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ABSTRACT

Description logics (DLs) theoretically explore knowledge
representation and its reasoning in concept languages.
However, due to the concept-oriented notion, these logics
are not equipped with rule-based reasoning mechanisms for
assertional knowledge bases; specifically, rules and facts
in logic programming, or the interaction of rules and facts
with terminology. In order to deal with the enriched reason-
ing, this paper presents a hybrid reasoning system for com-
bining DL-knowledge bases (TBox and ABox) and first-
order clause sets. The main result of this study is that a
sound and completeesolution method for the composed
knowledge bases is designed, and it has the feature of an
effective deduction procedure such as Robinson’s resolu-
tion principle.

KEY WORDS
Logic Programming, Knowledge Representation, Rule-
based Reasoning

1 Introduction

Description logics are a theoretical foundation of knowl-

edge representation and its reasoning in concept languages.

Standard reasoning tasks in description logics are to de-
cide satisfiability and subsumption of DL-concepts [3]. For
many description logics, the tasks can be completely de-
termined by applying tableau-like algorithms [8, 2]. On
the other hand, for practical purposes of knowledge bases
there is reasoning from rules and facts in logic program-
ming [12] together with terminological knowledge. Thus, it

is required that the reasoning algorithm deals with not only
DL-knowledge bases but also clause sets in first-order logic
(being able to represent rules and facts). To treat the issue,
logic programming languages combining Horn clauses and
description logics were proposed in [11, 5].

However, the combination with description logics is
limited where concept and role names (corresponding to
unary and binary predicates) do not appear in the head
of each Horn clause. Namely, in Horn clauses with DL-
concepts:

7p7l(t:l) - Q(ﬂy

the predicate®.,... ,p, are either concept names, role
names or ordinary predicates-ary predicates), but the

pl(t_{), e

predicateq must be an ordinary predicate. This limita-
tion avoids occurring negative expressions or disjunctive
expressions in the head, but we cannot completely obtain
the expressivity of combining logic programming and de-
scription logics. For example, consider the following Horn
clauses (facts and a rule):

— acted(John, Mary, e;)
— died(Mary, es)
— after(ez, e1)

acted(x, Y, Zl)v dzed(y, Z?)a after(ZQ, Zl)v
Human(z), Human(y) — killed(z,y)

where acted, died and after are ordinary predicates,
Human is a concept name (as a unary predicate) and
killed is a role name (as a binary predicate). This rule
means “if a human: acted against a humanat z; and

the humary died atz, afterz;, then the fact that killed y

is concluded.” In addition to them, consider the following
equations of DL-concepts:

Murderer = 3killed. Human M Human
Human = Male U Female

where Murderer, Human, Male and Female are con-
cept names anklilled is a role name. These equations indi-
cate “murderers are humans who have killed humans” and
“humans are male or female.” For the two kinds of logical
form, if the headkilled(t1,t2) as a role assertion is derived
from the rule, the concept equations imptuman(tz)
and thereforeMale LI Female(t2) holds. However, the
disjunctive assertiod/ale LI Female(t2) exceeds the ex-
pressivity of Horn clausés
In order to remedy the insufficient combination of

logic programming and description logics, we need to em-
bedgeneral clauses and DL-concepts into a rule-based rea-
soning system. Resolution proof systems [13] for clausal
forms in first-order logic have been generally used as rule-
based reasoning methods for knowledge bases, e.g., logic
programming is representative of them. As an unusual ap-
proach, a resolution system for description logics was pro-
posed by Areces et.al. [1], based on the modal resolution
system [67.

1In Section 3.3, we will consider such expressions derived from a
knowledge base where concept and role names can be used in the head
of each Horn clause, which are forbidden in [11, 5].

2Moreover, a resolution system for non-classical logics was developed
by Gabbay and Reyle [7].




In this paper, we present a hybrid resolution system
for combining (i) knowledge bases consisting of the TBox
and ABox in the description logiglLC and (ii) clause sets
in first-order logic. To make it easily resolve both ABox-
statements and first-order clauses, we introduce a clausal
form of DL-concepts (which we will call clausal concepts)
and compose this form and first-order clauses. We gener-
alize a resolution method by incorporating the following
resolution rules:

1. resolution principle and assertional rules for the com-
position of first-order clauses and ABox-statements of
clausal concepts

2. taxonomic rules for concept definitions of clausal con-
cepts (as TBox-statements)

and unification for first-order terms in assertions of clausal
concepts anck-ary predicates. Technically, the important
point is that each resolution rule must be designed so as
to refute clauses composed from DL-assertions and first-
order clauses (called extended clauses); namely, its resolu-
tion step deletes an inconsistent pdi, —F) of literals in
extended clauses.

2 Combining DL and First-order Clauses

2.1 Description Logic ALC

A concept language in the basic description ladi€C [14]
contains the se€ of concept namesgl, the setR of role
namesR, and the sel of individual names:, b. The con-
cepts inALC (called ALC-concepts) are constructed by
concept namesl, role namesRk, the connectives:, 1, L,
and the universal and existential quantifiérs.

Definition 2.1 The set of ALC-concepts C, D is defined
inductively by the following:

C,D— A|-C|CND|CUD |VR.C|3R.C

Let Male be a concept name, and lgtus-child be a
role name. Then, for instance, tbt&LC-conceptihas-
child.M ale represents “individuals who have sons.”

The meaning ofALC-concepts are formally given by
an interpretation in the following definition.

Definition 2.2 A DL-interpretation isan ordered pair Z =
(AT,-T) of a non-empty set AZ (called the universe of 7)
and an interpretation function - for CURUI where A% C
A7 (in part|cular 17 =pand TZ = AT), RT C AT x
AT and o € AZ. The DL-interpretation 7 is expanded
to .ALC-concepts including connectives and quantifiers as
follows:

( )I AI _ CI
(cnD)yf=c*nbp*
(CuD)t=c*ubp*
(YR.C)* = {d, € AT | Vdy|(d1,d) € RT — dy € C*]}
(3R.C)t = {d; eAI|3d2[( ,ds) € RT Ndy € C1]}

This interpretation will be used to define the semantics of a
first-order language with concept and role names.

2.2 First-order clauses with Concept and
Role Names

Description logics do not deal with reasoning for fagts
and rulesBy,... ,B, — B, where each4, B; and B

are atomic formulas, as in logic programming. We em-
ploy general clausal forms (not restricted to Horn clauses)
in first-order logic to be embedded in knowledge base rea-
soning for description logics. For the compatibility with
concept languages, concept names and role namé£dh

are respectively used to denote unary predicates and binary
predicates in a first-order language including ordinary
n-ary predicate names. Hence, the languégecludes the
setP of n-ary predicate nameswith C UR C P, the set

F of n-ary function nameg, the sefl of individual names
a,b (as constant names) and the 3étof variableszx, y.

The set of terms is defined inductively by: (i) individual
names and variables are terms, and (i) i ann-ary func-

tion name and;, . .. ,t, are terms, thetf(¢4,... ,t,)isa
term.

Definition 2.3 The set of formulas (in language £) is de-
fined inductively by the following:

1. If p € P isan n-ary predicate name and ¢4, ... ,t,
are terms, then p(ty,... ,t,) is an atomic formula
(simply called atom).

2. 0f Iy, .. 1y, 04, ... 1), are atomic formulas, then
liy... ylp — 1f,... 1!, isaclausal form. In par-
ticular, it is called the empty clause if n = m = 0.

VF is the universal closure df, i.e.,Vzy - - - Va,, ' where
x1,... ,T, are all the free variables occurring . So
li,...ln, — Uj,... Il expresses the universal closure
V(=i V-Vl VIp V- v 1) in first-order logic. Let
E be an expressionVar(E) denotes the set of free vari-
ables occurring irE. A substitution is a mapping from a
finite subset ofV into the set of terms such thétx) # x.
The substitution is expanded to terms and formulas in the
usual way of first-order logic. A substitutighto variables
occurring inE is denoted by @ (called an instance af).

An expressionE is ground if it is without variables. Let
E1, E5 be expressions. A substitutiehis a unifier forF,
andE, if E10 = F,0. A most general unifier foE; and
Es is expressed byngu(Eq, Es).

2.3 Extended Knowledge Bases

We define a knowledge base consisting of the TBox and
ABox and a clause set. Let be a concept name and D

be ALC-concepts. A TBoX is a set of TBox-statements
of the formC = D. Note that we use TBoxes that are
acyclic and sets of concept definitions of the fadre= C.

Let a,b be individual names an® be a role name. An



ABox A is a set of ABox-statements of the formiga),
R(a,b). Normally, a DL-knowledge base is defined as an
ordered pair(7,.A) of a TBox7 and an ABoxA. We
extend itto an ordered tupl€ B = (7, A, P) by attaching

a clause seP. TBox- and ABox-statements and clausal
forms are generally called knowledge base statements. A
knowledge basé( B is said to be ground if all the clausal
forms in K B are ground.

We here interpret first-order formulas including con-
cept and role names and variables. A DL-interpretafion
is extended wittp? C (AZ)" for everyn-ary predicate
p € Pandf? : (AT)" — A7 for everyn-ary function
f € F. Avariable assignment is a mappiagfrom the
setV of variables into the universA?. The variable as-
signmenta[x/d] denotesa — {(z, a(x))}) U{(x,d)}. An
interpretation of a first-order languagewith concept and
role names (called an FL-interpretation) is an ordered pair
T, = (Z,a) whereZ is a DL-interpretation extended with
pr C (AT andff : (AT)" — AT anda is a variable
assignment. The interpretatiofr of termst is defined by:

(i) 22> = a(z) anda?~ = oZ, and (i) (f(t1,... ,tn))*"
= fZ(t¥=,... ,1Z=). The satisfiability relation for knowl-
edge base statements is given by the following definition.

Definition 2.4 Let 7, = (Z,«) be an FL-interpretation
and E be a knowledge base statement. The satisfiability
relation Z,, = E isdefined as follows:

1 I, A=Ciff AT =C?

2. I, | Cla) iffa® € C*

3. 7. = R(a,b) iff (a*,b") € R*

) iff (15 1) € pT

n

4. Ia ':p(th"'

5. To =1y, dn— 1. ..
SRV AVERRVA S

AT, E V(A VeV

The satisfiabilityZ, = V(=i V---Val, VIV --- V1)

is obtained in the usual semantics of first-order logic. An
FL-interpretationZ,, satisfies a knowledge bagéB (de-
notedZ, = K B) if Z,, satisfies all the elements If B =

(T, A, P). Aknowledge base statemeht(resp. a knowl-
edge bas& B) is satisfiable if, for som&,,, Z,, = F (resp.

I, = KB). Otherwise,E (resp. K B) is unsatisfiable. A
knowledge base statemefitis a consequence @€ B (de-

notedK B |= E) if every model of K B is a model ofE.

3 Hybrid Resolution

In this section, we develop a hybrid resolution system for
extended knowledge basésB = (7,.A,P). By trans-
forming ALC-concepts into a kind of clausal form &f£C-
concepts, this resolution system can be applied to both
ALC-concepts and first-order clausesiiB.

3.1 Clausal Concepts

We simplify the form of ALC-concepts by the following
operations. LetKk B = (7,.A,P) be a knowledge base.
First of all, we eliminate the symbols—, M, 3 from ALC-
concepts inthe TBoZ and ABox.A. Any conceptis trans-
formed into an equivalent concept by applying the rewrite
ruless:

—\ﬂc = C
CﬂDEﬁ(ﬁCHﬁD)
JR.C = -VR.-C

If a left-hand side form occurs in conceptsbfor A, then

it is transformed to its right-hand side form. This transfor-
mation is applied to all the elementsin .4, and therefore
7', A’ without —=—, M, 3 are derived.

Notations. L denotes a concept namék or its negation
—A, andQ represent§ R or -VR. Lis A if L = A,or A

if L =-A. Q.LorlLis called diteral concept, written as
Q* L.

Next, concepts in the TBoX’ and ABox.A’ derived
above are further transformed by the two operations. First,
if a conceptE contains a concept of the form(C U D) or
VR.(C'UD), thenA = C U D (whereA is a new concept
name) is added t6’, andC U D (in E) is replaced withA.
Secondly, if a concept includes an expression of the form
Q1.Q2.C,thenA = Q,.Cis added ta7’, and@-.C (in E)
is transformed tod. Repeating these operations results in
a concept of the form:

QiLiU-UQ".Ly.

We call this simplified concept eausal concept. For ex-
ample,—Vhas-child.—Female U Yhas-child.Female L
Human is a clausal concept. Then, we obtalrf, A"
by transforming all the elements ih’, A’ to equivalent
clausal concepts.

Lemma3.1l Let Z be a DL-interpretation. Let C’ be a
clausal concept transformed from a concept C' and let
Ay = C4,... A, = Ch(n > 0) be the TBox-statements
added by the transformation where each A; is a new con-
cept name. Then, there exists a D L-interpretation Z’ that
isan extension of Z tointerpret Ay, ... , A, and (C")Z =
CTand AT =C¥',... AL =CZ,

By this lemma, if a knowledge bad€ B = (7, A, P) is
satisfiable, then also the equivalent knowledge iagg =
(7", A”,P) obtained by transforming, A is satisfiable.

3.2 Hybrid Resolution System

Our hybrid resolution system contains three kinds of infer-
ence rules: resolution principle, taxonomic rules and asser-
tional rules. We construct resolution rules that can be ap-
plied to TBox- and ABox-statements of clausal concepts,
first-order clauses and their composed expressions.

3In [1], —=—, L, 3 are removed from concepts. The transformation in
this paper is adjusted to obtain compatible expressions with clausal forms.




In resolution steps, we express clausal forms as sets
of literals, and ABox-statements of clausal concepts as sets
of assertions of literal concepts. Given a clausal form
li,... ,ln .10, the set of the literals (called
aclause) is {-ly,... ,ly,0l5,... 00, }. For an ABox-
statemen)i.L; U --- U Q5 .L,(a) of a clausal concept,
we have the sefQ7.Li(a), --- , Q.L,(a)} of assertions
of the literal concepts. Note that applying hybrid resolution
rules to sets of literals and sets of assertions of literal con-
cepts leads to an expression as composed of these sets. Let
P;* be a concept of the formR.A, VR.—A or A, a role
nameR or ann-ary predicate, and lett be a sequence of
termsty, ... ,t;. The compositional expression is a set of
extended literals, called amtended clause:

- U,...

{Pl-i_(a% T ,P;(t_;,,), _‘Prj+1(t_;L+1)’ T ;_‘P;;({m)}

This is allowed to include an expressive assertipri(t)

of a literal conceptQ*.L wheret is a first-order term.
Since the extended clauses exceed the expressivity of or-
dinary clausal forms, an additional definition of the satis-
fiability is needed. The satisfiability of extended clauses

® = {P}(E),... . Py (F), Py (Fusr), - o Ph(En)}
is defined as follows:

1. I, k= P (6) iff (5)" € (P1)F,
2. I, = P (&) iff Z, [~ P (5).
3. I, E ® with Var(®) = {x1,... ,x} iff for all dy,

coydp € AT {E € ® | Iy = E} # O with o/ =
alxy/di] - [xg/dE)-
We proceed to the definition of hybrid resolution

rules. The first rule is an extension of the resolution princi-
ple to extended clauses.

Definition 3.1 (Resolution principle) Let ®;, P, be ex-
tended clauses. The resolution principle for knowledge
basesis given as follows:

& U{-PH(E)} {PT(H)}U P,
((I)l U @2)9
where 6 = mgu(f, t/).

(res)

Notations. Let U be a clausal concefl;.LiU- - -UQ} . Ly,.

U (t) expresses the sequence of assert@hd.(t), ... ,
*.Ly(t) of the literal concepts ir. We write L 4 for the

concept named or its negation-A. §(F) denotesEy if

E = ——Ey, or E otherwise. The functio (E) is 0 if the

number of negation symbols-) in E is even, orl if it is

odd. Moreover, we have the following convenient notation:

{(=R(t.¥)} if Q=VR

1] otherwise

{-Ro(t,1)} = {

Next, we introduce taxonomic rules with regard to
TBox-statements.

Definition 3.2 (Taxonomicrules) Let ® be an extended
clause and ¥ be a clausal concept. The taxonomic rules
for knowledge bases are given as follows:
dU{-A(t)} A=Q*LUVT
QU {6(-Q~L)(1)}
PU{A)} A=Q*LUVT
QU{Q™L(t), ¥(t)}
(I)U{QlLA(t)} AEQ;LQU\P
O U{0(=Q3.L2)(t')} U{-Rq, (. 1)}

where N(Q1.La) =1, and t’ = x (new variable) if Q,
VR and t’ = ¢ (new constant) otherwise.

(T1)

(T2)

(T3)

QU{Q1.La(t)} A=Q5. LU0 (1)
O U{Q3.La(t'), W(t") } U{=Rq, (£,)}
where N(Q1.La) =0, and t’ = x (new variable) if Q4
VR and t’ = ¢ (new constant) otherwise.

In the hybrid resolution system, assertions of literal
concepts in extended clauses are refuted by the following
assertional rules .

Definition 3.3 (Assertional rules) Let &, ®, beextended
clauses. The assertional rules for knowledge bases are
given as follows:

O U{VR.La(t1)} {Ta(ts)}U®s
B, UDy U {—R(t1,t2)}

(A1)

O U{-VR.La(t)} {La(z)}U Py
((I)l U @2)9
where cisanew constant and 6 = {z/c}.

b, U {VRl.LA(tl)} {QQL{A(tQ)} U &y
1 U Dy U LR (D} U (=R, (2. 0)}

where N(VR1.L4) # N(Q2.L'y), and t = x (new variab-
le) if Q2 = VR and t = ¢ (new constant) otherwise.

(42)

(43)

P, U {ﬁVRL(tl)} {—‘R(tg, t)} U Py
(1 UDy)0
where ¢ isa hew constant or the constant introduced by an
application of (7'3), (T4), (A2) or (A3) with its premise
®y U{—=VR.L(t1)},and 0§ isamgu of (¢1,c) and (t2,1).

(A4)

Ey Fy
In the form E  of hybrid resolution rulesFy, E> are
called the premises, an8 the conclusion. We assume
that the premise#’;, F> do not have the same variables,
i.e., Var(E1) N Var(Ez) = 0. Compared with the DL-
resolution system [1], our hybrid resolution system is ex-
tended to enhance resolution for (i) assertions of clausal
concepts (in(Al),...,(A4) and (res)), (ii) TBox- and
ABox-statements (iNT1), ... ,(T4)) and (iii) extended
clauses represented by clausal conceptary predicates
and first-order terms (irfres)), and with unification for



first-order terms. The resolution principlees) contains
resolution for positive and negative literals and can be
applied to ABox-statements of clausal concepts and role
names. In [1], concept definitions in the TBox are unfolded
in the ABox beforehand. In our case, the taxonomic rules
(T'1), ... ,(T4) generate inferences from concept defini-
tions A = C in the TBox and assertions,(t) or Q.L A (t)

of the defined concept namesin extended clauses. The
assertional rule§A1), ... , (A3) eliminate an inconsistent
pair (A, —~A) of a concept namel and its negationA in

the premises. The assertional rgkl) is a resolution rule
for a negative assertionR(t1,t2) of a role nameR and
assertions of the formVR.L(t1).

Definition 3.4 (Resolution) Let K B be a knowledge base
and E be a knowledge base statement. The derivability
relation K B + FE is defined by the following:

1. fEe€ KB,then KB E.

2. If KB + E, and KB + FE5 where E,,Ey are
premises and F is the conclusion in a hybrid reso-
lutionrule, then KB + E.

A derivation of £ from K B is called a refutation ifZ = §.
A knowledge basd( B is refutable if we have a refutation
KBFE .

3.3 An Exampleof Refutation

We show an example of refutation by applying the hybrid
resolution system. Consider the first-order language with

C = { Murderer, Human, Male, Female }

R = { killed }
P = CURU{ acted, died, after }
F=0

I={John,Mary,ei,es }

and the two knowledge basééB;, = (71,.4;,P;) and
KBy = (73,«42,7)1) with

TBox 7; = { Murderer = Jkilled. Human N Human,
Human = Male U Female }
ABox A; = { Male(John), Female(Mary) }
ABox Ag = { Human(John), Human(Mary) }
Clause seP; = { — acted(John, Mary,ey),
— died(Mary,es),
— after(es, e1),
acted(x,y, z1), died(y, z2), after(za, z1),
Human(z), Human(y) — killed(z,y) }

In the TBox7;, the concept namé/urderer is defined

by the concepBkilled. Human M Human, and the con-
cept nameHuman is defined by the disjunctive concept
Male LI Female. The ABox.A; asserts that John is male
and Mary is female, and the ABax, expresses the fact
that John and Mary are humans. In the clausé’sethree
facts and a rule are described. Notice that this rule is not

expressible in the logic programming languages combining
with description logics [11, 5], since the role nam@led
occurs in the head of the rule.

We consider reasoning to answer the following query
in the knowledge basds By, K Bs.

?-Murderer(x).

which means “is there a murdere?” Before applying hy-
brid resolution rules, we remove the connectives, ——
from the TBox7;. Consequently, the following TBox is
obtained.

TBox 7{ = { Human = Male Ul Female,
Murderer = =(Vkilled.~Human U ~Human) }

Moreover, the concepts in the TBAX are transformed to
equivalent clausal concepts as follows:

TBox 7! = { Murderer = =A;, A; = Ay U As,
1
Ao = Vkilled.~Human, A3 = ~Human,
Human = Male U Female }

The ABox-statements id;,.4; and the clausal forms in
P; are transformed into sets of assertions of literal concepts
and sets of literals as follows:

ABox A} = { {Male(John)}, { Female(Mary)} }
ABox A}, = { {Human(John)}, {Human(Mary)} }
Clause seP; = { {acted(John, Mary,e1)},
{died(Mary,es)}, {after(ea,e1)},
{—acted(z,y, z1), ~died(y, z2), ~after(z2, z1),
—~Human(x), ~Human(y), killed(x,y)} }

The answer to the query-Murderer(x) in the
clause sefP; is decided by refutation foP; U {G} with
G = {—~Murderer(x)}. In Figure 1, (3) and (4) show
derivation processes féf B U{G} = (7], A}, P; U{G})
andK B U {G} = (7{", A5, P; U{G}). These determine
whether there exists a terhrand whethed/ urderer(t) is
valid in the knowledge base& B; = (7/”, A}, P;) and
KB, = (7, A, P;). In both cases, we can conclude that
Murderer(John)is true since the empty clause is derived
with the substitutiort = {z/John},i.e., KBj U{G} and
KB, U{G} are refutable.

Theorem 3.1 (Completeness of resolution) Let KB bea
knowledge base. K B isunsatisfiable if and only if KB is
refutable (K B - ().

Due to the limitations of space, the proof of the theorem
has been omitted. The completeness of resolution can be
proved by the construction of a tree model for each knowl-
edge base [6], the completeness of unrestricted resolution
and ground resolution, and the lifting lemma [4, 9].



(1) {die(M,e2)}

{—act(z,y, z1), ~die(y, z2), ~aft(z2, z1), ~"Hum(x), ~Hum(y), kil(z,y)}

{act(z, M,e1)}

{—act(z, M,e1), ~aft(z2,e1), "Hum(z), "Hum(M), kil (x, M)}

{aft(e2, 1)}

{kil(J, M), —aft(ez,e1), "Hum(J), ~Hum(M)}

(res)

{kil(J, M), ~Hum(J), ~Hum (M)}

Hum = Mal U Fem {kil(J,M),~Mal(J), ~Hum(M)}

(res)

Hum = Mal U Fem

{kil(J, M), ~Mal(J), —\Hum(M7)}

{Mal(J)} {kil(J, M), - Mal(J), ~Fem(M)} (res) (T
{Fem(M)} {kil(J, M), ~Fem(M)} (res)
{kil(J,M)}
&) {-Mur(z)} Mur=-4,
{Al(z’)} (Tl) A = As LU As 79
{As(z), A3(z)} T2) A, = Vkil—Hum (T2)
{Vkil.-Hum(z), As(z)} Az = —-Hum (T2)
{Vkil.=Hum(z), ~Hum(z)}
® @)
; (1)
{Vkil.=Hum(z),~Hum(z)} Hum = MalU Fem T
{=Fem(v), ~kil(z,v), ~"Hum(z)} (T2) {kil(J, M)} (1)
{—~Fem(M),~Hum(J)} {Fem(M)} (res)
{Hum(7)}
0
@ @
: 1)
{Vkil.-Hum(z),~Hum(z)} {Hum(M)} (A1)
{—kil(z, M), ~Hum(z)} {kil(J, M)} (res)
{~Hum(J)} {Hum(J)} (res)
0 res

Figure 1. Refutation from a knowledge base

4 Conclusion

We have presented a rule-based reasoning system as an
extension of the DL-resolution system [1] where DL-
knowledge bases and first-order clause sets are combined.
From the viewpoint of knowledge representation, the ex-
tended knowledge bases can treat practical and general data
as follows:

e Facts and ABox-statements represent assertional
knowledge in a context (or a concrete situation).

e Rules are taken as general knowledge in a particular
application domain.

e TBox-statements express terminological knowledge
commonly employed in many application domains.

We have designed proper resolution method for
capturing the two kinds of logical form in the DULC

and logic programming. A resolution rule is called proper

if its two premises are composed into one conclusion by
deleting an inconsistent pafZ, - E) of literals. Hence,

we have obtained proper hybrid resolution rules, whereas
some of the inference rules in the DL-resolution system [1]
were not proper. Although we have not discussed the
computation of our reasoning system, the proper resolu-
tion method can be expected to provide an effective de-
duction procedure. For example, consider the inconsis-
tency of the assertionsVR;.—A;(t1), VR1.mA1(t1),
VRQ.A4(t2), —“VRy.mAs (tg) \Y ﬁVRQ.ﬁAg,(tg). As shown

in Figure 2, the inconsistency can be derived in two res-
olution steps because proper resolution rules are applied
only to clauses including an inconsistent pair of literals.
However, tableau-like reasoning (as the standard DL rea-
soning method) needs nine steps in the worst case since
redundant steps are derived. Alternatively, Kaneiwa and
Tojo [10] proposed a resolution system with complex sort
expressions, but its language was not able to represent and



resolution:

_‘VRl ~_‘A1 (tl)

VRl.—‘Al(tl)

(43)

ﬂRl(tl,c) —\VRl.—\Al(tl)

(A4)

tableau-like reasoning:

Sl = {—\VRl.—\Al(tl), VRl.—\Al (t1)7 VRQ.A4(t2),

So=51U {ﬁVRQ.ﬁAQ(tQ)}

Sy = S3U {A4(Cl)}

—\VRQ.—‘AQ (tg) \Y _‘VRQ._‘AS (tz)}

S} = Sy U {VRo.~As(t2)}

S3 = S3 U{Ry(t2,c1), A2(c1)} S5 = S2 U {Ra(t2,c3), Az(cs)}

Sy =S5 U{Aa(c3)}

S5 =S54 U {Rl(tl,CQ), Al(CQ)} Sé—, = Sfl U {Rl (tl,C3),A1(03)}

Se =

S5 U {=A1(c2)} Sg =S5 U{~A1(c3)}

Figure 2. Comparison between resolution and tableau-like reasoning

reason with respect to DL-concepts.

This study leads to a further extension of rule-based
reasoning with terminology, by using other approaches in
logic programming and automated reasoning (e.g. typed
logic programming, nonmonotonic reasoning, etc.). Fur-

thermore, we now plan to formalize the combination of

first-order clauses and other description logics, such as sub-

languages oALC (e.g. AL, ALU) and superlanguages of
ALC (e.9. ALCN [8], ALCQOT).
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