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ABSTRACT
Description logics (DLs) theoretically explore knowledge
representation and its reasoning in concept languages.
However, due to the concept-oriented notion, these logics
are not equipped with rule-based reasoning mechanisms for
assertional knowledge bases; specifically, rules and facts
in logic programming, or the interaction of rules and facts
with terminology. In order to deal with the enriched reason-
ing, this paper presents a hybrid reasoning system for com-
bining DL-knowledge bases (TBox and ABox) and first-
order clause sets. The main result of this study is that a
sound and completeresolution method for the composed
knowledge bases is designed, and it has the feature of an
effective deduction procedure such as Robinson’s resolu-
tion principle.

KEY WORDS
Logic Programming, Knowledge Representation, Rule-
based Reasoning

1 Introduction

Description logics are a theoretical foundation of knowl-
edge representation and its reasoning in concept languages.
Standard reasoning tasks in description logics are to de-
cide satisfiability and subsumption of DL-concepts [3]. For
many description logics, the tasks can be completely de-
termined by applying tableau-like algorithms [8, 2]. On
the other hand, for practical purposes of knowledge bases
there is reasoning from rules and facts in logic program-
ming [12] together with terminological knowledge. Thus, it
is required that the reasoning algorithm deals with not only
DL-knowledge bases but also clause sets in first-order logic
(being able to represent rules and facts). To treat the issue,
logic programming languages combining Horn clauses and
description logics were proposed in [11, 5].

However, the combination with description logics is
limited where concept and role names (corresponding to
unary and binary predicates) do not appear in the head
of each Horn clause. Namely, in Horn clauses with DL-
concepts:

p1(�t1), . . . , pn(�tn) → q(�t),

the predicatesp1, . . . , pn are either concept names, role
names or ordinary predicates (n-ary predicates), but the

predicateq must be an ordinary predicate. This limita-
tion avoids occurring negative expressions or disjunctive
expressions in the head, but we cannot completely obtain
the expressivity of combining logic programming and de-
scription logics. For example, consider the following Horn
clauses (facts and a rule):

→ acted(John,Mary, e1)
→ died(Mary, e2)
→ after(e2, e1)

acted(x, y, z1), died(y, z2), after(z2, z1),
Human(x), Human(y) → killed(x, y)

where acted, died and after are ordinary predicates,
Human is a concept name (as a unary predicate) and
killed is a role name (as a binary predicate). This rule
means “if a humanx acted against a humany at z1 and
the humany died atz2 afterz1, then the fact thatx killed y
is concluded.” In addition to them, consider the following
equations of DL-concepts:

Murderer ≡ ∃killed.Human � Human
Human ≡ Male � Female

whereMurderer, Human, Male andFemale are con-
cept names andkilled is a role name. These equations indi-
cate “murderers are humans who have killed humans” and
“humans are male or female.” For the two kinds of logical
form, if the headkilled(t1, t2) as a role assertion is derived
from the rule, the concept equations implyHuman(t2)
and thereforeMale � Female(t2) holds. However, the
disjunctive assertionMale � Female(t2) exceeds the ex-
pressivity of Horn clauses1.

In order to remedy the insufficient combination of
logic programming and description logics, we need to em-
bedgeneral clauses and DL-concepts into a rule-based rea-
soning system. Resolution proof systems [13] for clausal
forms in first-order logic have been generally used as rule-
based reasoning methods for knowledge bases, e.g., logic
programming is representative of them. As an unusual ap-
proach, a resolution system for description logics was pro-
posed by Areces et.al. [1], based on the modal resolution
system [6]2.

1In Section 3.3, we will consider such expressions derived from a
knowledge base where concept and role names can be used in the head
of each Horn clause, which are forbidden in [11, 5].

2Moreover, a resolution system for non-classical logics was developed
by Gabbay and Reyle [7].
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In this paper, we present a hybrid resolution system
for combining (i) knowledge bases consisting of the TBox
and ABox in the description logicALC and (ii) clause sets
in first-order logic. To make it easily resolve both ABox-
statements and first-order clauses, we introduce a clausal
form of DL-concepts (which we will call clausal concepts)
and compose this form and first-order clauses. We gener-
alize a resolution method by incorporating the following
resolution rules:

1. resolution principle and assertional rules for the com-
position of first-order clauses and ABox-statements of
clausal concepts

2. taxonomic rules for concept definitions of clausal con-
cepts (as TBox-statements)

and unification for first-order terms in assertions of clausal
concepts andn-ary predicates. Technically, the important
point is that each resolution rule must be designed so as
to refute clauses composed from DL-assertions and first-
order clauses (called extended clauses); namely, its resolu-
tion step deletes an inconsistent pair(E,¬E) of literals in
extended clauses.

2 Combining DL and First-order Clauses

2.1 Description Logic ALC

A concept language in the basic description logicALC [14]
contains the setC of concept namesA, the setR of role
namesR, and the setI of individual namesa, b. The con-
cepts inALC (calledALC-concepts) are constructed by
concept namesA, role namesR, the connectives¬,�,�,
and the universal and existential quantifiers∀,∃.

Definition 2.1 The set of ALC-concepts C,D is defined
inductively by the following:

C,D −→ A | ¬C | C � D | C � D |∀R.C | ∃R.C

Let Male be a concept name, and lethas-child be a
role name. Then, for instance, theALC-concept∃has-
child.Male represents “individuals who have sons.”

The meaning ofALC-concepts are formally given by
an interpretation in the following definition.

Definition 2.2 A DL-interpretation is an ordered pair I =
(∆I , ·I) of a non-empty set ∆I (called the universe of I)
and an interpretation function ·I for C∪R∪I where AI ⊆
∆I (in particular, ⊥I = ∅ and �I = ∆I ), RI ⊆ ∆I ×
∆I and aI ∈ ∆I . The DL-interpretation I is expanded
to ALC-concepts including connectives and quantifiers as
follows:

(¬C)I = ∆I − CI

(C � D)I = CI ∩ DI

(C � D)I = CI ∪ DI

(∀R.C)I = {d1 ∈ ∆I | ∀d2[(d1, d2) ∈ RI → d2 ∈ CI]}
(∃R.C)I = {d1 ∈ ∆I | ∃d2[(d1, d2) ∈ RI ∧ d2 ∈ CI ]}

This interpretation will be used to define the semantics of a
first-order language with concept and role names.

2.2 First-order clauses with Concept and
Role Names

Description logics do not deal with reasoning for factsA
and rulesB1, . . . , Bn → B, where eachA, Bi and B
are atomic formulas, as in logic programming. We em-
ploy general clausal forms (not restricted to Horn clauses)
in first-order logic to be embedded in knowledge base rea-
soning for description logics. For the compatibility with
concept languages, concept names and role names inALC
are respectively used to denote unary predicates and binary
predicates in a first-order languageL, including ordinary
n-ary predicate names. Hence, the languageL includes the
setP of n-ary predicate namesp with C ∪R ⊆ P, the set
F of n-ary function namesf , the setI of individual names
a, b (as constant names) and the setV of variablesx, y.
The set of termst is defined inductively by: (i) individual
names and variables are terms, and (ii) iff is ann-ary func-
tion name andt1, . . . , tn are terms, thenf(t1, . . . , tn) is a
term.

Definition 2.3 The set of formulas (in language L) is de-
fined inductively by the following:

1. If p ∈ P is an n-ary predicate name and t1, . . . , tn
are terms, then p(t1, . . . , tn) is an atomic formula
(simply called atom).

2. If l1, . . . , ln, l′1, . . . , l′m are atomic formulas, then
l1, . . . , ln → l′1, . . . , l′m is a clausal form. In par-
ticular, it is called the empty clause if n = m = 0.

∀F is the universal closure ofF , i.e.,∀x1 · · · ∀xnF where
x1, . . . , xn are all the free variables occurring inF . So
l1, . . . , ln → l′1, . . . , l′m expresses the universal closure
∀(¬l1 ∨ · · · ∨ ¬ln ∨ l′1 ∨ · · · ∨ l′m) in first-order logic. Let
E be an expression.V ar(E) denotes the set of free vari-
ables occurring inE. A substitution is a mappingθ from a
finite subset ofV into the set of terms such thatθ(x) �= x.
The substitution is expanded to terms and formulas in the
usual way of first-order logic. A substitutionθ to variables
occurring inE is denoted byEθ (called an instance ofE).
An expressionE is ground if it is without variables. Let
E1, E2 be expressions. A substitutionθ is a unifier forE1

andE2 if E1θ = E2θ. A most general unifier forE1 and
E2 is expressed bymgu(E1, E2).

2.3 Extended Knowledge Bases

We define a knowledge base consisting of the TBox and
ABox and a clause set. LetA be a concept name andC,D
beALC-concepts. A TBoxT is a set of TBox-statements
of the formC ≡ D. Note that we use TBoxes that are
acyclic and sets of concept definitions of the formA ≡ C.
Let a, b be individual names andR be a role name. An

2



ABox A is a set of ABox-statements of the formsC(a),
R(a, b). Normally, a DL-knowledge base is defined as an
ordered pair(T ,A) of a TBox T and an ABoxA. We
extend it to an ordered tupleKB = (T ,A,P) by attaching
a clause setP. TBox- and ABox-statements and clausal
forms are generally called knowledge base statements. A
knowledge baseKB is said to be ground if all the clausal
forms inKB are ground.

We here interpret first-order formulas including con-
cept and role names and variables. A DL-interpretationI
is extended withpI ⊆ (∆I)n for every n-ary predicate
p ∈ P andfI : (∆I)n → ∆I for everyn-ary function
f ∈ F. A variable assignment is a mappingα from the
setV of variables into the universe∆I . The variable as-
signmentα[x/d] denotes(α−{(x, α(x))})∪{(x, d)}. An
interpretation of a first-order languageL with concept and
role names (called an FL-interpretation) is an ordered pair
Iα = (I, α) whereI is a DL-interpretation extended with
pI ⊆ (∆I)n andfI : (∆I)n → ∆I andα is a variable
assignment. The interpretationtIα of termst is defined by:
(i) xIα = α(x) andaIα = aI , and (ii) (f(t1, . . . , tn))Iα

= fI(tIα
1 , . . . , tIα

n ). The satisfiability relation for knowl-
edge base statements is given by the following definition.

Definition 2.4 Let Iα = (I, α) be an FL-interpretation
and E be a knowledge base statement. The satisfiability
relation Iα |= E is defined as follows:

1. Iα |= A ≡ C iff AI = CI

2. Iα |= C(a) iff aI ∈ CI

3. Iα |= R(a, b) iff (aI , bI) ∈ RI

4. Iα |= p(t1, . . . , tn) iff (tIα
1 , . . . , tIα

n ) ∈ pI

5. Iα |= l1, . . . , ln → l′1, . . . , l′m iff Iα |= ∀(¬l1∨ · · · ∨
¬ln ∨ l′1 ∨ · · · ∨ l′m)

The satisfiabilityIα |= ∀(¬l1 ∨ · · · ∨ ¬ln ∨ l′1 ∨ · · · ∨ l′m)
is obtained in the usual semantics of first-order logic. An
FL-interpretationIα satisfies a knowledge baseKB (de-
notedIα |= KB) if Iα satisfies all the elements inKB =
(T ,A,P). A knowledge base statementE (resp. a knowl-
edge baseKB) is satisfiable if, for someIα, Iα |= E (resp.
Iα |= KB). Otherwise,E (resp.KB) is unsatisfiable. A
knowledge base statementE is a consequence ofKB (de-
notedKB |= E) if every model ofKB is a model ofE.

3 Hybrid Resolution

In this section, we develop a hybrid resolution system for
extended knowledge basesKB = (T ,A,P). By trans-
formingALC-concepts into a kind of clausal form ofALC-
concepts, this resolution system can be applied to both
ALC-concepts and first-order clauses inKB.

3.1 Clausal Concepts

We simplify the form ofALC-concepts by the following
operations. LetKB = (T ,A,P) be a knowledge base.
First of all, we eliminate the symbols¬¬,�,∃ from ALC-
concepts in the TBoxT and ABoxA. Any concept is trans-
formed into an equivalent concept by applying the rewrite
rules3:

¬¬C ≡ C

C � D ≡ ¬(¬C � ¬D)
∃R.C ≡ ¬∀R.¬C

If a left-hand side form occurs in concepts ofT or A, then
it is transformed to its right-hand side form. This transfor-
mation is applied to all the elements inT , A, and therefore
T ′, A′ without¬¬,�,∃ are derived.
Notations. L denotes a concept nameA or its negation
¬A, andQ represents∀R or ¬∀R. L is ¬A if L = A, orA
if L = ¬A. Q.L or L is called aliteral concept, written as
Q∗.L.

Next, concepts in the TBoxT ′ and ABoxA′ derived
above are further transformed by the two operations. First,
if a conceptE contains a concept of the form¬(C �D) or
∀R.(C � D), thenA ≡ C � D (whereA is a new concept
name) is added toT ′, andC �D (in E) is replaced withA.
Secondly, if a conceptE includes an expression of the form
Q1.Q2.C, thenA ≡ Q2.C is added toT ′, andQ2.C (in E)
is transformed toA. Repeating these operations results in
a concept of the form:

Q∗
1.L1 � · · · � Q∗

n.Ln.

We call this simplified concept aclausal concept. For ex-
ample,¬∀has-child.¬Female � ∀has-child.F emale �
Human is a clausal concept. Then, we obtainT ′′,A′′

by transforming all the elements inT ′,A′ to equivalent
clausal concepts.

Lemma 3.1 Let I be a DL-interpretation. Let C ′ be a
clausal concept transformed from a concept C and let
A1 ≡ C1, . . . , An ≡ Cn(n ≥ 0) be the TBox-statements
added by the transformation where each Ai is a new con-
cept name. Then, there exists a DL-interpretation I ′ that
is an extension of I to interpret A1, . . . , An, and (C ′)I

′
=

CI and AI′
1 = CI′

1 , . . . , AI′
n = CI′

n .

By this lemma, if a knowledge baseKB = (T ,A,P) is
satisfiable, then also the equivalent knowledge baseKB′ =
(T ′′,A′′,P) obtained by transformingT ,A is satisfiable.

3.2 Hybrid Resolution System

Our hybrid resolution system contains three kinds of infer-
ence rules: resolution principle, taxonomic rules and asser-
tional rules. We construct resolution rules that can be ap-
plied to TBox- and ABox-statements of clausal concepts,
first-order clauses and their composed expressions.

3In [1], ¬¬,�,∃ are removed from concepts. The transformation in
this paper is adjusted to obtain compatible expressions with clausal forms.
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In resolution steps, we express clausal forms as sets
of literals, and ABox-statements of clausal concepts as sets
of assertions of literal concepts. Given a clausal form
l1, . . . , ln → l′1, . . . , l′m, the set of the literals (called
a clause) is {¬l1, . . . ,¬ln, l′1, . . . , l′m}. For an ABox-
statementQ∗

1.L1 � · · · � Q∗
n.Ln(a) of a clausal concept,

we have the set{Q∗
1.L1(a), · · · , Q∗

n.Ln(a)} of assertions
of the literal concepts. Note that applying hybrid resolution
rules to sets of literals and sets of assertions of literal con-
cepts leads to an expression as composed of these sets. Let
P +

i be a concept of the form∀R.A, ∀R.¬A or A, a role
nameR or ann-ary predicatep, and let�t be a sequence of
termst1, . . . , tk. The compositional expression is a set of
extended literals, called anextended clause:

{P +
1 (�t1), . . . , P +

n (�tn),¬P +
n+1(�tn+1), . . . ,¬P +

m(�tm)}.

This is allowed to include an expressive assertionQ∗.L(t)
of a literal conceptQ∗.L where t is a first-order term.
Since the extended clauses exceed the expressivity of or-
dinary clausal forms, an additional definition of the satis-
fiability is needed. The satisfiability of extended clauses
Φ = {P +

1 (�t1), . . . , P +
n (�tn), ¬P +

n+1(�tn+1), . . . , P +
m(�tm)}

is defined as follows:

1. Iα |= P +
i (�ti) iff (�ti)Iα ∈ (P +

i )I .

2. Iα |= ¬P +
i (�ti) iff Iα �|= P +

i (�ti).

3. Iα |= Φ with V ar(Φ) = {x1, . . . , xk} iff for all d1,
. . . , dk ∈ ∆I , {E ∈ Φ | Iα′ |= E} �= ∅ with α′ =
α[x1/d1] · · · [xk/dk].

We proceed to the definition of hybrid resolution
rules. The first rule is an extension of the resolution princi-
ple to extended clauses.

Definition 3.1 (Resolution principle) Let Φ1,Φ2 be ex-
tended clauses. The resolution principle for knowledge
bases is given as follows:

Φ1 ∪ {¬P +(�t)} {P +(�t′)} ∪ Φ2

(Φ1 ∪ Φ2)θ
(res)

where θ = mgu(�t, �t′).

Notations. LetΨ be a clausal conceptQ∗
1.L1�· · ·�Q∗

n.Ln.
Ψ(t) expresses the sequence of assertionsQ∗

1.L1(t), . . . ,
Q∗

n.Ln(t) of the literal concepts inΨ. We writeLA for the
concept nameA or its negation¬A. δ(E) denotesE0 if
E = ¬¬E0, or E otherwise. The functionN(E) is 0 if the
number of negation symbols (¬) in E is even, or1 if it is
odd. Moreover, we have the following convenient notation:

{¬RQ(t, t′)} =

{
{¬R(t, t′)} if Q = ∀R

∅ otherwise

Next, we introduce taxonomic rules with regard to
TBox-statements.

Definition 3.2 (Taxonomic rules) Let Φ be an extended
clause and Ψ be a clausal concept. The taxonomic rules
for knowledge bases are given as follows:

Φ ∪ {¬A(t)} A ≡ Q∗.L � Ψ
Φ ∪ {δ(¬Q∗.L)(t)} (T1)

Φ ∪ {A(t)} A ≡ Q∗.L � Ψ
Φ ∪ {Q∗.L(t), Ψ(t)} (T2)

Φ ∪ {Q1.LA(t)} A ≡ Q∗
2.L2 � Ψ

Φ ∪ {δ(¬Q∗
2.L2)(t′)} ∪ {¬RQ1(t, t

′)} (T3)

where N(Q1.LA) = 1, and t′ = x (new variable) if Q1 =
∀R and t′ = c (new constant) otherwise.

Φ ∪ {Q1.LA(t)} A ≡ Q∗
2.L2 � Ψ

Φ ∪ {Q∗
2.L2(t′),Ψ(t′)} ∪ {¬RQ1(t, t

′)} (T4)

where N(Q1.LA) = 0, and t′ = x (new variable) if Q1 =
∀R and t′ = c (new constant) otherwise.

In the hybrid resolution system, assertions of literal
concepts in extended clauses are refuted by the following
assertional rules .

Definition 3.3 (Assertional rules) Let Φ1,Φ2 be extended
clauses. The assertional rules for knowledge bases are
given as follows:

Φ1 ∪ {∀R.LA(t1)} {LA(t2)} ∪ Φ2

Φ1 ∪ Φ2 ∪ {¬R(t1, t2)}
(A1)

Φ1 ∪ {¬∀R.LA(t)} {LA(x)} ∪ Φ2

(Φ1 ∪ Φ2)θ
(A2)

where c is a new constant and θ = {x/c}.

Φ1 ∪ {∀R1.LA(t1)} {Q2.L
′
A(t2)} ∪ Φ2

Φ1 ∪ Φ2 ∪ {¬R1(t1, t)} ∪ {¬RQ2(t2, t)}
(A3)

where N(∀R1.LA) �= N(Q2.L
′
A), and t = x (new variab-

le) if Q2 = ∀R and t = c (new constant) otherwise.

Φ1 ∪ {¬∀R.L(t1)} {¬R(t2, t)} ∪ Φ2

(Φ1 ∪ Φ2)θ
(A4)

where c is a new constant or the constant introduced by an
application of (T3), (T4), (A2) or (A3) with its premise
Φ1 ∪ {¬∀R.L(t1)}, and θ is a mgu of (t1, c) and (t2, t).

In the form
E1 E2

E of hybrid resolution rules,E1, E2 are
called the premises, andE the conclusion. We assume
that the premisesE1, E2 do not have the same variables,
i.e., V ar(E1) ∩ V ar(E2) = ∅. Compared with the DL-
resolution system [1], our hybrid resolution system is ex-
tended to enhance resolution for (i) assertions of clausal
concepts (in(A1), . . . , (A4) and (res)), (ii) TBox- and
ABox-statements (in(T1), . . . ,(T 4)) and (iii) extended
clauses represented by clausal concepts,n-ary predicates
and first-order terms (in(res)), and with unification for
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first-order terms. The resolution principle(res) contains
resolution for positive and negative literals and can be
applied to ABox-statements of clausal concepts and role
names. In [1], concept definitions in the TBox are unfolded
in the ABox beforehand. In our case, the taxonomic rules
(T1), . . . ,(T 4) generate inferences from concept defini-
tionsA ≡ C in the TBox and assertionsLA(t) or Q.LA(t)
of the defined concept namesA in extended clauses. The
assertional rules(A1), . . . , (A3) eliminate an inconsistent
pair (A,¬A) of a concept nameA and its negation¬A in
the premises. The assertional rule(A4) is a resolution rule
for a negative assertion¬R(t1, t2) of a role nameR and
assertions of the form¬∀R.L(t1).

Definition 3.4 (Resolution) Let KB be a knowledge base
and E be a knowledge base statement. The derivability
relation KB � E is defined by the following:

1. If E ∈ KB, then KB � E.

2. If KB � E1 and KB � E2 where E1, E2 are
premises and E is the conclusion in a hybrid reso-
lution rule, then KB � E.

A derivation ofE from KB is called a refutation ifE = ∅.
A knowledge baseKB is refutable if we have a refutation
KB � ∅.

3.3 An Example of Refutation

We show an example of refutation by applying the hybrid
resolution system. Consider the first-order language with

C = { Murderer, Human,Male, F emale }
R = { killed }
P = C ∪R ∪ { acted, died, after }
F = ∅
I = { John,Mary, e1, e2 }

and the two knowledge basesKB1 = (T1,A1,P1) and
KB2 = (T1,A2,P1) with

TBox T1 = { Murderer ≡ ∃killed.Human � Human,
Human ≡ Male � Female }

ABox A1 = { Male(John), Female(Mary) }
ABox A2 = { Human(John), Human(Mary) }
Clause setP1 = { → acted(John,Mary, e1),

→ died(Mary, e2),
→ after(e2, e1),

acted(x, y, z1), died(y, z2), after(z2, z1),
Human(x), Human(y) → killed(x, y) }

In the TBoxT1, the concept nameMurderer is defined
by the concept∃killed. Human � Human, and the con-
cept nameHuman is defined by the disjunctive concept
Male � Female. The ABoxA1 asserts that John is male
and Mary is female, and the ABoxA2 expresses the fact
that John and Mary are humans. In the clause setP1, three
facts and a rule are described. Notice that this rule is not

expressible in the logic programming languages combining
with description logics [11, 5], since the role namekilled
occurs in the head of the rule.

We consider reasoning to answer the following query
in the knowledge basesKB1, KB2.

?-Murderer(x).

which means “is there a murdererx?” Before applying hy-
brid resolution rules, we remove the connectives�,∃,¬¬
from the TBoxT1. Consequently, the following TBox is
obtained.

TBox T ′
1 = { Human ≡ Male � Female,

Murderer ≡ ¬(∀killed.¬Human � ¬Human) }

Moreover, the concepts in the TBoxT ′
1 are transformed to

equivalent clausal concepts as follows:

TBox T ′′
1 = { Murderer ≡ ¬A1, A1 ≡ A2 � A3,

A2 ≡ ∀killed.¬Human, A3 ≡ ¬Human,
Human ≡ Male � Female }

The ABox-statements inA1,A2 and the clausal forms in
P1 are transformed into sets of assertions of literal concepts
and sets of literals as follows:

ABox A′
1 = { {Male(John)}, {Female(Mary)} }

ABox A′
2 = { {Human(John)}, {Human(Mary)} }

Clause setP ′
1 = { {acted(John,Mary, e1)},

{died(Mary, e2)}, {after(e2, e1)},
{¬acted(x, y, z1),¬died(y, z2),¬after(z2, z1),

¬Human(x),¬Human(y), killed(x, y)} }

The answer to the query?-Murderer(x) in the
clause setP ′

1 is decided by refutation forP ′
1 ∪ {G} with

G = {¬Murderer(x)}. In Figure 1, (3) and (4) show
derivation processes forKB′

1∪{G} = (T ′′
1 ,A′

1,P ′
1∪{G})

andKB′
2 ∪ {G} = (T ′′

1 ,A′
2,P ′

1 ∪ {G}). These determine
whether there exists a termt and whetherMurderer(t) is
valid in the knowledge basesKB′

1 = (T ′′
1 ,A′

1,P ′
1) and

KB′
2 = (T ′′

1 ,A′
2,P ′

1). In both cases, we can conclude that
Murderer(John) is true since the empty clause is derived
with the substitutionθ = {x/John}, i.e.,KB′

1 ∪ {G} and
KB′

2 ∪ {G} are refutable.

Theorem 3.1 (Completeness of resolution) Let KB be a
knowledge base. KB is unsatisfiable if and only if KB is
refutable (KB � ∅).

Due to the limitations of space, the proof of the theorem
has been omitted. The completeness of resolution can be
proved by the construction of a tree model for each knowl-
edge base [6], the completeness of unrestricted resolution
and ground resolution, and the lifting lemma [4, 9].

5



(1)

{aft(e2, e1)}
{act(x, M, e1)}

{die(M,e2)} {¬act(x, y, z1),¬die(y, z2),¬aft(z2, z1),¬Hum(x),¬Hum(y), kil(x, y)}
{¬act(x, M, e1),¬aft(z2, e1),¬Hum(x),¬Hum(M), kil(x, M)} (res)

{kil(J,M),¬aft(e2, e1),¬Hum(J),¬Hum(M)} (res)

{kil(J,M),¬Hum(J),¬Hum(M)} (res)

{Fem(M)}
{Mal(J)}

Hum ≡ Mal � Fem

Hum ≡ Mal � Fem {kil(J,M),¬Mal(J),¬Hum(M)}
{kil(J,M),¬Mal(J),¬Hum(M)} (T1)

{kil(J,M),¬Mal(J),¬Fem(M)} (T1)

{kil(J,M),¬Fem(M)} (res)

{kil(J, M)} (res)

(2) {¬Mur(x)} Mur ≡ ¬A1

{A1(x)} (T1)
A1 ≡ A2 � A3

{A2(x), A3(x)} (T2)
A2 ≡ ∀kil.¬Hum

{∀kil.¬Hum(x), A3(x)} (T2)
A3 ≡ ¬Hum

{∀kil.¬Hum(x),¬Hum(x)} (T2)

(3) (2)
....

{∀kil.¬Hum(x),¬Hum(x)} Hum ≡ Mal � Fem

{¬Fem(v),¬kil(x, v),¬Hum(x)} (T2)

(1)
....

{kil(J, M)}
{¬Fem(M),¬Hum(J)} (T1) {Fem(M)}

{¬Hum(J)} (res)

....
∅

(4) (2)
....

{∀kil.¬Hum(x),¬Hum(x)} {Hum(M)}
{¬kil(x,M),¬Hum(x)} (A1)

(1)
....

{kil(J,M)}
{¬Hum(J)} (res){Hum(J)}

∅ (res)

Figure 1. Refutation from a knowledge base

4 Conclusion

We have presented a rule-based reasoning system as an
extension of the DL-resolution system [1] where DL-
knowledge bases and first-order clause sets are combined.
From the viewpoint of knowledge representation, the ex-
tended knowledge bases can treat practical and general data
as follows:

• Facts and ABox-statements represent assertional
knowledge in a context (or a concrete situation).

• Rules are taken as general knowledge in a particular
application domain.

• TBox-statements express terminological knowledge
commonly employed in many application domains.

We have designed aproper resolution method for
capturing the two kinds of logical form in the DLALC

and logic programming. A resolution rule is called proper
if its two premises are composed into one conclusion by
deleting an inconsistent pair(E,¬E) of literals. Hence,
we have obtained proper hybrid resolution rules, whereas
some of the inference rules in the DL-resolution system [1]
were not proper. Although we have not discussed the
computation of our reasoning system, the proper resolu-
tion method can be expected to provide an effective de-
duction procedure. For example, consider the inconsis-
tency of the assertions:¬∀R1.¬A1(t1), ∀R1.¬A1(t1),
∀R2.A4(t2), ¬∀R2.¬A2(t2) ∨ ¬∀R2.¬A3(t2). As shown
in Figure 2, the inconsistency can be derived in two res-
olution steps because proper resolution rules are applied
only to clauses including an inconsistent pair of literals.
However, tableau-like reasoning (as the standard DL rea-
soning method) needs nine steps in the worst case since
redundant steps are derived. Alternatively, Kaneiwa and
Tojo [10] proposed a resolution system with complex sort
expressions, but its language was not able to represent and
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resolution:

¬∀R1.¬A1(t1) ∀R1.¬A1(t1)

¬R1(t1, c) ¬∀R1.¬A1(t1)

∅

tableau-like reasoning:

¬∀R2.¬A2(t2) ∨ ¬∀R2.¬A3(t2)}

S3 = S2 ∪ {R2(t2, c1), A2(c1)}

(A3)

(A4)

S4 = S3 ∪ {A4(c1)}

S5 = S4 ∪ {R1(t1, c2), A1(c2)}

S6 = S5 ∪ {¬A1(c2)}

S′
3 = S2 ∪ {R2(t2, c3), A3(c3)}

S′
4 = S′

3 ∪ {A4(c3)}

S′
5 = S′

4 ∪ {R1(t1, c3), A1(c3)}

S′
6 = S′

5 ∪ {¬A1(c3)}

S1 = {¬∀R1.¬A1(t1),∀R1.¬A1(t1),∀R2.A4(t2),

S2 = S1 ∪ {¬∀R2.¬A2(t2)} S′
2 = S1 ∪ {¬∀R2.¬A3(t2)}

Figure 2. Comparison between resolution and tableau-like reasoning

reason with respect to DL-concepts.
This study leads to a further extension of rule-based

reasoning with terminology, by using other approaches in
logic programming and automated reasoning (e.g. typed
logic programming, nonmonotonic reasoning, etc.). Fur-
thermore, we now plan to formalize the combination of
first-order clauses and other description logics, such as sub-
languages ofALC (e.g.AL, ALU ) and superlanguages of
ALC (e.g.ALCN [8], ALCQI).
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