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Abstract

In this paper, we propose a proof system for reasoning on certain spec-
ifications of secure authentication systems. For this purpose, a new logic,
sequence-indexed linear-time temporal logic (SLTL), is obtained semantically
from standard linear-time temporal logic (LTL) by adding a sequence modal
operator that represents a sequence of symbols. By this sequence modal oper-
ator, we can appropriately express message flows between clients and servers
and states of servers in temporal reasoning. A Gentzen-type sequent calculus
for SLTL is introduced, and the completeness and cut-elimination theorems
for it are proved. SLTL is also shown to be PSPACE-complete and embed-
dable into LTL.

Keywords: Sequential information, secure password authentication system,
linear-time temporal logic, sequent calculus, completeness theorem, cut-elimination
theorem.

1 Introduction

1.1 Comparison between LTL, SLTL, and CTLS∗

Linear-time temporal logic (LTL) [1, 8] is known to be one of the most useful logics
for temporal reasoning and system verification. In this paper, a new logic, sequence-

∗This paper is an extended and refined version of the conference presentation [2].
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indexed linear-time temporal logic (SLTL), is obtained from LTL by adding a se-
quence modal operator that represents a sequence of symbols. By this sequence
modal operator we can appropriately express “sequential information” in temporal
reasoning.

A sequence modal operator in temporal reasoning was studied by Kamide and
Kaneiwa [3] based on branching-time temporal logic, CTLS∗. This logic can suitably
represent hierarchical tree structures where the sequence modal operator of CTLS∗

is applied to tree structures. CTLS∗ is, however, not appropriate for obtaining a
proof-theoretical basis for temporal reasoning with sequential information. Indeed,
it is difficult to construct a good proof system for CTLS∗ since the branching-time
formalism is not suitable for obtaining a simple proof theory. A proof system such as
a Gentzen-type sequent calculus with completeness and cut-elimination theorems has
been required for developing foundations of automated temporal theorem proving
with sequential information.

In this paper, we improve on the shortcoming for CTLS∗, i.e., that it lacks a
good proof theory. Compared with CTLS∗, the SLTL logic introduced in this paper
has the following advantages:

1. A natural and simple Gentzen-type sequent calculus, SLTω, also introduced in
this paper

2. The completeness and cut-elimination theorems for SLTω hold

3. Some secure password authentication systems can suitably be specified and
verified using SLTω.

SLTL thus allows us to obtain a good proof theory for temporal reasoning with
sequential information.

1.2 Sequential Information and Sequence Modal Operator

The reason underlying the use of the notion of sequences in the sequence modal
operator is explained below. The notion of sequences is fundamental for practical
reasoning in computer science because it can appropriately represent sequences such
as data, program-execution, action, time, word (character or alphabet), and DNA.
This notion is thus useful for representing the notions of information, attributes,
trees, orders, preferences, strings, vectors, and ontologies. Sequential information
can appropriately be represented by sequences because a sequence structure gives a
monoid 〈M, ;, ∅〉 with an informational interpretation [10]:

1. M is a set of pieces of (sequential, ordered or prioritized) information (i.e., a
set of sequences),

2. ; is a binary operator (on M) that combines two pieces of information (i.e., a
concatenation operator on sequences),
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3. ∅ is an empty piece of information (i.e., the empty sequence).

The sequence modal operator [b] represents labels as “sequential information.”
A formula of the form [b1 ; b2 ; · · · ; bn]α intuitively means that “α is true based on
a sequence b1 ; b2 ; · · · ; bn of information pieces.” A formula of the form [∅]α, which
coincides with α, also intuitively means that “α is true without any information
(i.e., it is an eternal truth in the sense of classical logic).” Simple and intuitive
satisfaction relations by indexing sequences are required to formalize the sequence
modal operator. These satisfaction relations are regarded as natural extensions
of the standard satisfaction relation of classical logic. The proposed satisfaction
relations, denoted as |=d̂, are indexed by a sequence d̂, and the special case |=∅

corresponds to the classical satisfaction relation. Then, |=d̂ α means that “α is true
based on a sequence d̂ of information pieces” and |=∅ α means that “α is eternally
true without any information.”

SLTL is obtained by adding a sequence modal operator to the standard linear-
time temporal logic LTL. Because of the sequence modal and temporal operators,
our proposed proof system is useful for reasoning on some specifications of secure
authentication systems. In particular, the sequence modal and temporal operators
can appropriately express message flows between clients and servers and states of
servers on networks. The proof system is designed as a Gentzen-type sequent cal-
culus for SLTL, together with the completeness and cut-elimination theorems for
this calculus. We show the complexity result that reasoning for SLTL is PSPACE-
complete.

1.3 Contents of This Paper

The contents of this paper are summarized as follows. Section 2 discusses some
specifications of secure password authentication systems, which are based on SLTL.
Section 3 introduces SLTL semantically, and a Gentzen-type sequent calculus, SLTω,
is constructed for SLTL. In Section 4, some theorems for embedding SLTL into
LTL are proved, and by using these embedding theorems, the cut-elimination and
completeness theorems for SLTω are shown. SLTL is also shown to be PSPACE-
complete. Section 5 concludes the paper.

2 Secure Password Authentications in SLTL

We provide an example of specifying secure password authentication on a network
using SLTL. Consider a case in which two clients input their user ID and password
to access a server on a network (as shown in Fig. 1). To access the server, each
client must try to log in to the system in less than three attempts. As a password-
protected system, a client that inputs an incorrect password for a user ID three times
is locked out for 30 seconds, i.e., the client must wait 30 seconds to try again. If a
client inputs an incorrect user ID, the server system counts the number of attempts
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for the incorrect user ID. Each client can log in to the server via a correct user ID
and password when it is not locked out. In our approach, sequence modal operators
[b1 ; b2 ; · · · ; bn] in SLTL can be used to express the specifications of secure password
authentications and the behaviors of clients and servers. For the specifications, SLTL
can determine whether a client has successfully logged in to the server.

Let ci and s respectively denote a client and a server. We use SLTL formulas
[b1 ; b2 ; · · · ; bn]α to represent message flows and server states. By using the sequence
modal operators, the SLTL formula [ci ; s]α indicates that client c has sent a message
α to server s. The SLTL formula [s ; ci]α implies that server s returns a message α
to client ci. Accordingly, the sequence modal operators [ci ; s] and [s ; ci] represent
the orders of message flows between client ci and server s.

ci: client i
s: server
[ci ; s]α: message flows from client ci to server s
[s ; ci]α: message flows from server s to client ci
[s]β: states of server s

In addition, the SLTL formula [s]β implies that server s has a state β.
For the above formulas, the messages α and states β are expressed by propo-

sitional variables. The messages of user IDs and passwords are specified by the
following propositional variables.

ui: user ID for client i
pi: password of user ID ui

iui: incorrect user ID for client i
ipi: incorrect password of user ID ui

Moreover, the states of accept, reject, and lockout are expressed by the following
propositional variables.

ai: accept for user ID ui

ri: reject for lockout of user ID ui

iri: reject for an incorrect password of user ID ui

li: lockout for client i

Let i ∈ {1, 2}, and let X (next), G (always), and F (eventually) be temporal
operators in SLTL formulas. The protocol rules of a secure password authentication
system are described using SLTL formulas as follows:

(Accept Rule)
R1 : G(¬[s]l ∧ [ci ; s](ui ∧ pi))→X[s ; ci]ai),

(Lockout Rule)
R2 : G([s ; ci]iri→GX([s ; ci]iri→GX([s ; ci]iri→X1[s]li∧· · ·∧X30[s]li))),
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Figure 1: Message flow during successful and failed logins

(Reject Rule)
R3 : G([ci ; s](iui ∧ pi))→X[s ; ci]ri),

R4 : G(¬[s]li ∧ [ci ; s](ui ∧ pi)→X[s ; ci]iri),

R5 : G([ci ; s](iui ∧ ipi)→X[s ; ci]ri),

R6 : G([s]li ∧ [ci ; s](ui ∧ ipi)→X[s ; ci]ri).

The formula Xα indicates that α is true in the next interval (0, 1] = {x | 0 < x ≤ 1}
of seconds. The formula Gα (resp. Fα) indicates that α is true in every future
interval (resp. some future interval).

We describe a case of attempts made by a client to login to the server system.
Fig. 1 shows examples of message flows between two clients c1 and c2 and server s.
On the left-hand side of the figure, client c1 sends pairs of user ID and password to
the server system s.

A1 : X(¬[s]l1 ∧ [c1 ; s](u1 ∧ p1)),

A2 : X3(¬[s]l1 ∧ [c1 ; s](u1 ∧ p1)),

A3 : X5(¬[s]l1 ∧ [c1 ; s](u1 ∧ p1)),

A4 : X15[c1 ; s](u1 ∧ p1).

The formulas A1, A2, and A3 represent the three attempts of client c1’s logging in
when no correct passwords are input. The formula A4 expresses the fourth attempt
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of the logging in when the pair of a correct user ID and password is input. However,
the fourth attempt cannot be accepted by the server system because the client is
locked out.

In order to infer the state of lockout in server s, using the proof system SLTω

for SLTL (defined in Definition 3.7), we consider the validity of the SLTL formula

X15[s]l1

that implies that server s locks out client c1 at the 15th interval. On the basis
of the abovementioned specifications and assumptions, this proof system can prove
the formula X15[s]l1 as shown in the following proof-figure. We assume the following
abbreviations:

S1 ≡ X[s]l1 ∧ X2[s]l1 ∧ · · · ∧ X30[s]l1,

S2 ≡ [s ; c1]ir1→S1,

S3 ≡ [s ; c1]ir1→GXS2,

S4 ≡ [s ; c1]ir1→GXS3.

In order to decide the validity of the formula X15[s]l1, a proof of the required
sequent:

R2, R4, A1, A2, A3 ⇒ X15[s]l1

is obtained as follows:

.... R1

.... R2

.... R3

X15[s]l1 ⇒ X15[s]l1

X6(X[s]l1 ∧ X9[s]l1) ⇒ X15[s]l1
(∧left1s)

.... (∧left1s), (∧left2s)
X6S1 ⇒ X15[s]l1

X6S2, R4, A3 ⇒ X15[s]l1
(→lefts)

X4GXS2, R4, A3 ⇒ X15[s]l1
(Glefts)

X4S3, R4, A3, A2 ⇒ X15[s]l1
(→lefts)

X2GXS3, R4, A3, A2 ⇒ X15[s]l1
(Glefts)

X2S4, R4, A3, A2, A1 ⇒ X15[s]l1
(→lefts)

R2, R4, A3, A2, A1 ⇒ X15[s]l1
(Glefts)

where R1 is of the form:

A1 ⇒ A1 X2[s ; c1]ir1 ⇒ X2[s ; c1]ir1

X(¬[s]l1 ∧ [c1 ; s](u1 ∧ p)→X[s ; c1]ir1), A1 ⇒ X2[s ; c1]ir1
(→lefts)

R4, A1 ⇒ X2[s ; c1]ir1
(Glefts),
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R2 is of the form:

A2 ⇒ P2 X4[s ; c1]ir1 ⇒ X4[s ; c1]ir1

X3(¬[s]l1 ∧ [c1 ; s](u1 ∧ p)→X[s ; c1]ir1), A2 ⇒ X4[s ; c1]ir1
(→lefts)

R4, A2 ⇒ X4[s ; c1]ir1
(Glefts)

and R3 is of the form:

A3 ⇒ A3 X6[s ; c1]ir1 ⇒ X6[s ; c1]ir1

X5(¬[s]l1 ∧ [c1 ; s](u1 ∧ p)→X[s ; c1]ir1), A3 ⇒ X6[s ; c1]ir1
(→lefts)

R4, A3 ⇒ X6[s ; c1]ir1
(Glefts).

3 Sequence-Indexed Linear-Time Temporal Logic

In this section, we formalize the SLTL for reasoning on certain specifications of
secure authentication systems.

3.1 Semantics

In this subsection, firstly, we present a semantical definition of LTL, and secondly,
we introduce SLTL by extending LTL with a sequence modal operator.

Formulas of LTL are constructed from countably many propositional variables,
→ (implication), ∧ (conjunction), ∨ (disjunction), ¬ (negation), X (next), G (glob-
ally), and F (eventually). Lower-case letters p, q, ... are used to denote propositional
variables, and Greek lower-case letters α, β, ... are used to denote formulas. We write
A ≡ B to indicate the syntactical identity between A and B. The symbol ω is used
to represent the set of natural numbers. Lower-case letters i, j and k are used to
denote any natural numbers. The symbol ≥ or ≤ is used to represent a linear order
on ω.

Definition 3.1 (LTL) Let S be a non-empty set of states. A structure M := (σ, I)
is a model if

1. σ is an infinite sequence s0, s1, s2, ... of states in S,

2. I is a mapping from the set Φ of propositional variables to the power set of S.

A satisfaction relation (M, i) |= α for any formula α, where M is a model (σ, I)
and i (∈ ω) represents some position within σ, is defined inductively by

1. for any p ∈ Φ, (M, i) |= p iff si ∈ I(p),

2. (M, i) |= α ∧ β iff (M, i) |= α and (M, i) |= β,

3. (M, i) |= α ∨ β iff (M, i) |= α or (M, i) |= β,
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4. (M, i) |= α→β iff (M, i) |= α implies (M, i) |= β,

5. (M, i) |= ¬α iff not-[(M, i) |= α],

6. (M, i) |= Xα iff (M, i+ 1) |= α,

7. (M, i) |= Gα iff ∀j ≥ i[(M, j) |= α],

8. (M, i) |= Fα iff ∃j ≥ i[(M, j) |= α].

A formula α is valid in LTL if (M, 0) |= α for any model M := (σ, I).

Formulas of SLTL are constructed from countably many propositional variables,
→, ∧, ∨, ¬, X, G, F, and [b] (sequence modal operator) where b is a sequence.
Sequences are constructed from countable atomic sequences, ∅ (empty sequence) and
; (composition). Lower-case letters b, c, ... are used for sequences. An expression [∅]α
means α, and expressions [∅ ; b]α and [b ; ∅]α mean [b]α.

Definition 3.2 Formulas and sequences are defined by the following grammar, as-
suming p and e represent propositional variables and atomic sequences, respectively:

α ::= p | α ∧ α | α ∨ α | α→α | ¬α | Xα | Gα | Fα | [b]α
b ::= e | ∅ | b ; b

The set of sequences (including ∅) is denoted as SE. An expression ˆ[d] is used

to represent [d0][d1] · · · [di] with i ∈ ω and d0 ≡ ∅. Note that ˆ[d] can be the empty
sequence. Also, an expression d̂ is used to represent d0 ; d1 ; · · · ; di with i ∈ ω.

Definition 3.3 (SLTL) Let S be a non-empty set of states. A structure M :=

(σ, {I d̂}d̂∈SE) is a sequence model if

1. σ is an infinite sequence s0, s1, s2, ... of states in S,

2. I d̂ (d̂ ∈ SE) are mappings from the set Φ of propositional variables to the power
set of S.

Satisfaction relations (M, i) |=d̂ α (d̂ ∈ SE) for any formula α, where M is

a sequence model (σ, {I d̂}d̂∈SE) and i (∈ ω) represents some position within σ, is
defined inductively by

1. for any p ∈ Φ, (M, i) |=d̂ p iff si ∈ I d̂(p),

2. (M, i) |=d̂ α ∧ β iff (M, i) |=d̂ α and (M, i) |=d̂ β,

3. (M, i) |=d̂ α ∨ β iff (M, i) |=d̂ α or (M, i) |=d̂ β,

4. (M, i) |=d̂ α→β iff (M, i) |=d̂ α implies (M, i) |=d̂ β,
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5. (M, i) |=d̂ ¬α iff not-[(M, i) |=d̂ α],

6. (M, i) |=d̂ Xα iff (M, i+ 1) |=d̂ α,

7. (M, i) |=d̂ Gα iff ∀j ≥ i[(M, j) |=d̂ α],

8. (M, i) |=d̂ Fα iff ∃j ≥ i[(M, j) |=d̂ α].

9. for any atomic sequence e, (M, i) |=d̂ [e]α iff (M, i) |=d̂ ; e α,

10. (M, i) |=d̂ [b ; c]α iff (M, i) |=d̂ [b][c]α.

A formula α is valid in SLTL if (M, 0) |=∅ α for any sequence model M :=

(σ, {I d̂}d̂∈SE).

Remark that |=∅ of SLTL includes |= of LTL, and hence SLTL is an extension of
LTL.

Proposition 3.4 The following clauses hold for any formula α and any sequences
c and d̂,

1. (M, i) |=d̂ [c]α iff (M, i) |=d̂ ; c α,

2. (M, i) |=∅ [d̂]α iff (M, i) |=d̂ α.

Proof. Since (2) is derived from (1), we show only (1) below. (1) is proved by
induction on c.

Case (c ≡ ∅): Obvious.

Case (c ≡ e for an atomic sequence e): By the definition of |=d̂.

Case (c ≡ b1 ; b2): (M, i) |=d̂ [b1 ; b2]α iff (M, i) |=d̂ [b1][b2]α iff (M, i) |=d̂ ; b1 [b2]α

(by induction hypothesis) iff (M, i) |=d̂ ; b1 ; b2 α (by induction hypothesis).

An expression α ↔ β means (α→β) ∧ (β→α).

Proposition 3.5 The following formulas are valid in SLTL: for any formulas α
and β and any b, c ∈ SE,

1. [b](α ◦ β) ↔ ([b]α) ◦ ([b]β) where ◦ ∈ {∧,∨,→},
2. [b](�α) ↔ �([b]α) where � ∈ {¬,X,G,F},
3. [b ; c]α ↔ [b][c]α.
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3.2 Sequent Calculus

In this subsection, firstly, we present a sequent calculus for LTL, and secondly, we
introduce a sequent calculus for SLTL.

Greek capital letters Γ,Δ, ... are used to represent finite (possibly empty) sets
of formulas. An expression Xiα for any i ∈ ω is defined inductively by X0α ≡ α
and Xn+1α ≡ XnXα. An expression of the form Γ ⇒ Δ is called a sequent. An
expression L � S is used to denote the fact that a sequent S is provable in a sequent
calculus L. A rule R of inference is said to be admissible in a sequent calculus L if
the following condition is satisfied: for any instance

S1 · · ·Sn

S

of R, if L � Si for all i, then L � S.
Kawai’s sequent calculus LTω [7] for LTL is presented below.

Definition 3.6 (LTω) The initial sequents of LTω are of the form: for any propo-
sitional variable p,

Xip ⇒ Xip.

The structural rules of LTω are of the form:

Γ ⇒ Δ, α α,Σ ⇒ Π
Γ,Σ ⇒ Δ,Π

(cut)

Γ ⇒ Δ
α,Γ ⇒ Δ

(we-left) Γ ⇒ Δ
Γ ⇒ Δ, α

(we-right).

The logical inference rules of LTω are of the form:

Γ ⇒ Σ,Xiα Xiβ,Δ ⇒ Π

Xi(α→β),Γ,Δ ⇒ Σ,Π
(→left)

Xiα,Γ ⇒ Δ,Xiβ

Γ ⇒ Δ,Xi(α→β)
(→right)

Xiα,Γ ⇒ Δ

Xi(α ∧ β),Γ ⇒ Δ
(∧left1) Xiβ,Γ ⇒ Δ

Xi(α ∧ β),Γ ⇒ Δ
(∧left2)

Γ ⇒ Δ,Xiα Γ ⇒ Δ,Xiβ

Γ ⇒ Δ,Xi(α ∧ β)
(∧right) Xiα,Γ ⇒ Δ Xiβ,Γ ⇒ Δ

Xi(α ∨ β),Γ ⇒ Δ
(∨left)

Γ ⇒ Δ,Xiα

Γ ⇒ Δ,Xi(α ∨ β)
(∨right1) Γ ⇒ Δ,Xiβ

Γ ⇒ Δ,Xi(α ∨ β)
(∨right2)

Γ ⇒ Δ,Xiα

Xi¬α,Γ ⇒ Δ
(¬left) Xiα,Γ ⇒ Δ

Γ ⇒ Δ,Xi¬α (¬right)

Xi+kα,Γ ⇒ Δ

XiGα,Γ ⇒ Δ
(Gleft)

{ Γ ⇒ Δ,Xi+jα }j∈ω
Γ ⇒ Δ,XiGα

(Gright)

{ Xi+jα,Γ ⇒ Δ }j∈ω
XiFα,Γ ⇒ Δ

(Fleft)
Γ ⇒ Δ,Xi+kα

Γ ⇒ Δ,XiFα
(Fright).
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Remark that (Gright) and (Fleft) have infinite premises. The sequents of the
form: Xiα ⇒ Xiα for any formula α are provable in cut-free LTω. This fact can be
proved by induction on the complexity of α. The cut-elimination and completeness
theorems for LTω were proved by Kawai [7].

Prior to introduce a sequent calculus for SLTL, we have to introduce some nota-
tions. The symbolK is used to represent the set {X}∪{[b] | b ∈ SE}, and the symbol
K∗ is used to represent the set of all words of finite length of the alphabet K. For
example, Xi ˆ[b]Xj ˆ[c] is in K∗. Remark that K∗ includes ∅, and hence {†α | † ∈ K∗}
includes α. An expression � is used to represent an arbitrary member of K∗.

A sequent calculus SLTω for SLTL is then introduced below.

Definition 3.7 (SLTω) The initial sequents of SLTω are of the form: for any
propositional variable p,

�p ⇒ �p.

The structural rules of SLTω are (cut), (we-left) and (we-right) in Definition 3.6.
The logical inference rules of SLTω are of the form:

Γ ⇒ Σ, �α �β,Δ ⇒ Π

�(α→β),Γ,Δ ⇒ Σ,Π
(→lefts)

�α,Γ ⇒ Δ, �β

Γ ⇒ Δ, �(α→β)
(→rights)

�α,Γ ⇒ Δ

�(α ∧ β),Γ ⇒ Δ
(∧left1s) �β,Γ ⇒ Δ

�(α ∧ β),Γ ⇒ Δ
(∧left2s)

Γ ⇒ Δ, �α Γ ⇒ Δ, �β

Γ ⇒ Δ, �(α ∧ β)
(∧rights) �α,Γ ⇒ Δ �β,Γ ⇒ Δ

�(α ∨ β),Γ ⇒ Δ
(∨lefts)

Γ ⇒ Δ, �α

Γ ⇒ Δ, �(α ∨ β)
(∨right1s) Γ ⇒ Δ, �β

Γ ⇒ Δ, �(α ∨ β)
(∨right2s)

Γ ⇒ Δ, �α

�¬α,Γ ⇒ Δ
(¬lefts) �α,Γ ⇒ Δ

Γ ⇒ Δ, �¬α (¬rights)

�Xkα,Γ ⇒ Δ

�Gα,Γ ⇒ Δ
(Glefts)

{ Γ ⇒ Δ, �Xjα }j∈ω
Γ ⇒ Δ, �Gα

(Grights)

{ �Xjα,Γ ⇒ Δ }j∈ω
�Fα,Γ ⇒ Δ

(Flefts)
Γ ⇒ Δ, �Xkα

Γ ⇒ Δ, �Fα
(Frights)

�[b]Xα,Γ ⇒ Δ

�X[b]α,Γ ⇒ Δ
(Xleft)

Γ ⇒ Δ, �[b]Xα

Γ ⇒ Δ, �X[b]α
(Xright).

The sequence inference rules of SLTω are of the form:

�[b][c]α,Γ ⇒ Δ

�[b ; c]α,Γ ⇒ Δ
(;left)

Γ ⇒ Δ, �[b][c]α

Γ ⇒ Δ, �[b ; c]α
(;right).

The sequents of the form �α ⇒ �α for any formula α are provable in cut-free
SLTω. This fact can be proved by induction on the complexity of α.
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Proposition 3.8 The rules of the form:

Γ ⇒ Δ
[b]Γ ⇒ [b]Δ

(regu)
�X[b]α,Γ ⇒ Δ

�[b]Xα,Γ ⇒ Δ
(Xleft−1)

Γ ⇒ Δ, �X[b]α

Γ ⇒ Δ, �[b]Xα
(Xright−1)

are admissible in cut-free SLTω.

Proof. We show only the case for (regu) by induction on the proofs P of Γ ⇒ Δ
in cut-free SLTω. We distinguish the cases according to the last inference of P . We
show some cases.

Case (→lefts): The last inference of P is of the form:

Γ1 ⇒ Δ1, �α �β,Γ2 ⇒ Δ2

�(α→β),Γ1,Γ2 ⇒ Δ1,Δ2
(→left).

By induction hypothesis, we have SLTω − (cut) � [b]Γ1 ⇒ [b]Δ1, [b]�α and SLTω −
(cut) � [b]�β, [b]Γ2 ⇒ [b]Δ2. Then, we obtain the required fact:

....
[b]Γ1 ⇒ [b]Δ1, [b]�α

....
[b]�β, [b]Γ2 ⇒ [b]Δ2

[b]�(α→β), [b]Γ1, [b]Γ2 ⇒ [b]Δ1, [b]Δ2
(→lefts).

Case (Grights): The last inference of P is of the form:

{ Γ ⇒ Δ′, �Xjα }j∈ω
Γ ⇒ Δ′, �Gα

(Grights).

By induction hypothesis, we have SLTω − (cut) � [b]Γ ⇒ [b]Δ′, [b]�Xjα for all j ∈ ω.
Then, we obtain the required fact:

....
{ [b]Γ ⇒ [b]Δ′, [b]�Xjα }j∈ω

[b]Γ ⇒ [b]Δ′, [b]�Gα
(Grights).

Remark that the rule (regu) in Proposition 3.8 is more expressive than the fol-
lowing standard inference rules for the normal modal logics K and KD:

Γ ⇒ α
©Γ ⇒ ©α

Γ ⇒ γ

©Γ ⇒ ©γ

where γ can be empty. Thus, the sequence modal operator [b] in SLTL is stronger
than the modal operators © in K and KD.

An expression α ⇔ β means the sequents α ⇒ β and β ⇒ α.
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Proposition 3.9 The following sequents are provable in cut-free SLTω: for any
formulas α and β and any b, c ∈ SE,

1. [b](α ◦ β) ⇔ ([b]α) ◦ ([b]β) where ◦ ∈ {∧,∨,→},
2. [b](�α) ⇔ �([b]α) where � ∈ {¬,X,G,F},
3. [b ; c]α ⇔ [b][c]α.

Proof. We show only the case [b]Gα ⇒ G[b]α as follows:

{ Xj[b]α ⇒ Xj[b]α }j∈ω.... (Xleft)

{ [b]Xjα ⇒ Xj[b]α }j∈ω
{ [b]Gα ⇒ Xj [b]α }j∈ω

(Glefts)

[b]Gα ⇒ G[b]α
(Grights).

4 Completeness, Complexity, and Cut-Elimination

Firstly, we introduce a translation of SLTL into LTL, and by using this translation,
we show two theorems for semantically and syntactically embedding SLTL into
LTL. As corollaries of these embedding theorems, we obtain the cut-elimination,
completeness, and complexity theorems for SLTω (or SLTL).

Definition 4.1 Let Φ be a non-empty set of propositional variables and Φd̂ be the
set {pd̂ | p ∈ Φ} (d̂ ∈ SE) of propositional variables where p∅ := p (i.e., Φ∅ := Φ).
The language Ls (the set of formulas) of SLTL is defined using Φ, [b], ∧,∨,→,¬, X,
F, and G by the same way as in Definition 3.2. The language L of LTL is obtained

from Ls by adding Φd̂ and deleting [b].
A mapping f from Ls to L is defined by:

1. for any p ∈ Φ, f( ˆ[d]p) := pd̂ ∈ Φd̂, esp., f(p) = p ∈ Φ∅, 1

2. f(�(α ◦ β)) := f(�α) ◦ f(�β) where ◦ ∈ {∧,∨,→},
3. f(�†α) := †f(�α) where † ∈ {¬,X,G,F},
4. f(�[b ; c]α) := f(�[b][c]α).

Remark that we can derive the following clause for f :

5. f(�[b]Xα) := f(�X[b]α).

1Remark that f([b ; c]p) = pb ; c = f([b][c]p) for any b, c ∈ SE.
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Lemma 4.2 Let f be the mapping defined in Definition 4.1, and S be a non-empty
set of states. For any sequence model M := (σ, {I d̂}d̂∈SE) of SLTL, any satisfaction

relations |=d̂ (d̂ ∈ SE) on M , and any state si in σ, we can construct a model
N := (σ, I) of LTL and a satisfaction relation |= on N such that for any formula α
in Ls,

(M, i) |=d̂ α iff (N, i) |= f( ˆ[d]α).

Proof. Let Φ be a non-empty set of propositional variables and Φd̂ be the set
{pd̂ | p ∈ Φ}. Suppose that M is a sequence model (σ, {I d̂}d̂∈SE) where

I d̂ (d̂ ∈ SE) are mappings from Φ to the power set of S.

Suppose that N is a model (σ, I) where

I is a mapping from
⋃

d̂∈SE
Φd̂ to the power set of S.

Suppose moreover that M and N satisfy the following condition: for any si in σ and
any p ∈ Φ,

si ∈ I d̂(p) iff si ∈ I(pd̂).

Then, the lemma is proved by induction on the complexity of α.
• Base step:
Case α ≡ p ∈ Φ: We obtain: (M, i) |=d̂ p iff si ∈ I d̂(p) iff si ∈ I(pd̂) iff (N, i) |= pd̂

iff (N, i) |= f( ˆ[d]p) (by the definition of f).
• Induction step:
Case α ≡ β ∧ γ: We obtain: (M, i) |=d̂ β ∧ γ iff (M, i) |=d̂ β and (M, i) |=d̂ γ

iff (N, i) |= f( ˆ[d]β) and (N, i) |= f( ˆ[d]γ) (by induction hypothesis) iff (N, i) |=
f( ˆ[d]β) ∧ f( ˆ[d]γ) iff (N, i) |= f( ˆ[d](β ∧ γ)) (by the definition of f).

Case α ≡ β ∨ γ: Similar to Case α ≡ β ∧ γ.
Case α ≡ β→γ: We obtain: (M, i) |=d̂ β→γ iff (M, i) |=d̂ β implies (M, i) |=d̂ γ

iff (N, i) |= f( ˆ[d]β) implies (N, i) |= f( ˆ[d]γ) (by induction hypothesis) iff (N, i) |=
f( ˆ[d]β)→f( ˆ[d]γ) iff (N, i) |= f( ˆ[d](β→γ)) (by the definition of f).

Case α ≡ ¬β: We obtain: (M, i) |=d̂ ¬β iff not-[(M, i) |=d̂ β] iff not-[(N, i) |=
f( ˆ[d]β)] (by induction hypothesis) iff (N, i) |= ¬f( ˆ[d]β) iff (N, i) |= f( ˆ[d]¬β) (by the
definition of f).

Case α ≡ Xβ: We obtain: (M, i) |=d̂ Xβ iff (M, i + 1) |=d̂ β iff (N, i + 1) |=
f( ˆ[d]β) (by induction hypothesis) iff (N, i) |= Xf( ˆ[d]β) iff (N, i) |= f( ˆ[d]Xβ) (by the
definition of f).

Case α ≡ Gβ: We obtain: (M, i) |=d̂ Gβ iff ∀j ≥ i[(M, j) |=d̂ β] iff ∀j ≥
i[(N, j) |= f( ˆ[d]β)] (by induction hypothesis) iff (N, i) |= Gf( ˆ[d]β) iff (N, i) |=
f( ˆ[d]Gβ) (by the definition of f).
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Case α ≡ Fβ: Similar to Case α ≡ Gβ.
Case (α ≡ [b]β): (M, i) |=d̂ [b]β iff (M, i) |=d̂ ; b β (by Proposition 3.4) iff

(N, i) |= f([d̂ ; b]β) (by induction hypothesis) iff (N, i) |= f( ˆ[d][b]β) by the definition

of f .

Lemma 4.3 Let f be the mapping defined in Definition 4.1, and S be a non-empty
set of states. For any model N := (σ, I) of LTL, any satisfaction relation |= on

N , and any state si in σ, we can construct a sequence model M := (σ, {I d̂}d̂∈SE) of
SLTL and satisfaction relations |=d̂ (d̂ ∈ SE) on M such that for any formula α in
Ls,

(N, i) |= f( ˆ[d]α) iff (M, i) |=d̂ α.

Proof. Similar to the proof of Lemma 4.2.

Theorem 4.4 (Semantical embedding) Let f be the mapping defined in Defini-
tion 4.1. For any formula α, α is valid in SLTL iff f(α) is valid in LTL.

Proof. By Lemmas 4.2 and 4.3.

An expression f(Γ) denotes the result of replacing every occurrence of a formula
α in Γ by an occurrence of f(α).

Theorem 4.5 (Syntactical embedding) Let Γ and Δ be sets of formulas in Ls,
and f be the mapping defined in Definition 4.1. Then:

1. SLTω � Γ ⇒ Δ iff LTω � f(Γ) ⇒ f(Δ).

2. SLTω − (cut) � Γ ⇒ Δ iff LTω − (cut) � f(Γ) ⇒ f(Δ).

Proof. Since the case (2) can be obtained as the subproof of the case (1), we show
only (1) in the following. In the following proof, we assume that the total number

of X in � is i, and that the sequence which is obtained from � by deleting all X is ˆ[d].
• (=⇒) : By induction on the proofs P of Γ ⇒ Δ in SLTω. We distinguish the

cases according to the last inference of P , and show some cases.
Case (�p ⇒ �p): The last inference of P is of the form: �p ⇒ �p. In this case, we

obtain the required fact LTω � f(�p) ⇒ f(�p) since f(�p) coincides with Xipd̂ by the
definition of f .

Case (∧lefts): The last inference of P is of the form:

Γ ⇒ Δ, �α Γ ⇒ Δ, �β

Γ ⇒ Δ, �(α ∧ β)
(∧lefts).
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By induction hypothesis, we have: LTω � f(Γ) ⇒ f(Δ), f(�α) and LTω � f(Γ)

⇒ f(Δ), f(�β) where f(�α) and f(�β) respectively coincide with Xif( ˆ[d]α) and

Xif( ˆ[d]β) by the definition of f . Then, we obtain:

....
f(Γ) ⇒ f(Δ),Xif( ˆ[d]α)

....
f(Γ) ⇒ f(Δ),Xif( ˆ[d]β)

f(Γ) ⇒ f(Δ),Xi(f( ˆ[d]α) ∧ f( ˆ[d]β))
(∧left)

where Xi(f( ˆ[d]α) ∧ f( ˆ[d]β)) coincides with f(�(α ∧ β)) by the definition of f .
Case (Flefts): The last inference of P is of the form:

{ �Xjα,Γ ⇒ Δ }j∈ω
�Fα,Γ ⇒ Δ

(Flefts).

By induction hypothesis, we have: LTω � f(�Xjα), f(Γ) ⇒ f(Δ) for any j ∈ ω,

where f(�Xjα) coincides with Xi+jf( ˆ[d]α) by the definition of f . Then, we obtain:

....
{ Xi+jf( ˆ[d]α), f(Γ) ⇒ f(Δ) }j∈ω

XiFf( ˆ[d]α), f(Γ) ⇒ f(Δ)
(Fleft)

where XiFf( ˆ[d]α) coincides with f(�Fα) by the definition of f .
Case (;left): The last inference of P is of the form:

�[b][c]α,Γ ⇒ Δ

�[b ; c]α,Γ ⇒ Δ
(;left).

By induction hypothesis, we obtain: LTω � f(�[b][c]α), f(Γ) ⇒ f(Δ) where f(�[b][c]α)
coincides with f(�[b ; c]α) by the definition of f .

Case (Xleft): The last inference of P is of the form:

�[b]Xα,Γ ⇒ Δ

�X[b]α,Γ ⇒ Δ
(Xleft).

By induction hypothesis, we obtain: LTω � f(�[b]Xα), f(Γ) ⇒ f(Δ) where f(�[b]Xα)
coincides with f(�X[b]α) by the definition of f .

• (⇐=) : By induction on the proofs Q of f(Γ) ⇒ f(Δ) in LTω. We distinguish
the cases according to the last inference of Q, and show only the following cases.

Case (cut): The last inference of Q is of the form:

f(Γ1) ⇒ f(Δ1), β β, f(Γ2) ⇒ f(Δ2)

f(Γ1), f(Γ2) ⇒ f(Δ1), f(Δ2)
(cut).

Since β is in L, we have the fact β = f(β). This fact can be shown by induction
on β. Then, by induction hypothesis, we have: SLTω � Γ1 ⇒ Δ1, β and SLTω �
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β,Γ2 ⇒ Δ2. We then obtain the required fact: SLTω � Γ1,Γ2 ⇒ Δ1,Δ2 by using
(cut) in SLTω.

Case (Gleft): The last inference of Q is of the form:

Xj+kf(�α), f(Γ) ⇒ f(Δ)

XjGf(�α), f(Γ) ⇒ f(Δ)
(Gleft)

where Xj+kf(�α) and XjGf(�α) respectively coincide with f(�Xj+kα) and f(�XjGα)
by the definition of f . By induction hypothesis, we have: SLTω � �Xj+kα,Γ ⇒ Δ,
and hence obtain the required fact:

....
�Xj+kα,Γ ⇒ Δ

�XjGα,Γ ⇒ Δ
(Glefts).

Theorem 4.6 (Cut-elimination) The rule (cut) is admissible in cut-free SLTω.

Proof. Suppose SLTω � Γ ⇒ Δ. Then, we have LTω � f(Γ) ⇒ f(Δ) by Theorem
4.5 (1), and hence LTω − (cut) � f(Γ) ⇒ f(Δ) by the cut-elimination theorem for

LTω. By Theorem 4.5 (2), we obtain SLTω − (cut) � Γ ⇒ Δ.

Remark that in order to obtain Theorem 4.6, it is sufficient to prove the following
restricted statements of Theorem 4.5:

1. if SLTω � Γ ⇒ Δ, then LTω � f(Γ) ⇒ f(Δ).

2. if LTω − (cut) � f(Γ) ⇒ f(Δ), then SLTω − (cut) � Γ ⇒ Δ.

To show the second statement, we do not need to prove the case for (cut) as in
Theorem 4.5. By these restricted statements and the cut-elimination theorem for
SLTω, we can show Theorem 4.5 again.

Theorem 4.7 (Completeness) For any formula α, SLTω � ⇒ α iff α is valid in
SLTL.

Proof. SLTω � ⇒ α iff LTω � ⇒ f(α) (by Theorem 4.5) iff f(α) is valid in LTL

(by the completeness theorem for LTL) iff α is valid in SLTL (by Theorem 4.4).

Theorem 4.8 (Complexity) SLTL is PSPACE-complete.

Proof. (Propositional) LTL (without until operator) is known to be PSPACE-
complete [9]. By decidability of LTL, for each α, it is possible to decide if f(α) is
valid in LTL. Then, by Theorem 4.4, SLTL is decidable. Since f is a polynomial-time
reduction, SLTL is also PSPACE-complete.
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5 Conclusions

The new logic, SLTL, was obtained semantically from LTL by adding a sequence
modal operator [b] that can appropriately represent sequential information. Gentzen-
type sequent calculus SLTω for SLTL was constructed. The semantical and syntac-
tical embedding theorems were proved. By using these embedding theorems, the
cut-elimination and completeness theorems for SLTω were proved. SLTL is also
shown to be PSPACE-complete. As an application of SLTω, some specifications
of secure authentication systems were proposed. It was thus shown in this paper
that SLTω provides a good proof theory for temporal reasoning with sequential
information, and that SLTω is useful for specifying and verifying secure password
authentication systems.
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