−1 :sm−1, x :sm)
(a2)

where x :sm is a new variable.

Event composition rules: Let te1 ◦ te2 : E1 � E2 be an event term of 〈s1, . . . , sm〉 and �t be a
sequence r1 :s1, . . . , rn :sn of sorted terms (n ≤ m).

te1 ◦ te2 :E1 � E2(�t)

te1 :E1(�t); te2 :E2(�t)
(c1)

¬te1 ◦ te2 :E1 � E2(�t) te1 :E1 ≈ te2 :E2

¬te1 :E1(�t) | ¬te2 :E2(�t)
(c2)

te1 ◦ te2 :E1 � E2(�t) ¬(te1 :E1 ≈ te2 :E2)

te1 ◦ te2 :⊥
E
(�t)

(c3)

Event disjointness rules: Let te1 : E1, te2 : E2 be event terms of 〈s1, . . . , sn〉 and 〈s1, . . . , sm〉
and �t be a sequence r1 :s1, . . . , rk :sk of sorted terms (k ≤ m, n). If E1||EE2 in Σev, then

te1 :E1(�t) te1 :E1 ≈t te2 :E2

¬te2 :E2(�t)
(d1)

te1 :E1(�t) te2 :E2(�t) te1 :E1 ≈t te2 :E2

te1 ◦ te2 :⊥
E
(�t)

(d2)

Event quantification rules: Let X ∈ EV〈s1,... ,sm〉 and let A be an event formula. If E′ �
E

E ∈
Σev, then

(∀X :E)A[X :E]
A[te :E′]

(∀X1)
¬(∀X :E)A[X :E]

¬A[e :E′]
(∀X2)

(∃X :E)A[X :E]
A[e :E′]

(∃X1)
¬(∃X :E)A[X :E]

¬A[te :E′]
(∃X2)

where te :E′ is any event term of 〈s1, . . . , sn〉 (n ≤ m) and e :E′ is a new event constant of 〈s1,
. . . , sk〉 (k ≤ m).

Figure 2: Tableau rules for event formulas

11. I |= (∃x :s)A iff for some d ∈ I+(s), I[x :s/d] |=
A.

12. I |= (∀X :E)A iff for all sb(�d) ∈ I+(E〈s1,... ,sn〉),
I{X :E/sb(�d)} |= A.

13. I |= (∃X : E)A iff for some sb(�d) ∈
I+(E〈s1,... ,sn〉), I{X :E/sb(�d)} |= A.

An event formula F is satisfiable if for some Σev-
interpretation I, I |= F holds, and F is unsatisfiable
otherwise. F is valid if for every Σev-interpretation
I, I |= F holds.

5 Tableau calculus

We extend the order-sorted tableau calculus in Fig-
ure 1 to event formulas by adding the tableau rules
in Figure 2. This extended calculus provides a refu-
tation method for finding contradictions of a set of
formulas.

The argument rules eliminate the final argument
in a positive event formula and complement the sorted
variable in a negative event formula. Using event
composition rules, a compound event assertion de-
rives its corresponding two event assertions that in-
volve the same time and location and that are not
disjoint. Through the disjointness of two event sorts,
an event assertion concludes the negation of its dis-
joint assertion in the event disjointness rules. The
event quantification rules are based on quantification
rules of predicate variables, which substitute subsort
event terms for event variables.

Let Γ be a set of event formulas and A be an event
formula. In order to prove the validity of A in Γ,
our tableau calculus is used to decide whether or not
Γ∪ {¬A} is refutable. In the following examples, the
answers to the queries A are obtained in a manner
such that the answer is yes if Γ ∪ {¬A} refutable;
otherwise, the answer is no.

Signature 1
e :〈food〉, e :boil,
boil �

E
cook, roast �

E
cook,

chicken �
S

meat, beef �
S

meat,
meat �

S
food

Fact 1
e :boil(c :chicken)

(0)

Query 1a
?-X :cook(y :meat)

Answer 1a
yes,
X :cook = e :boil, y :meat = c :chicken

Query 1b
?-X :roast(y :beef)

Answer 1b
no

Derivation 1a
Γ0

0 = {¬(∃X :cook)(∃y :meat)X :cook(y :meat)}
∪ΓFact1

Γ0
1 = Γ0

0 ∪ {¬(∃y :meat)e :boil(y :meat)} (by ∃X2)
Γ0

2 = Γ0
1 ∪ {¬e :boil(c :chicken)

(0)
} (by ∃2)

In Signature 1, an event constant e is declared as a
predicate of 〈food〉 and as a constant of event sort
boil. In the event sort-hierarchy, the event sorts boil
and roast are subsorts of cook. Regarding Fact 1,
‘chicken was boiled’, the answer to Query 1a ‘Was
meat cooked?’ is yes. This is because the refuta-
tion is successful in cases, by applying the tableau
calculus to {e : boil(c : chicken)} ∪ {¬(∃X : cook)(∃y :
meat)X : cook(y : meat)}, a contradiction {e : boil(c :
chicken),¬e : boil(c : chicken)} appears in Γ0

2 of
Derivation 1a. Moreover, the answer to Query 1b
‘Was beef roasted?’ will be no since the refutation
fails.

Further, Signature 2 defines event constants e1, e2
as predicates of 〈person, food〉 and 〈person, car〉, and
constants of event sorts eat and drive as follows:

Signature 2
e1 :〈person, food〉, e1 :eat,
e2 :〈person, car〉, e2 :drive,
|e1| = |e2|, man �S person,
drive � eat �E eat, drive � eat �E drive

Fact 2
e1 :eat(john :man, c1 :food)

(0)

e2 :drive(john :man, c2 :car)
(1)

Query 2
?-X :drive � eat(john :man)

Answer 2
yes,
X :drive � eat = e1 ◦ e2 :drive � eat

Derivation 2
Γ0

0 = {¬(∃X :drive � eat)
X :drive � eat(john :man)} ∪ ΓFact2

Γ0
1 = Γ0

0 ∪ {¬e1 ◦ e2 :drive � eat(john :man)}
(by ∃X2)

Γ0
2 = Γ0

1 ∪ {e1 :drive ≈ e2 :eat} (by Deri.1)
Γ0

3 = Γ0
2 ∪ {¬e1 :drive(john :man)} (by c2)

Γ0
4 = Γ0

3 ∪ {(∀x :car)
¬e1 :drive(john :man, x :car)} (by a2)

Γ0
5 = Γ0

4 ∪ {¬e1 :drive(john :man, c1 :car)
(0)

}
(by ∀1)

Γ1
3 = Γ0

2 ∪ {¬e2 :eat(john :man)} (by c2)
Γ1

4 = Γ1
3 ∪ {(∀y :food)

¬e2 :eat(john :man, y :food)} (by a2)
Γ1

5 = Γ1
4 ∪ {¬e2 :eat(john :man, c2 :food)

(1)
}

(by ∀1)

Fact 2 contains event assertions, such as ‘John is
eating food’ and as ‘John is driving a car,’ whose
events occurred simultaneously and in the same lo-
cation (by |e1| = |e2|). From these assertions, the
answer to Query 2 ‘Is John eating while driving?’ is
yes. This result is obtained from Derivation 2, where
the refutation is successful, i.e., {e1 : drive(john :
man, c1 : car),¬e1 : drive(john : man, c1 : car)} and
{e2 : eat(john : man, c2 : food),¬e2 : eat(john :
man, c2 : food)} are contradictions in Γ0

5 and Γ1
5, de-

rived from non-deterministic rules.

6 Conclusion and future work

In this paper, we have presented a sorted event logic,
that provides rich knowledge representation of vari-
ous roles of events in terms of constants, sorts, predi-

cates and variables, together with the inference mech-
anisms. By our logic, event sort-hierarchies are an ex-
tension of sort-hierarchies in order-sorted logic, and
the expressions of event constants and event vari-
ables are based on predicate constants and predicate
variables in second-order predicate logic. In seman-
tics, sorted structures are rather complicatedly elabo-
rated to capture the meaning of event assertions. For
such an expressive event language, we have developed
a tableau calculus that provides new inferences and
contradictions pertaining to event formulas. The logi-
cal aspects of events presented in this paper can be re-
garded as a common specification of events (whereas
event ontology philosophically distinguishes events in
the classification of entities). Thus, we have shown an
ontological framework to represent what events are in
information systems.

Currently, reasoning and description concerning
temporal information in event assertions still remain
immature. As an approach to this, we are now to
plan to study a combination of our event logic with
temporal logic. For instance, temporal relations im-
plicitly included in events lead to interesting temporal
reasoning in event assertions such as upward, down-
ward, rightward and leftward heredities.

Acknowledgment

This research has been partially supported by the
Ministry of Education, Science, Sports and Culture,
Grant-in-Aid for Scientific Research (17700164).

References

Allen, J. F. & Ferguson, G. (1994), ‘Actions and
events in interval temporal logic’, Journal of
Logic and Computation 4(5), 531–579.

Berardi, D., Cali, A., Calvanese, D. & Giacomo, G. D.
(2005), ‘Reasoning on UML class diagrams’, Ar-
tificial Intelligence 168(1-2), 70–118.

Davidson, D. (1980), The logical form of action sen-
tences, in ‘Essays on actions and events’, Claren-
don Press, Oxford, pp. 105–148.

Galton, A. & Augusto, J. C. (2002), Two approaches
to event definition, in ‘Proceedings of DEXA
2002, Lecture Notes in Computer Science’, Vol.
2453, pp. 547–556.

Gatziu, S. & Dittrich, K. R. (1994), Events in an Ac-
tive Object-Oriented Database System, in ‘Pro-
ceedings of the 1st International Workshop on
Rules in Database Systems’, Workshops in Com-
puting, Springer, pp. 23–29.

Kaneiwa, K. (2004), ‘Order-sorted logic programming
with predicate hierarchy’, Artificial Intelligence
158(2), 155–188.

Kaneiwa, K. & Mizoguchi, R. (2004), Ontological
knowledge base reasoning with sort-hierarchy
and rigidity, in ‘Proceedings of the 9th Interna-
tional Conference on the Principles of Knowl-
edge Representation and Reasoning (KR2004)’,
pp. 278–288.

Kaneiwa, K. & Mizoguchi, R. (2005), An order-sorted
quantified modal logic for meta-ontology., in
‘Proceedings of the International Conference on
Automated Reasoning with Analytic Tableaux
and Related Methods (TABLEAUX2005)’,
LNCS 3702, Springer–Verlag, pp. 169–184.

Kaneiwa, K. & Satoh, K. (2006), Consistency check-
ing algorithms for restricted UML class dia-
grams, in ‘Proceedings of the Fourth Inter-
national Symposium on Foundations of Infor-
mation and Knowledge Systems (FoIKS2006)’,
Springer–Verlag. accepted.

Kaneiwa, K. & Tojo, S. (1999), Event, property, and
hierarchy in order-sorted logic, in ‘Proceedings
of the 1999 Int. Conf. on Logic Programming’,
The MIT Press, pp. 94–108.

Kaneiwa, K. & Tojo, S. (2001), An order-sorted res-
olution with implicitly negative sorts, in ‘Pro-
ceedings of the 2001 Int. Conf. on Logic Pro-
gramming’, Springer-Verlag, pp. 300–314. LNCS
2237.

Landman, F. (1991), Structures for Semantics,
Kluwer.

Sadri, F. & Kowalski, R. A. (1995), Variants of the
event calculus, in L. Sterling, ed., ‘Proceedings
of the 12th International Conference on Logic
Programming’, MIT Press, pp. 67–82.

Schmidt-Schauss, M. (1989), Computational Aspects
of an Order-Sorted Logic with Term Declara-
tions, Springer-Verlag.

Socher-Ambrosius, R. & Johann, P. (1996), Deduction
Systems, Springer-Verlag.

Sowa, J. F. (2000), Knowledge Representation: log-
ical, philosophical and computational founda-
tions, Brooks/Cole.

Tojo, S. & Kaneiwa, K. (2003), Toward a proper se-
mantics for the logic of occurrence, in ‘Proceed-
ings of the Context ’03 Workshop on Barwise
and Situation Theory’.

van Benthem, J. (1983), The logic of time: a model-
theoretic investigation into the varieties of tem-
poral ontology and temporal discourse, Vol. 156
of Synthese Library, Reidel.

