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Abstract

Order-sorted logic has been formalized as first-order logic with sorted terms where
sorts are ordered to build a hierarchy (called a sort-hierarchy). These sorted log-
ics lead to useful expressions and inference methods for structural knowledge that
ordinary first-order logic lacks. Nitta et al. pointed out that for legal reasoning a
sort-hierarchy (or a sorted term) is not sufficient to describe structural knowledge
for event assertions, which express facts caused at some particular time and place.
The event assertions are represented by predicates with n arguments (i.e. n-ary
predicates), and then a particular kind of hierarchy (called a predicate hierarchy)
is built by a relationship among the predicates. To deal with such a predicate hi-
erarchy, which is more intricate than a sort-hierarchy, Nitta et al. implemented a
typed (sorted) logic programming language extended to include a hierarchy of ver-
bal concepts (corresponding to predicates). However, the inference system lacks a
theoretical foundation because its hierarchical expressions exceed the formalization
of order-sorted logic. In this paper, we formalize a logic programming language with
not only a sort-hierarchy but also a predicate hierarchy. This language can derive
general and concrete expressions in the two kinds of hierarchies. For the hierarchical
reasoning of predicates, we propose a manipulation of arguments in which surplus
and missing arguments in derived predicates are eliminated and supplemented. As
discussed by Allen, McDermott and Shoham in research on temporal logic and as ap-
plied by Nitta et al. to legal reasoning, if each predicate is interpreted as an event or
action (not as a static property), then missing arguments should be supplemented
by existential terms in the argument manipulation. Based on this, we develop a
Horn clause resolution system extended to add inference rules of predicate hierar-
chies. With a semantic model restricted by interpreting a predicate hierarchy, the
soundness and completeness of the Horn-clause resolution is proven.
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1 Introduction

In the field of artificial intelligence, order-sorted logics have been studied as
formal knowledge representation languages for handling structural knowledge,
such as the classification of objects [11]. These logics incorporate sort sym-
bols, which index subsets of the universe and are ordered to build a hierarchy
(called a sort-hierarchy). In addition, logical deduction systems with sorted
expressions can be regarded as useful tools from the viewpoint of efficient and
rational reasoning about structural knowledge.

Following many-sorted logic in Herbrand’s thesis [17], several many-sorted
systems [42,13,15,26] have been formalized as a generalized first-order logic
with different sorts as classes (e.g. points, lines, and planes in geometry)
of individuals (but without subsorts, namely all sorts are disjoint). More-
over, many-sorted logic with a sort-hierarchy or subsorts is called order-sorted
logic [31,32]. Walther and Cohn separately developed an order-sorted calcu-
lus [39,40,10] based on a resolution by a sorted unification algorithm with a
sort-hierarchy. Since then, order-sorted logics have been extended to design
more expressive languages or efficient deduction systems [41,8,14,33,43,23,21].
The researchers are mainly concerned with order-sorted unification that solves
the problem of finding the most general unifier of sorted terms depending on
the structure (e.g. lattice) of the sort-hierarchy. In related work, typed logic
programming [18,16] with polymorphic types has been developed.

On the other hand, with regard to work that actually implements a deductive
language with types (or sorts), the logic programming languages LOGIN [2]
and LIFE [3] were proposed, in which ψ-terms together with feature struc-
tures [9], which can describe complicated classes of objects, were introduced.
Smolka proposed Feature Logic [35] to generalize ψ-terms by adding negation
and quantification. Alternatively, F-logic [24] and QUIXOT E [44,45] were de-
veloped as object-oriented deductive languages with the notions of objects,
classes, subclasses and property inheritance [37,5] derived from the object-
oriented programming paradigm.

For practical knowledge representation and reasoning such as legal reason-
ing, Nitta et al. [29,30] pointed out that a sort-hierarchy (or a sorted term)
is not sufficient to describe structural knowledge for event assertions, which
express facts caused at some particular time and place. The event assertions
are represented by predicates with n arguments (i.e. n-ary predicates), and
then a particular kind of hierarchy (called a predicate hierarchy) is built by
a relationship among the predicates. To deal with such a predicate hierar-
chy, which is more intricate than a sort-hierarchy, Nitta et al. implemented a
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typed (sorted) logic programming language extended for developing the legal
reasoning system New HELIC-II [29,30]. The language contains a typed term
(called an H-term) classified into a verb-type or a noun-type that is obtained
by extending a ψ-term in LOGIN. The verb-types and noun-types can build
two separated hierarchies corresponding to the hierarchies of predicates and
sorts. However, the inference system lacks a theoretical foundation because its
hierarchical expressions exceed the formalization of order-sorted logic.

To provide a theoretical formalization of their work, this paper extends an
order-sorted logic by incorporating a predicate hierarchy and its reasoning.
This extended logic is theoretically formalized as an order-sorted logic pro-
gramming language that is based on order-sorted resolution and typed logic
programming. In standard logic programming, a way to deal with the hier-
archical relationship between unary predicates is to build a class-hierarchy
(by a set of formulas of the logical implication form “p(x) → q(x)” in which
a predicate q has more abstract meaning than a predicate p). This form is
simple and can be used to express IS-A relations. As presented in [37], IS-
A relations (e.g. Elephant(x) → GrayThing(x)) and IS-NOT-A relations
(e.g. RoyalElephant(x) → ¬GrayThing(x)) construct inheritance networks
on which properties are inherited only along the IS-A relations.

However, in order to represent event assertions and their hierarchical re-
lationship (as described in New-HELIC-II), we are required to deal with
a hierarchy consisting of n-ary predicates used for describing event asser-
tions (called event predicates) which might have different arities and are
distinguished from predicates used for property assertions. For instance, an
event assertion act of violence(John) (or act of violence(John, e1) with an
event identifier e1) implies a more abstract assertion illegal act(John,@) (or
illegal act(John,@, e1)), where @ is a missing argument, by using a hierarchi-
cal relationship of the unary predicate act of violence and the binary predicate
illegal act. For such event predicates p, q, r, s, t, . . ., is it possible to precisely
describe all the hierarchical relationships between them using the implication
forms p(x) → q(x), q(x) → r(x, y), r(x, y) → s(x, z), s(x, y) → t(x, z, v),
. . . ? Do these forms infer our desired results by an application of ordinary
inference rules (or resolution rules)? Such an ad-hoc method seems not to give
us general and flexible reasoning from hierarchical predicates with various ar-
guments. This is because (i) the above does not manipulate the difference
between argument structures in predicates as event assertions, and (ii) argu-
ments without denoted roles might result in an incorrect connection between
predicates. For example, the logical implication form act of violence(x) →
illegal act(x, y) does not lead to the operation that a missing argument in
act of violence is substituted with y that is existential and means a person.
Moreover, steal(x, y) → illegal act(y) results in the incorrect connection that
if x stole y, then y committed an illegal act.
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In this paper we formalize a logic programming language with not only a sort-
hierarchy but also a predicate hierarchy. This language can derive general
and concrete expressions in the two kinds of hierarchies. A manipulation of
arguments is proposed for generating hierarchical reasoning of predicates. In
order to derive predicates in the hierarchy, surplus and missing arguments
in the derived predicates are eliminated and supplemented. Moreover, the
manipulation of arguments can be specified by distinguishing event predicates
from property predicates, as was introduced in [22]. The notion of events and
properties is based on works [6,28,34] dealing with temporal reasoning (i.e.
taking into account the various temporal aspects of propositions). In [6], Allen
distinguished between event, property and process in English sentences, and
so did McDermott [28] between fact and event. In contrast to work regarding
temporal reasoning, Kaneiwa and Tojo [22] introduced the new and entirely
original idea that event and property assertions respectively afford different
quantification to implicit objects in the real world, not only to spatio-temporal
objects. Based on this idea, if each predicate is interpreted as an event or action
(not as a static property), then missing arguments should be supplemented
by existential terms in the argument manipulation. With this manipulation,
we present a Horn clause resolution system extended to add inference rules of
predicate hierarchies.

This paper is organized as follows. We start in Section 2 with an introduction
to the basic notions of order-sorted logic (logic with sort-hierarchy). In Sec-
tion 3, we present a motivation to extend order-sorted logic programming, and
discuss reasoning upon structural knowledge that is derived from a predicate
hierarchy. Section 4 proposes an order-sorted logic incorporating both sort and
predicate hierarchies. We define the syntax and the semantics of the proposed
logic. In Section 5, we develop a Horn clause resolution system for the hierar-
chical reasoning of predicates, and prove the soundness and completeness of
the system. In Section 7, we give our conclusion and discuss future work.

2 Preliminaries

In this section we will introduce the notions of order-sorted logic [36]: sort-
hierarchy, sorted variables and sorted terms. S denotes a set {s1, s2, . . .} of
sorts where each sort indexes a class of individuals. A subsort declaration for
S is an ordered pair (si, sj) of sorts (denoted by si �S sj). A �S path from s
to s′ is a finite sequence x0, x1, . . . , xn in S such that x0 = s, xn = s′ and, for
1 ≤ i ≤ n, xi−1 �S xi. We denote by ≤S the reflexive and transitive closure
of �S. That is,

s ≤S s
′⇔ s = s′, or
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fruit vegetable

apple orange lettuce carrot

Fig. 1. A sort-hierarchy

there exists a �S path from s to s′.

A sort-hierarchy is an ordered pair (S,≤S) where S is a set of sorts (containing
the greatest sort � and the least sort ⊥) and ≤S is a reflexive and transitive
subsort relation. A sort s is a lower bound of s1 and s2 if s ≤S s1 and s ≤S s2.
A sort s is a greatest lower bound of s1 and s2 if s is a lower bound of s1 and s2

and s′ ≤S s holds for all lower bounds s′ of s1 and s2, written as s = glb(s1, s2).
(S,≤S) is called a lower semi-lattice if glb(s1, s2) exists for all s1, s2 ∈ S.

For example, the following subsort declarations express that the sorts apple
and orange are subsorts of fruit.

apple�S fruit,

orange�S fruit.

By adding subsort declarations to the above declarations, the sort-hierarchy
in Fig. 1 can be built.

A variable x of sort s (called a sorted variable) whose domain is restricted
(i.e. a subset of the universe) is written as x: s. A sort declaration (called a
function declaration) of an n-ary function f is denoted by f : 〈s1, . . . , sn, s〉 with
s1, . . . , sn, s ∈ S. In particular, a sort declaration of a constant c (i.e. a 0-ary
function) is denoted by c: 〈s〉. A sort declaration (called a predicate declaration)
of an n-ary predicate p is denoted by p: 〈s1, . . . , sn〉 with s1, . . . , sn ∈ S.

A term of the form f(t1, . . . , tn) is of sort s if the function declaration is
f : 〈s1, . . . , sn, s〉. We denote the term f(t1, . . . , tn) of sort s by f(t1, . . . , tn): s
where f is an n-ary function with the function declaration f : 〈s1, . . . , sn, s〉
and t1, . . . , tn are terms of s1, . . . , sn. In particular, we write c: s for the term
c of sort s where c is a constant with the function declaration c: 〈s〉. A term
restricted by a sort s is called a sorted term. For any sorted term t, the function
Sort(t) denotes its sort to term t.
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3 Motivation

We will discuss desired reasoning in a predicate hierarchy which informally
specifies an expressive logic programming language extended to include both
sort and predicate hierarchies. Similar to a sort hierarchy, a predicate hierarchy
is built by a partial order over n-ary predicates that represents a relationship
between general and specific predicates. Each predicate has a fixed argument
structure defined by the predicate declaration (as explained in Section 2). In
the hierarchy, general predicates can be derived from more specific predicates.
This derivation is based upon the fact that specific assertions imply less in-
formative assertions, for example, “John committed an act of violence against
Mary” implies “John committed an illegal act against someone.”

Given the hierarchy of predicates in Fig. 2, the following results (answered by
a query system in which yes or no must be returned 1 ) are conceivable in a
sorted logic programming language.

Example 3.1 Consider the case where the predicate declarations of the pred-
icates act_of_violence and illegal_act are given as follows, i.e., the ar-
gument structures 2 .

act_of_violence: <person>

illegal_act: <person,person>

If the fact act_of_violence(john:man) holds, then the superordinate predi-
cate illegal_act can be derived from the predicate act_of_violence in di-
rection (1) of Fig. 2. However, the first query “did John commit an illegal
act against Mary?” expressed by ?-illegal_act(john:man, mary:woman)

should give the answer no. It is certain that John committed an act of vio-
lence against someone but not certain that John did it against Mary. Thus,
the second query “did John commit an illegal act against someone?” expressed
by ?-illegal_act(john:man, Y:person) should yield yes.

act_of_violence(john:man).

?-illegal_act(john:man, mary:woman).

1 In standard logic programming, the closed world assumption holds. Thus, if a
query formula A cannot be proved from a program, then it is regarded as false, i.e.,
the answer is no.
2 As defined in Section 2, order-sorted logic (even first-order logic) contains pred-
icate symbols whose arities are fixed in the signature of an order-sorted language.
If the arities of predicates are not fixed, then the meaning of the predicates cannot
be uniquely defined in the semantics. Furthermore, the rigorous definition of the
sorts and arities of predicates lead to the advantage of excluding type errors and
ill-argumented formulas.
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act_of_violence steal

rob_with_violence

(1) (2)

(3)

illegal_act

Fig. 2. A hierarchy of predicates

no.

?-illegal_act(john:man, Y:person).

yes.

This exemplifies the case that the derived predicate illegal_act is higher in
the hierarchy and has more arguments than the predicate act_of_violence.
To generate the inference above, we must supplement the second argument
(whose role is person and which exists in illegal_act but does not exist in
act_of_violence) to the fact act_of_violence(john:man). In addition, we
must take into account of the quantification of its supplemented argument. If
this missing argument is universally quantified by all persons, then the meaning
of the fact is changed. Therefore because this quantification does not fit with
what we expect (i.e. human reasoning), the supplemented argument should be
existentially quantified by a person (someone).

Example 3.2 Consider the case where the predicate declarations of the pred-
icates illegal_act and steal are given as follows.

illegal_act: <person>

steal: <person,thing>

The arguments of the predicate illegal_act are fewer than the arguments in
the fact steal(john:man, c1:wallet), and thus the following query should
result in yes from direction (2) in Fig. 2.

steal(john:man, c1:wallet).

?-illegal_act(john:man).

yes.

?-illegal_act(c1:wallet).

no.

Since steal(john:man, c1:wallet) implies illegal_act(john:man) in a
broad sense, the answer to the first query is plausible enough. Namely, the
predicate illegal_act is more general than the predicate steal, and the single
argument john:man is less informative than the two arguments john:man and
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c1:wallet. However, the answer to the second query with one argument should
be no since the assertion illegal_act(c1:wallet) does not make sense where
c1:wallet does not follow the predicate declaration of illegal_act.

Example 3.3 Furthermore, reasoning in the predicate hierarchy can be ex-
tended by identifying each event in assertions. In this example, predicates ex-
press event assertions but do not contribute anything to the determination of
whether events in these assertions are independent or they happened simulta-
neously. Denoting each event identity as an argument in predicate formulas
makes it explicit. If two event assertions represent one event denoted by the
same event identifier 3 , then predicates representing them can derive a spe-
cific predicate in a hierarchy. In the following example, we consider the case
where the predicate declarations of illegal_act, act_of_violence, steal

and rob_with_violence are given with an event identity as an argument.

illegal_act: <person,event>

act_of_violence: <person,person,event>

steal: <person,thing,event>

rob_with_violence: <person,person,thing,event>

As shown by (3) of Fig. 2, the conjunction of act_of_violence and steal

yields the predicate rob_with_violence. If e1 identifies an event, then the
facts act_of_violence(john:man, mary:woman, e1) and steal(john:man,

c1:wallet, e1) in an incident imply John’s robbing with violence at e1.
Hence, the query “did John steal Mary’s wallet using robbery with violence
at e1?” should yield yes.

act_of_violence(john:man, mary:woman, e1).

steal(john:man, c1:wallet, e1).

?-rob_with_violence(john:man, mary:woman, c1:wallet, e1).

yes.

To derive this answer, adequate machinery for hierarchical reasoning of pred-
icates such that the arguments of the two predicates act_of_violence and
steal are mixed to produce the arguments of the predicate rob_with_violence
is indispensable.

Meanwhile, the queries “did John steal a watch from Mary using robbery with
violence at e1?” and “did John steal anything from Tom using robbery with
violence at e1?” yield no, even if the fact steal(john:man, c2:watch, e2)

is added.

steal(john:man, c2:watch, e2).

3 Each event identifier can be used to denote one event which consists of several
event assertions described by predicates.
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?-rob_with_violence(john:man, mary:woman, c2:watch, e1).

no.

?-rob_with_violence(john:man, tom:man, X, e1).

no.

These examples show inferences using a predicate hierarchy. The inferences are
consistent with natural human reasoning, when predicates are used to repre-
sent events and have their respectively unique argument structures. These
suggest the necessity for order-sorted logic programming to include a reason-
ing mechanism for a predicate hierarchy that can adjust the difference between
argument structures (i.e. manipulating surplus and missing arguments of de-
rived predicates). In the next section we will propose an extended order-sorted
logic for handling the hierarchical reasoning of predicates.

4 An order-sorted logic with sort and predicate hierarchies

In this section we define the syntax and semantics (based on [36]) of an order-
sorted logic with sort and predicate hierarchies.

4.1 Language and signature

The syntax of an order-sorted language extended to contain hierarchical pred-
icates (to build a predicate hierarchy) is introduced.

Definition 4.1 An alphabet for an order-sorted first-order language L con-
sists of the following symbols:

(1) S is a countable set of sort symbols with the greatest sort � and the least
sort ⊥.

(2) Fn is a countable set of n-ary function symbols.
(3) Pn is a countable set of n-ary predicate symbols.
(4) E is a countable set of event identifiers (denoted e1, e2).
(5) Vs is a countably infinite set of variables of sort s.
(6) AL is a countable set of predicate argument labels (denoted a1, a2).
(7) ∧,→,∀ are the connectives and the universal quantifier.
(8) (, ),⇒ are the auxiliary symbols.

We denote by P the set
⋃

n≥0 Pn of all predicate symbols and by F the set⋃
n≥0Fn of all function symbols. In the language L, predicates of event as-

sertions (called event predicates) are distinguished in the predicates in P. We
denote by P• (⊆ P) the set of event predicates. V denotes the set

⋃
s∈S Vs of
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variables of all sorts. Variables, functions and predicates have ordered and dif-
ferent sorts, and predicate argument labels ai are used to indicate the argument
roles of each predicate. The declarations of sorts, functions and predicates are
given by the following.

Definition 4.2 (Declaration) A declaration over S ∪F ∪P (for L) is an
ordered triple D = (DS ,DF ,DP) such that

(1) DS is a set of subsort declarations of the form si �S sj where si, sj ∈ S.
(2) DF is a set of function declarations of the form f : 〈s1, . . . , sn, s〉 where

f ∈ Fn(n ≥ 0) and s, s1, . . . , sn ∈ S.
(3) DP is a set of sub-predicate declarations of the form pi �P pj where

pi, pj ∈ P•, and argument structure declarations of the form p: {a1: s1, . . . ,
an: sn} where p ∈ Pn(n ≥ 0), s, s1, . . . , sn ∈ S and a1, . . . , an ∈ AL(ai �=
aj if i �= j).

(4) If p: {a1: s1, . . . , an: sn} ∈ DP , then Arg(p) = {a1, . . . , an} and, for 1 ≤
i ≤ n, Scp(ai) = si where Arg is a function from P to 2AL and Scp is a
function from AL to S.

The subsort declarations (inDS) express a sort-hierarchy, and the sub-predicate
declarations (in DP) express a predicate hierarchy. Arg(p) indicates a finite set
of argument labels as the unique argument structure of predicate p. Scp(ai)
denotes a sort si as the scope of the argument labeled by ai. We use the
abbreviation Arg(p− q) to denote Arg(p)− Arg(q).

Definition 4.3 (Sorted signature with hierarchical predicates) A sig-
nature for an order-sorted first-order language L with hierarchical predicates
(or simply a sorted signature with hierarchical predicates) is an ordered quadru-
ple Σ = (S,F ,P,D) where S is the set of all sort symbols, F the set of all
function symbols, P the set of all predicate symbols and D = (DS ,DF ,DP) a
declaration over S∪F∪P.

Unlike ordinary order-sorted logics, the sorted signature with hierarchical
predicates contains sub-predicate declarations pi �P pj and argument struc-
ture declarations p: {a1: s1, . . . , an: sn}.

Example 4.1 This example shows a sorted signature Σ1 with hierarchical
predicates that comprises the following symbols:

S = {person, man, woman, �, ⊥},
F = {john, mary},
P• = {act of violence, illegal act},

and the declaration D = (D∗
S ,DF ,DP), where D∗

S is the reflexive and transitive
closure of DS , constructed by
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DS = {⊥ �S man, ⊥ �S woman,

man �S person, woman �S person, person �S �},
DF = {john: 〈man〉, mary: 〈woman〉},
DP = {act of violence �P illegal act} ∪

{act of violence:{actor: person},
illegal act: {actor: person, vic: person}}.

In the above example, act of violence �P illegal act (in DP) declares that the
predicate act of violence is a sub-predicate of illegal act, and the predicate
declaration illegal act: {actor: person, vic: person} defines that the predicate
illegal act consists of two arguments labeled with actor and vic, which mean
an actor and a victim respectively, and that the sort of both of these arguments
is person.

4.2 Order-sorted terms and formulas

We define the expressions order-sorted term and formula of the order-sorted
first-order language L.

Definition 4.4 (Sorted terms) Let Σ = (S,F ,P,D) be a sorted signature
with hierarchical predicates. The set TERMs of terms of sort s is defined by
the following rules:

(1) A variable x: s is a term of sort s.
(2) A constant c: s is a term of sort s where c ∈ F0 and c: 〈s〉 ∈ DF .
(3) If t1, . . . , tn are terms of sorts s1, . . . , sn, then f(t1, . . . , tn): s is a term of

sort s where f ∈ Fn and f : 〈s1, . . . , sn, s〉 ∈ DF .
(4) If t is a term of sort s′, then t is a term of sort s where s′ �S s ∈ DS .

The terms of sort s include the terms of all the subsorts s′ with s′ �S s.
We denote by TERM =

⋃
s∈S TERMs the set of all (order-sorted) terms. The

function Var from TERM into 2V is defined by (i) Var(x: s) = {x: s} and
(ii) Var(f(t1, . . . , tn): s) =

⋃
1≤i≤n Var(ti). In particular, Var(c: s) = ∅ where

c ∈ F0. TERM0 denotes the set of all terms without variables, i.e., TERM0 =
{t ∈ TERM | Var(t) = ∅}. A term t is said to be a ground term if t ∈ TERM0.
TERM0,s denotes the set of all ground terms of sort s.

Definition 4.5 (Sorted formulas) Let Σ = (S,F ,P,D) be a sorted signa-
ture with hierarchical predicates. The set FORM of sorted formulas is defined
by the following rules:

(1) If t1, . . . , tn are terms of sorts s1, . . . , sn, then p(a1 ⇒ t1, . . . , an ⇒ tn)
with p ∈ Pn and p〈ei〉(a1 ⇒ t1, . . . , an ⇒ tn) with ei ∈ E and p ∈ P•

n are
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atomic formulas where p: {a1: s1, . . . , an: sn} ∈ DP .
(2) If A and B are formulas, then (A ∧ B), (A → B) and (∀x: sA) are

formulas.

An atomic formula is called simply an atom. ATOM denotes the set of atomic
formulas. We use the symbols ϕp, ϕq, . . . to denote predicates p, q, . . . or pred-
icates with an event identifier p〈ei〉, q〈ei〉, . . ..

Example 4.2 For the sorted signature Σ1 of Example 4.1, we give an example
of order-sorted formulas shown as.

act of violence〈e1〉(actor ⇒ john:man),

illegal act(actor⇒ john:man, vic⇒ mary:woman),

where act of violence, illegal act ∈ P•. The first and second atoms express
“the actor John committed an act of violence at e1” and “the actor John
committed an illegal act against the victim Mary.”

In the language L, two atoms ϕp(a1 ⇒ t1, . . . , an ⇒ tn) and ϕq(b1 ⇒ r1, . . . , bm
⇒ rm) are equivalent if ϕp = ϕq and {a1 ⇒ t1, . . . , an ⇒ tn} = {b1 ⇒
r1, . . . , bm ⇒ rm}. We write A ≈ B to indicate that the atoms A and B are
equivalent. For instance, let A and B be the atoms given by

A = illegal act(actor ⇒ john:man, vic⇒ mary:woman),

B = illegal act(vic⇒ mary:woman, actor ⇒ john:man).

Then A ≈ B.

We define the set FVar(A) of free variables occurring in a formula A. The
function FVar from FORM into 2V is defined by the following rules:

(1) FVar(ϕp(a1 ⇒ t1, . . . , an ⇒ tn)) =
⋃

1≤i≤n Var(ti),
(2) FVar(A ∗B) = FVar(A) ∪ FVar(B) for ∗ ∈ {∧,→},
(3) FVar(∀x: sA) = FVar(A) − {x: s}.

A formula F is said to be a sentence if it is without free variables (i.e.
FVar(F ) = ∅). We write ∀F for the universal closure ∀x1: s1 · · · ∀xm: smF
where F is a formula with FVar(F ) = {x1: s1, . . . , xm: sm}. A formula F is
said to be a ground formula if it is without variables.

Given a sorted signature Σ with hierarchical predicates, an argument is an
ordered pair (a, t) where a is an argument label and t is an order-sorted term
of sort Scp(a) (denoted by a ⇒ t). An argument is ground if it is without
variables. A set of arguments is said to be an argument set (denoted µ) if it is

12



finite and contains none of the same argument labels. Let µ be an argument
set. µ̄ denotes a sequence of all arguments in µ. We write ϕp(µ̄) (or ϕp(µ)) when
we express any sequence of arguments in µ, i.e., any sequence constructed by
all elements of µ. The set of argument labels occurring in µ̄ is defined by the
function ls(µ̄) = {ai ∈ AL | ai ⇒ ti ∈ µ}. µ is an argument set of predicate p
if Arg(p) = ls(µ̄).

4.3 Argument manipulation for event predicates

We present an argument manipulation that translates any argument set to
the argument set of an event predicate p ∈ P•. As a syntactic operation, it
is embedded in inference rules of the Horn clause resolution system we will
propose in Section 5, that is a linear resolution system devised to deal with
hierarchical reasoning of predicates. This manipulation consists of addition
and deletion of arguments based on the argument structure of p (i.e. Arg(p)).
For this, a language L must be extended to the language L+ obtained by ad-
joining to a set of supplement constants c1, . . . , cn. We write TERM+, ATOM+

and FORM+ for the set of terms, the set of atoms and the set of formulas in
L+.

Moreover, we need to permit the language L+ an atomic formula (called an
ill-argumented atom) consisting of ill arguments in order to directly derive a
predicate ϕq(µ̄) from a predicate ϕp(µ̄) if p �P q. If the argument structures
of p and q are different (i.e. µ̄ coincides with the argument structure of p but
not the argument structure of q), then the ill-argumented atom ϕq(µ̄) must
be reformed by manipulating the arguments. To distinguish such atoms, every
atom in ATOM+ is said to be a well-argumented atom. Let Σ = (S,F ∪
{c1, . . . , cn},P,D) be a sorted signature and let p ∈ P•, a1, . . . , an ∈ AL
(ai �= aj if i �= j) and t1 ∈ TERM+

Scp(a1), . . . , tn ∈ TERM+
Scp(an). The following

form

ϕp(a1 ⇒ t1, . . . , an ⇒ tn)

is said to be an ill-argumented atom if Arg(p) �= {a1, . . . , an}. ATOM+
∆ denotes

the set of well- and ill-argumented atoms in L+.

Each ill-argumented atom is not actually a well-formed formula since it is
composed by arguments that do not follow its argument structure in a sorted
signature. In standard predicate logic, each argument structure is given only
by the number of arguments. Namely, p(t1, . . . , tn) is ill-argumented if p is not
an n-ary predicate. In our logic, each well-argumented atom follows not only
the number of arguments but also the argument structure defined as a finite
set of argument labels. The following is an example of well- and ill-argumented
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atoms.

Example 4.3 Let t1, t2, . . . , tn be order-sorted terms. If Arg(p) = {a1, a2},
then the following expressions

ϕp(a1 ⇒ t1),

ϕp(a1 ⇒ t1, a3 ⇒ t3),

ϕp(a1 ⇒ t1, a2 ⇒ t2, a3 ⇒ t3),

. . .

ϕp(a1 ⇒ t1, a2 ⇒ t2, . . . , an ⇒ tn)

are ill-argumented atoms, but

ϕp(a1 ⇒ t1, a2 ⇒ t2)

is a well-argumented atom.

In the following definition, an argument manipulation for ill-argumented atoms
is formally introduced.

Definition 4.6 (Argument manipulation) Let A be a well- or ill-argumented
atom. The addition ADD of an argument is defined by

ADD(A) =




ϕp(µ ∪ {a⇒ c:Scp(a)}) if A = ϕp(µ̄) and Arg(p)− ls(µ̄) �= ∅,

A otherwise,

where a ∈ Arg(p) − ls(µ̄) and c is a new supplement constant of sort Scp(a).
The deletion DEL of an argument is defined by

DEL(A) =




ϕp(µ̄) if A = ϕp(µ ∪ {a⇒ t}) and a �∈ Arg(p),

A otherwise.

The argument manipulation σ is a function from ATOM+
∆ to ATOM+ defined

by

σ(A) = ADDm(DELn(A))

14



where m is the least number such that ADDm(A) = ADDm+1(A)(m > 0) and
n is the least number such that DELn(A) = DELn+1(A)(n > 0). 4

4.4 Σ-structure

We now introduce sorted structures (called Σ-structures) in standard order-
sorted logic, which are used to define restricted Σ-structures (called HΣ-
structures) in the semantics of our proposed logic. As mentioned in Section 4.2,
atoms composed of the same predicate and the same arguments can be re-
garded as equivalent even if the arguments in each atom are differently or-
dered. For example, the following atoms

ϕp(a1 ⇒ t1, a2 ⇒ t2) and ϕp(a2 ⇒ t2, a1 ⇒ t1)

are regarded as semantically identical because these arguments are constructed
by the same argument set. Instead of the ordering of arguments, the equiv-
alence can be decided by the argument labels denoting their argument roles.
Since arguments in a predicate are eliminated and supplemented by the ar-
gument manipulation, the position of each argument might be changed. To
recognize the argument role of such an argument, argument labels are nec-
essary. In the semantics of the logic that follows this notion, the order of
arguments in each predicate does not alter the interpretation of its atom. On
the basis of this, Σ-structures are defined with a small modification of sorted
structures (in standard order-sorted logic) as follows.

Definition 4.7 Let Σ = (S,F ,P,D) be a sorted signature with hierarchical
predicates. A Σ-structure is an ordered pair M = (U, I) such that

(1) U is a non-empty set (the universe of M), and
(2) I is a function where

(a) I(s) ⊆ U , for s ∈ S,
(b) I(si) ⊆ I(sj), for si �S sj ∈ DS ,
(c) I(f): I(s1) × · · · × I(sn) → I(s), for f ∈ Fn with f : 〈s1, . . . , sn,

s〉 ∈ DF ,
(d) I(p) ⊆ Xp, for p ∈ Pn with p: {a1: s1, . . . , an: sn} ∈ DP , where Xp =
{ρ ∈ (Arg(p)→ U) | ∀ai ∈ Arg(p)[ρ(ai) ∈ I(Scp(ai))]} 5 ,

(e) I(p〈ei〉) ⊆ I(p), for p ∈ P•.

We call a function ρ ∈ Xp an argument interpretation of predicate p, which is
used for interpreting p in the Σ-structure. A set of argument interpretations

4 Let f be a function. We write fn for the composite n functions f ◦ f ◦ · · · ◦ f .
5 For sets X and Y , the set of all functions from X to Y is denoted by (X → Y ).
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ρ = {(a1, d1), (a2, d2), · · · , (an, dn)} of p where (ai, di) is an ordered pair of
ai ∈ AL and di ∈ U defines the interpretation I(p). This is based on the fact
that in the semantics of first-order logic an n-ary predicate p is a set (i.e. a
subset of Un) of ordered n-tuples on the universe U .

4.5 Restricted Σ-structure for hierarchical predicates

A requirement of logic with predicate hierarchy is that ϕp(µ̄) implies σ(ϕq(µ̄))
with the argument manipulation σ if p �P q holds and in particular the ar-
gument structures of q, p ∈ P• are different. To obtain the semantics, the
predicate q derived in a hierarchy must be interpreted to include the manipu-
lation of the argument structure µ̄ of the predicate p. The semantic constraint
on the hierarchical relationship between predicates is defined by a restricted
Σ-structure (HΣ-structure). Then we will introduce two translations in struc-
tures: argument manipulation and composition of predicates that are used to
restrict Σ-structures. The argument manipulation in semantics corresponds to
what syntactically manipulates arguments (in Definition 4.6), and the compo-
sition of predicates interprets an integration of argument structures in predi-
cates representing an incident (as in Example 3.3).

First, the argument manipulation in structures is given as adjusting the in-
terpretation of a predicate p to the argument structure of a predicate q. The
adjusted arguments consist of the following two parts:

(1) Common arguments: the intersection of the set of p’s arguments and the
set of q’s, and

(2) Additional arguments: the set of q’s arguments that are not p’s argu-
ments.

Let p, q ∈ P• and let M = (U, I) be a Σ-structure. The common arguments
of p and q are given by

ρ ∩ (Arg(q)×U)

where ρ ∈ I(p). The additional arguments are given by

{(a1, d1), . . . , (an, dn)} for d1 ∈ I(Scp(a1)), . . . , dn ∈ I(Scp(an))

where Arg(q − p) = {a1, . . . , an}. As discussed in Example 3.1, missing argu-
ments should be existentially quantified in event assertions. Corresponding to
this, we have that there exist d1, . . . , dn, and the union of the common argu-
ments ρ ∩ (Arg(q)×U) and the additional arguments {(a1, d1), . . . , (an, dn)}
belongs to a derived predicate q in the interpretation.
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The function ls∗(ρ) = {ai ∈ AL | (ai, di) ∈ ρ} is defined as the set of argument
labels from an argument interpretation ρ.

Definition 4.8 (Argument manipulation in structures)
Let Σ = (S,F ,P,D) be a sorted signature with hierarchical predicates and let
M = (U, I) be a Σ-structure. An interpretation ιq for the argument manipu-
lation to a predicate q is a translation of an argument interpretation ρ to an
argument interpretation of q such that

ιq(ρ) = (ρ ∩ Arg(q)×U) ∪ {(a1, d1), . . . , (an, dn)}

where {a1, . . . , an} = Arg(q) − ls∗(ρ) 6 and, for 1 ≤ i ≤ n, di ∈ I(Scp(ai)).

To interpret the additional arguments as existentially quantified, ιq is de-
fined by one of the interpretations for the argument manipulation. Namely,
the additional arguments {(a1, d1), . . . , (an, dn)} are given by choosing d1 ∈
I(Scp(a1)),. . . , dn ∈ I(Scp(an)) and then it determines an interpretation ιq
for the argument manipulation.

Secondly, we define a composition I(p
〈ei〉
1 ); · · · ; I(p〈ei〉

n ) of interpretations of

predicates p
〈ei〉
1 , . . . , p〈ei〉

n with the same event identifier ei where the argument

interpretations in I(p
〈ei〉
1 ), . . . , I(p〈ei〉

n ) are integrated into a set of argument
interpretations. The union Arg(p1)∪ · · · ∪Arg(pn) is used to make such a set

obtained by integrating the argument interpretations in I(p〈ei〉
1 ), · · · , I(p〈ei〉

n )
and excluding the argument interpretations in disagreement (e.g. ρ1 and ρ2

are in disagreement if ρ1(a) �= ρ2(a) for some a ∈ Arg(p1) ∪ Arg(p2) where

ρ1 ∈ I(p
〈ei〉
1 ) and ρ2 ∈ I(p

〈ei〉
2 )). This composition is employed to embody

the interpretation that predicates p
〈ei〉
1 , . . . , p〈ei〉

n imply a specific predicate q〈ei〉

such that q �P p1, . . . , q �P pn. For example, the predicates act of violence〈e1〉

and steal〈e1〉 imply the predicate rob with violence〈e1 〉 for rob with violence
�P act of violence and rob with violence �P steal.

Definition 4.9 (Composition of predicates in structures)
Let Σ = (S,F ,P,D) be a sorted signature with hierarchical predicates. The
operation � for two argument interpretations is defined by

ρ1 � ρ2 =




1 if ρ1(a) = ρ2(a) for all a ∈ ls∗(ρ1) ∩ ls∗(ρ2),

0 otherwise.

6 We have ls∗(ρ) = Arg(p) by Definition 4.7 if the argument interpretation ρ is a
member of I(ϕp).
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Let M = (U, I) be a Σ-structure. The composition of two sets I(p
〈ei〉
1 ), I(p

〈ei〉
2 )

of argument interpretations is defined as follows:

I(p
〈ei〉
1 ); I(p

〈ei〉
2 ) = {ρ1 ∪ ρ2 | ρ1 ∈ I(p〈ei〉

1 ), ρ2 ∈ I(p〈ei〉
2 ), ρ1 � ρ2 = 1}.

Here the composition of two predicates can be expanded to the composition
of n predicates as follows:

I(p
〈ei〉
1 ); · · · ; I(p〈ei〉

n ) = (((I(p
〈ei〉
1 ); I(p

〈ei〉
2 )); · · ·); I(p〈ei〉

n )).

Let �P be a sub-predicate relation. The one-step sub-predicate relation is
defined by: p �1

P q if p �P q, p �= q, and there exists no �P path from p to q
except for p �P q.

In the following, a restricted Σ-structure (called an HΣ-structure) on a sorted
signature Σ with hierarchical predicates can be defined using the two transla-
tions (in Definition 4.8 and Definition 4.9).

Definition 4.10 (HΣ-structure) Let M = (U, I) be a Σ-structure on a
sorted signature Σ = (S,F ,P,D) with hierarchical predicates. M is an HΣ-
structure with ιP if there exists a set ιP of interpretations ιq (for the argument
manipulation) to all event predicates q ∈ P• and the following conditions hold:

(1) If p, q ∈ P• and p �P q ∈ DP , then

{ιq(ρ) | ρ ∈ I(ϕp)}⊆ I(ϕq)

where 〈ϕp, ϕq〉 is 〈p, q〉, 〈p〈ei〉, q〈ei〉〉 or 〈p〈ei〉, q〉.
(2) If p1, . . . , pn, q ∈ P• and q �P p1, . . . , q �P pn ∈ DP(n > 1) where

p1, . . . , pn are all predicates such that q �1
P pj, then

{ιq(ρ) | ρ ∈ I(p〈ei〉
1 ); · · · ; I(p〈ei〉

n )}⊆ I(q 〈ei〉).

In what follows, we will deal only with HΣ-structures.

4.6 Interpretation and satisfiability

We define an interpretation of expressions in our proposed logic and a sat-
isfiability relation of the interpretation and expressions. The interpretation
includes argument manipulation (in structures) by attaching ιP (a set of in-
terpretations for the argument manipulation to all event predicates) to an
ordered pair of an HΣ-structure and a variable assignment. When a formula
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with supplemented arguments is true in the interpretation with ιP , this means
that there exists an argument manipulation and its interpretation satisfies the
formula. As a result, supplemented arguments (i.e. supplement constants) in
the formula are quantified existentially in the semantics.

A variable assignment (or an assignment) in an HΣ-structure M = (U, I) is a
function α:V → U such that α(x: s) ∈ I(s) for all variables x: s ∈ V. Let α be
an assignment in an HΣ-structure M = (U, I), let x: s be a variable, and let
d ∈ I(s). The variable assignment α[x: s/d] is defined by α−{(x: s, α(x: s))}∪
{(x: s, d)}. We write α[x1: s1/d1, . . . , xn: sn/dn] for (((α[x1: s1/d1])[x2: s2/d2])
. . .)[xn: sn/dn]. That is, if y: s = xi: si for some 1 ≤ i ≤ n, then α[x1: s1/d1, . . . ,
xn: sn/dn](y: s) = di. Otherwise, α[x1: s1/d1, . . . , xn: sn/dn](y: s) = α(y: s). An
HΣ-interpretation is an ordered triple I = (M, ιP , α) where M is an HΣ-
structure with ιP and α is an assignment. The interpretation I[x1: s1/d1, . . . ,
xn: sn/dn] is defined by (M, ιP , α[x1: s1/d1, . . . , xn: sn/dn]).

Definition 4.11 Let I = (M, ιP , α) withM = (U, I) be an HΣ-interpretation.
The denotation [[ ]]α:TERM+ → U is defined by the following rules:

(1) [[x: s]]α = α(x: s).
(2) If c is a normal constant, then [[c: s]]α = I(c).
(3) If c is a supplement constant, then [[c: s]]α = d where a⇒ c: s is added in

σ(ϕq(a1 ⇒ t1, . . . , an ⇒ tn)) and (a, d) ∈ ιq({(a1, [[t1]]α), . . . , (an, [[tn]]α)})
with ιq ∈ ιP .

(4) [[f(t1, . . . , tn): s]]α = I(f)([[t1]]α, . . . , [[tn]]α) with I(f)([[t1]]α, . . . , [[tn]]α) ∈
I(s).

In the definition supplement constants are interpreted by the corresponding
elements assigned in ιP .

Definition 4.12 Let I = (M, ιP , α) with M = (U, I) be an HΣ-interpretation
and F an order-sorted formula. The satisfiability relation I |=HΣ F is defined
by the following rules:

(1) I |=HΣ ϕp(a1 ⇒ t1, . . . , an ⇒ tn) iff {(a1, [[t1]]α), . . . , (an, [[tn]]α)} ∈ I(ϕp).
(2) I |=HΣ (A ∧B) iff I |=HΣ A and I |=HΣ B.
(3) I |=HΣ (A→ B) iff I �|=HΣ A or I |=HΣ B.
(4) I |=HΣ (∀x: sA) iff for all d ∈ I(s), I[x: s/d] |=HΣ A.

If an atomic formula is satisfied by an HΣ-interpretation I, then also all the
equivalent atoms must be satisfied by it. ATOM/ ≈ is the quotient set of
ATOM modulo ≈. Then for any A,B ∈ AS with AS ∈ ATOM/ ≈, I |=HΣ A
iff I |=HΣ B. We write I |=HΣ Γ (I is an HΣ-model of Γ) if I is an HΣ-
interpretation and I |=HΣ F for every formula F ∈ Γ. Γ is HΣ-satisfiable if
it has an HΣ-model, and Γ is HΣ-unsatisfiable if it has no HΣ-models. We
write Γ |=HΣ F (F is a consequence of Γ in the class of HΣ-structures) if
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every HΣ-model of Γ is an HΣ-model of a formula F .

The following two lemmas will be proved by the fact that the argument ma-
nipulation σ (as a translation of an ill-argumented atom ϕq(µ) to the well-
argumented atom) corresponds to the interpretation ιq for the argument ma-
nipulation to the predicate q.

Lemma 4.1 If p �P q ∈ DP , then ∀ϕp(µ̄) |=HΣ ∀σ(ϕq(µ̄)) where 〈ϕp, ϕq〉 is
〈p, q〉, 〈p〈ei〉, q〈ei〉〉 or 〈p〈ei〉, q〉 and µ is an argument set of p.

Proof. Let I |=HΣ ∀y1: s1 · · · yr: srϕp(µ̄) where I = (M, ιP , α). Then for all d1 ∈
I(s1), . . . , dr ∈ I(sr), I[y1: s1/d1, . . . , yr: sr/dr] |=HΣ ϕp(µ̄). By Definition 4.6,
σ(ϕq(µ̄)) = ϕq(a1 ⇒ t1, . . . , am ⇒ tm, b1 ⇒ c1:Scp(b1), . . . , bk ⇒ ck:Scp(bk)),
where Arg(q) ∩ ls(µ̄) = {a1, . . . , am}, for 1 ≤ l ≤ m, al ⇒ tl ∈ µ, and
Arg(q)− ls(µ̄) = {b1, . . . , bk}. By Definitions 4.8, 4.10 and 4.11, I(ϕq) includes

{(a1, [[t1]]α), . . . , (am, [[tm]]α)} ∪ {(b1, [[c1:Scp(b1)]]α), . . . , (bk, [[ck:Scp(bk)]]α)}.

So I[y1: s1/d1, . . . , yr: sr/dr] |=HΣ σ(ϕq(µ̄)). This derives I |=HΣ ∀y1: s1 · · · yr: sr

σ(ϕq(µ̄)) with FVar(σ(ϕq(µ̄))) ⊆ {y1: s1, . . . , yr: sr}.

Lemma 4.2 If q �P p1, . . . , q �P pn ∈ DP(n > 1) where p1, . . . , pn are all

predicates such that q �1
P pj, then {∀p〈ei〉

1 (µ̄1), . . . ,∀p〈ei〉
n (µ̄n)} |=HΣ ∀σ(q〈ei〉(µ̄))

where, for 1 ≤ j ≤ n, µj is an argument set of pj and µ = µ1 ∪ · · · ∪ µn is an
argument set.

Proof. Let I |=HΣ ∀p〈ei〉
j (µ̄j) for 1 ≤ j ≤ n where I = (M, ιP , α). Then I |=HΣ

∀y1: s1 · · · yr: sr(p
〈ei〉
1 (µ̄1)∧· · ·∧p〈ei〉

n (µ̄n)) with FVar(p
〈ei〉
1 (µ̄1)∧· · ·∧p〈ei〉

n (µ̄n)) =

{y1: s1, . . . , yr: sr}. Thus, for 1 ≤ j ≤ n, I[y1: s1/d1, . . . , yr: sr/dr] |=HΣ p
〈ei〉
j (µ̄j)

for all d1 ∈ I(s1), . . . , dr ∈ I(sr). By Definition 4.6, σ(q〈ei〉(µ̄)) = q〈ei〉(a1 ⇒
t1, . . . , am ⇒ tm, b1 ⇒ c1:Scp(b1), . . . , bk ⇒ ck:Scp(bk)), where µ = µ1 ∪
· · · ∪ µn, Arg(q) ∩ ls(µ̄) = {a1, . . . , am}, for 1 ≤ l ≤ m, al ⇒ tl ∈ µ, and

Arg(q) − ls(µ̄) = {b1, . . . , bk}. Since I(p
〈ei〉
1 ); · · · ; I(p〈ei〉

n ) includes {(a, [[t]]α) |
a⇒ t ∈ µ} (by Definition 4.9), we have

{(a1, [[t1]]α, . . . , (am, [[tm]]α), (b1, d
′
1), . . . , (bk, d

′
k)} ∈ I(q〈ei〉)

where d′1 = [[c1:Scp(b1)]]α,. . . ,d′k = [[ck:Scp(bk)]]α (by Definitions 4.8, 4.10
and 4.11). Hence I[y1: s1/d1, . . . , yr: sr/dr] |=HΣ σ(q〈ei〉(µ̄)) can be proved.
Therefore, we have I |=HΣ ∀y1: s1 · · · yr: srσ(q〈ei〉(µ̄)) with FVar(σ(q〈ei〉(µ̄)))
⊆ {y1: s1, . . . , yr: sr}.
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5 Horn clause resolution with predicate hierarchy

The purpose of this section is to present a Horn clause resolution system that is
extended to include inference rules of predicate hierarchies with the argument
manipulation σ and an order-sorted unification algorithm.

5.1 Horn clauses

Before developing the Horn clause resolution system for the proposed logic,
we define Horn clausal forms in L+ (used as the syntax of logic programming).

Definition 5.1 (Horn clauses) Let L,L1, . . . , Ln be atoms. A goal G is de-
noted by the form G: = {L1, . . . , Ln} (n ≥ 0). In particular, we use the nota-
tion � if n = 0 (i.e. the goal is the empty set). A clause C is denoted by the
form C : = L ← G. In particular, we write L ← for L ← �. The set of all
clauses is denoted by CFORM .

We use the abbreviation L to denote a goal {L} that is a singleton. We define
the function CVar:CFORM → 2V by: CVar(L ← G) = (

⋃
Li∈G FVar(Li)) ∪

FVar(L). Clauses L ← {L1, . . . , Ln} represent the universal closures ∀(L1 ∧
. . . ∧ Ln → L).

Definition 5.2 (Program) A (logic) program P = (Σ, CS) consists of a
sorted signature Σ with hierarchical predicates and a finite set CS of clauses
without supplement constants.

Note that any supplement constant does not belong to the program P (exactly
the set CS of clauses), because it is used only in formulas to which a sorted
substitution or an argument manipulation is applied.

5.2 Sorted substitution

Definition 5.3 (Sorted substitution) A sorted substitution is a function
θ mapping from a finite set of variables to the set TERM+ of all terms in L+

where θ(x: s) �= x: s and θ(x: s) ∈ TERM+
s .

Let θ be a sorted substitution. Dom(θ) denotes the domain of θ and Cod(θ)
denotes the codomain of θ. The sorted substitution θ can be represented as
a finite set {x1: s1/t1, . . . , xn: sn/tn} where Dom(θ) = {x1: s1, . . . , xn: sn} and
θ(x1: s1) = t1, . . . , θ(xn: sn) = tn. Let V be a set of sorted variables. θ is called
a ground (sorted) substitution for V if Var(θ(x: s)) = ∅ for all x: s ∈ V , i.e.,
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θ(x: s) is a ground term. θ is called a ground substitution if Var(θ(x: s)) = ∅
for all x: s ∈ Dom(θ). We write ε for the identity substitution given by the
empty set. A sorted substitution θ is a renaming if it is injective on Dom(θ)
and Cod(θ) is a set of variables. The restriction of a substitution θ to a set V
of variables is defined by θ↑V = {x: s/θ(x: s) | x: s ∈ V ∩Dom(θ)}.

We define an extension of the sorted substitution θ to expressions (terms,
formulas, goals and clauses).

Definition 5.4 Let A,B be order-sorted formulas, L,L1, . . . , Ln atoms, G a
goal and θ a sorted substitution. Eθ (based on [7,25]) is defined by the following
rules:

• If E = x: s and x: s ∈ Dom(θ), then Eθ = θ(x: s).
• If E = x: s and x: s �∈ Dom(θ), then Eθ = x: s.
• If E = f(t1, . . . , tm): s, then Eθ = f(t1θ, . . . , tmθ): s.
• If E = ϕp(a1 ⇒ t1, . . . , am ⇒ tm), then Eθ = ϕp(a1 ⇒ t1θ, . . . , am ⇒ tmθ).
• If E = (A ∗B) for ∗ ∈ {∧,→}, then Eθ = (Aθ ∗Bθ).
• If E = (∀x: sA), then Eθ = (∀x: sA(θ↑FVar(∀x: sA))).
• If E = {L1, . . . , Ln}, then Eθ = {L1θ, . . . , Lnθ}.
• If E = L← G, then Eθ = Lθ ← Gθ.

Let θ be a sorted substitution and E an expression. We call Eθ an instance
of E by θ. An expression E is ground if E is without variables. θ is called a
ground substitution for E if Eθ is ground. We denote the set of all ground
instances of E by ground(E). Let ES be a set {E1, . . . , En} of expressions.
We define ground(ES) =

⋃
Ei∈ES ground(Ei). In particular, ground(CS) =⋃

C∈CS ground(C) where CS is a set of clauses. Let θ and γ be sorted substi-
tutions. The composition of θ and γ (denoted θγ) is defined by

(x: s)θγ = ((x: s)θ)γ.

An expression E is a variant of an expression E ′ if there exists a renaming θ
such that E = E ′θ. Let E1 and E2 be expressions. A substitution θ is a unifier
of E1 and E2 if E1θ = E2θ. A substitution θ is more general than γ (denoted
θ ≤ γ) if there exists λ such that γ = θλ. A unifier θ of E1 and E2 is called a
most general unifier if for every unifier γ of E1 and E2 we have θ ≤ γ.

5.3 Sorted unification and resolution

We will introduce a unification algorithm for order-sorted atoms that is used in
order-sorted resolution. Let ϕp(a1 ⇒ t1, . . . , an ⇒ tn) and ϕp(b1 ⇒ r1, . . . , bn ⇒
rn) be atoms containing the same predicate p. To unify these, a unification al-
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gorithm is applied to the pair of sequences (t1, . . . , tn) and (r′1, . . . , r
′
n) where

r′i = rj if ai = bj for 1 ≤ i, j ≤ n. The order-sorted unification algorithm
(based on [8,27,36]) is defined by translations on systems of equations.

Definition 5.5 (Sorted unification algorithm)
Let (t1, . . . , tn) and (r1, . . . , rn) be sequences of sorted terms. Let (ES,S) with
ES = {t1 .

= r1, . . . , tn
.
= rn} and S = ∅ be an initial pair of equational

systems. A translation of (ES,S) in the order-sorted unification algorithm is
defined by the following rules:

Identity (ES ∪ {t .= t}, S) =⇒ (ES,S) if t �∈ V.

Decomposition (ES ∪ {f(t1, . . . , tn)
.
= f(r1, . . . , rn)}, S) =⇒

(ES ∪ {t1 .
= r1, . . . , tn

.
= rn}, S)

if there exists at least one ti �= ri.

Transposition (ES ∪ {t .= x: s}, S) =⇒ (ES ∪ {x: s .
= t}, S)

if t �∈ V or t ∈ Vs′ with s′ <S s.

Substitution 1 (ES ∪ {x: s .
= t}, S) =⇒ (ESτ, Sτ ∪ {x: s .

= t})
where τ = {x: s/t} if t ∈ TERMs

7 and x: s �∈ Var(t).

Substitution 2 (ES ∪ {x: s1
.
= y: s2}, S) =⇒

(ESτ, Sτ ∪ {x: s1
.
= z: s3, y: s2

.
= z: s3})

where s3 = glb(s1, s2) and τ = {x: s1/z: s3, y: s2/z: s3}
if s3 is neither s1, s2, nor ⊥.

If ES is translated into the empty set, then the algorithm terminates. We
obtain a most general unifier {x1: s1/t

′
1, . . . , xm: sm/t

′
m} for (t1, . . . , tn) and

(r1, . . . , rn) if ES = ∅ and S = {x1: s1
.
= t′1, . . . , xm: sm

.
= t′m}. The correctness

of this order-sorted unification algorithm is shown in [19].

The Horn clause resolution with predicate hierarchy is obtained by the follow-
ing inference rules that is an extension of the linear resolution in [12].

Definition 5.6 (Resolvent) Let P = (Σ, CS) be a program and let 〈ϕp, ϕq〉
be 〈p, q〉, 〈p〈ei〉, q〈ei〉〉 or 〈p〈ei〉, q〉.

• R1-resolution rule. Let G be a goal and let L′ ← G′ ∈ CS. If θ is a
unifier of L ∈ G and L′, then (G−{L})θ ∪G′θ is an unrestricted resolvent

7 Recall that TERMs contains not only the terms of sort s but also the terms of
subsorts of s.

23



of G with respect to L and L′ ← G′. We write

G
θ−→R1 (G− {L})θ ∪G′θ.

• R2-resolution rule. Let G be a goal and let ϕp(µ̄
′)← G′ ∈ CS. If p �P q ∈

DP and θ is a unifier of ϕq(µ̄) ∈ G and σ(ϕq(µ̄
′)), then (G−{ϕq(µ̄)})θ∪G′θ

is an unrestricted resolvent of G with respect to ϕq(µ̄) and ϕp(µ̄
′)← G′. We

write

G
θ−→R2 (G− {ϕq(µ̄)})θ ∪G′θ.

• R3-resolution rule. Let G be a goal and let p
〈ei〉
1 (µ̄1)← G1, . . . , p〈ei〉

n (µ̄n)←
Gn ∈ CS. If p1, . . . , pn(n > 1) are all predicates such that q �1

P pj ∈ DP ,
and θ is a unifier of q〈ei〉(µ̄) ∈ G and σ(q〈ei〉(µ̄′)) where µ′ = µ1 ∪ · · · ∪ µn

is an argument set, then (G − {q〈ei〉(µ̄)})θ ∪ (G1 ∪ · · · ∪ Gn)θ is an un-

restricted resolvent of G with respect to q〈ei〉(µ̄) and p
〈ei〉
1 (µ̄1) ← G1, . . . ,

p〈ei〉
n (µ̄n)← Gn. We write

G
θ−→R3 (G− {q〈ei〉(µ̄)})θ ∪ (G1 ∪ · · · ∪Gn)θ.

We write G
θ−→ G′ if G

θ−→R1 G
′, G

θ−→R2 G
′ or G

θ−→R3 G
′. An unrestricted

resolvent is a resolvent if the unifier θ is most general.

Definition 5.7 (Resolution) Let P be a program. A finite sequence

P :G0
θ1−→ G1

θ2−→ G2
θ3−→ · · · θn−→ Gn

is an unrestricted resolution of G0 with respect to P (n ≥ 0). We denote it by

P :G0
θ−→→ Gn with θ = θ1 · · · θn.

P :G0
θ−→→ Gn is called successful if Gn = �. We write G0 −→→ fail if there

exists no successful resolution of G0. We use the abbreviation G0 −→→ Gn when

we do not need to emphasize the substitution θ in G0
θ−→→ Gn. An unrestricted

resolution is called a resolution if the unrestricted resolvents are resolvents.
The composition (θ1 · · · θn)↑CVar(G0) of the substitutions to the variables in
the initial goal G0 is called a computed answer substitution. For 1 ≤ i ≤ n,
the restriction of θi to the goal Gi−1 (i.e. θi↑CVar(Gi−1)) is denoted by θi

↑.
Moreover, we write θ ↑ for θ1

↑· · · θn
↑.

In the rest of Section 5.3, we demonstrate resolution processes concerning the
examples we have seen in Section 3. The sort and predicate hierarchies are
expressed in sorted signatures. The facts in logic programs are described as
clauses, and the queries are given by goals.

Example 5.1 The program P1 is the ordered pair (Σ1, CS1) of Σ1 (in Exam-
ple 4.1) and
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CS1 = {act of violence(actor ⇒ john:man)←}.

This fact act of violence(actor ⇒ john:man) means that “the actor John
committed an act of violence.” With respect to the program, the resolution of
the goal illegal act(actor ⇒ john: man, vic⇒ mary:woman) fails as follows.

illegal act(actor⇒ john:man, vic⇒ mary:woman) −→ fail

However, a successful resolution of the goal illegal act(actor ⇒ john:man,
vic⇒ y: person) can be obtained as follows.

illegal act(actor⇒ john:man, vic⇒ y: person)
θ−→R2 �

In the resolution, θ = {y: person/c: person} where c is a new supplement
constant.

Example 5.2 The sorted signature Σ2 = (S,F ,P,D) comprises the following
symbols:

S = {person, man, woman, wallet, thing, �, ⊥},
F = {john, c1},
P• = {act of violence, steal},

and the declaration D = (D∗
S ,DF ,DP), where D∗

S is the reflexive and transitive
closure of DS , constructed by

DS = {⊥ �S man, ⊥ �S woman, ⊥ �S wallet,

man �S person, woman �S person, wallet �S thing,

person �S �, thing �S �},
DF = {john: 〈man〉, c1: 〈wallet〉},
DP = {steal �P illegal act} ∪

{steal: {actor: person, obj: thing},
illegal act: {actor: person}}.

The argument structure of illegal act consists of one argument (labeled with
actor), and the predicate steal have two arguments (labeled with actor and
obj). The program P2 is the ordered pair (Σ2, CS2) where

CS2 = {steal(actor ⇒ john:man, obj ⇒ c1:wallet)←}.
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A successful resolution of illegal act(actor ⇒ john:man) is given in the pro-
gram P2 as follows.

illegal act(actor⇒ john:man)
ε−→R2 �

However, for the following goal there exist no successful resolutions.

illegal act(obj ⇒ c1:wallet) −→ fail

More precisely, the goal does not belong the sorted formulas because obj is not
defined as an argument of the predicate illegal act.

Example 5.3 The sorted signature Σ3 comprises the following symbols:

S = {person, man, woman, wallet, watch, thing, �, ⊥},
F = {john, tom, mary, c1, c2},
P• = {rob with violence, act of violence, steal, illegal act},

and the declaration D = (D∗
S ,DF ,DP), where D∗

S is the reflexive and transitive
closure of DS , constructed by

DS = {⊥ �S man, ⊥ �S woman, ⊥ �S wallet, ⊥ �S watch,

man �S person, woman �S person, wallet �S thing,

watch �S thing, person �S �, thing �S �},
DF = {john: 〈man〉, tom: 〈man〉, mary: 〈woman〉,

c1: 〈wallet〉, c2: 〈watch〉},
DP = {rob with violence �P act of violence, rob with violence �P steal,

act of violence �P illegal act, steal �P illegal act} ∪
{rob with violence:{actor: person, vic: person, obj: thing},
act of violence:{actor: person, vic: person},
steal: {actor: person, obj: thing},
illegal act: {actor: person}}.

The argument structures of rob with violence and illegal act consist of three
arguments (labeled with actor, vic and obj) and one argument (labeled with
actor). The predicates act of violence and steal have two arguments (labeled
with actor, vic and actor, obj respectively). The program P3 is the ordered pair
(Σ3, CS3) where

CS3 = {act of violence〈e1〉(actor ⇒ john:man, vic⇒ mary:woman)←,
steal〈e1〉(actor⇒ john:man, obj ⇒ c1:wallet)←,
steal〈e2〉(actor⇒ john:man, obj ⇒ c2:watch)←}.
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The first and second facts indicate that “the actor John committed an act
of violence against the victim Mary at e1” and that “the actor John stole the
wallet c1 at e1.” Additionally, the third fact expresses “the actor John stole the
watch c2 at e2.” With respect to the program, we have the following successful
resolutions.

rob with violence〈e1〉(actor ⇒ john:man, vic⇒ mary:woman,

obj ⇒ c1:wallet)
ε−→R3 �

rob with violence〈e1〉(actor ⇒ x: person, vic⇒ y: person,

obj ⇒ z: thing)
θ−→R3 �

In the second resolution, θ = {x: person/john:man, y: person/mary:woman,
z: thing/c1: wallet}. However, for the following goals there exist no successful
resolutions.

rob with violence〈e1〉(actor ⇒ john:man, vic⇒ mary:woman,
obj ⇒ c2:watch) −→ fail

rob with violence〈e1〉(actor ⇒ john:man, vic⇒ tom:man,
obj ⇒ z: thing) −→ fail

5.4 Soundness and completeness of resolution

The soundness of the Horn clause resolution is proved as follows.

Theorem 5.1 (Soundness of resolution) Let P be a program and G a
goal. If there exists a successful resolution of G with a computed answer sub-
stitution θ, then P |=HΣ Gθ.

Proof. This theorem is proved by induction on the length n of a successful
resolution. Let P = (Σ, CS) be a program and let

P :G
θ1−→ G1

θ2−→ G2
θ3−→ · · · θn−→ �

with (θ1 · · · θn)↑CVar(G) be a successful resolution.
Base case: n = 1.

• If G
θ1−→R1 �, then θ1 is a unifier of L′ ←∈ CS and L(= G). Let I be

an HΣ-model of P . Then I |=HΣ ∀(L′θ1). Hence P |=HΣ Gθ1 since L′θ1 =
Lθ1(= Gθ1).

• If G
θ1−→R2 �, then ϕq(µ̄)θ1 = σ(ϕq(µ̄

′))θ1 where G = ϕq(µ̄) and ϕp(µ̄
′)←∈

CS. Let I be an HΣ-model of P . By Lemma 4.1, I |=HΣ ∀σ(ϕq(µ̄
′)) since
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p �P q ∈ DP and I |=HΣ ∀ϕp(µ̄
′). Then I |=HΣ ∀(σ(ϕq(µ̄

′))θ1). Therefore,
P |=HΣ Gθ1 since ϕq(µ̄)θ1 = σ(ϕq(µ̄

′))θ1.

• IfG
θ1−→R3 �, then q〈ei〉(µ̄)θ1 = σ(q〈ei〉(µ̄′))θ1 whereG = q〈ei〉(µ̄), p

〈ei〉
1 (µ̄1)←

, . . . , p〈ei〉
n (µ̄n)←∈ CS and µ′ = µ1 ∪ · · · ∪ µn. Let I be an HΣ-model of P .

Since q �P p1, . . . , q �P pn ∈ DP(n > 1) and I |=HΣ ∀p〈ei〉
1 (µ̄1), . . . , I |=HΣ

∀p〈ei〉
n (µ̄n), we have I |=HΣ ∀σ(q〈ei〉(µ̄′)) by Lemma 4.2. Then, I |=HΣ

∀(σ(q〈ei〉(µ̄′))θ1). Therefore, P |=HΣ Gθ1 since q〈ei〉(µ̄)θ1 = σ(q〈ei〉(µ̄′))θ1.

Induction step: n > 1.

• If G
θ1−→R1 G1, then

G′θ1 ∪ (G− {L})θ1 θ2−→ G2
θ3−→ · · · θn−→ �

is a resolution of G1(= G′θ1∪(G−{L})θ1) where L ∈ G, L′ ← G′ ∈ CS and
L′θ1 = Lθ1. By the induction hypothesis, P |=HΣ (G′θ1∪(G−{L})θ1)θ′ with
θ′ = θ2 · · · θn. Then P |=HΣ L′θ1θ

′(= Lθ1θ
′) since P |=HΣ (L′ ← G′)θ1θ

′.
Hence P |=HΣ Gθ1θ

′.

• If G
θ1−→R2 G1, then

G′θ1 ∪ (G− {ϕq(µ̄)})θ1 θ2−→ G2
θ3−→ · · · θn−→ �

is a resolution of G1(= G′θ1 ∪ (G−{ϕq(µ̄)})θ1) where ϕq(µ̄) ∈ G, ϕp(µ̄
′)←

G′ ∈ CS, σ(ϕq(µ̄
′))θ1 = ϕq(µ̄)θ1 and p �P q ∈ DP . By the induction

hypothesis, P |=HΣ (G′θ1 ∪ (G − {ϕq(µ̄)})θ1)θ′ with θ′ = θ2 · · · θn. Then
P |=HΣ ϕp(µ̄

′)θ1θ
′ since P |=HΣ (ϕp(µ̄

′)← G′)θ1θ
′. By Lemma 4.1, P |=HΣ

σ(ϕq(µ̄
′))θ1θ

′(= ϕq(µ̄)θ1θ
′). Hence P |=HΣ Gθ1θ

′.

• If G
θ1−→R3 G1, then

(G1 ∪ · · · ∪Gm)θ1 ∪ (G− {q〈ei〉(µ̄)})θ1 θ2−→ G2
θ3−→ · · · θn−→ �

is a resolution of G1(= (G1∪· · ·∪Gm)θ1∪(G−{q〈ei〉(µ̄)})θ1) where q〈ei〉(µ̄) ∈
G and p

〈ei〉
1 (µ̄1)← G1, . . . , p

〈ei〉
m (µ̄m)← Gm ∈ CS, q〈ei〉(µ̄)θ1 = σ(q〈ei〉(µ̄′))θ1

with µ′ = µ1 ∪ · · · ∪ µm, and q �P p1, · · · , q �P pm ∈ DP . By the induction
hypothesis, P |=HΣ ((G1 ∪ · · · ∪ Gm)θ1 ∪ (G − {q〈ei〉(µ̄)})θ1)θ′ with θ′ =

θ2 · · · θn. Then for 1 ≤ j ≤ m, P |=HΣ p
〈ei〉
j (µ̄j)θ1θ

′ since P |=HΣ (p
〈ei〉
j (µ̄j)←

Gj)θ1θ
′. By Lemma 4.2, P |=HΣ σ(q〈ei〉(µ̄′))θ1θ

′(= q〈ei〉(µ̄)θ1θ
′). So P |=HΣ

Gθ1θ
′.

According to Gθ1 · · · θn = G(θ1 · · · θn)↑CVar(G), we see that P |=HΣ Gθ with
θ = (θ1 · · · θn)↑CVar(G).

Examples 5.1, 5.2 and 5.3 show that the Horn clause resolution proposed
yields the hierarchical reasoning of predicates (illustrated by the examples in
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Section 3). Next, in order to make the Horn clause resolution complete, two
resolution rules R2+ and R3+ obtained by modifying the resolution rules R2
and R3 must be complemented. This is because the rules R2 and R3 skip
subdivided steps for derivations upon a predicate hierarchy. That is, the rule
R2 is applied to ϕq(µ̄) ∈ G, ϕp(µ̄

′) ← G′ ∈ CS and p �P q, whereas R2+ is
applied to ϕq(µ̄) ∈ G and p �P q. Also, the rule R3 is applied to q〈ei〉(µ̄) ∈ G,

p
〈ei〉
1 (µ̄1)← G1, . . . , p〈ei〉

n (µ̄n)← Gn ∈ CS and q �1
P p1,. . . , q �1

P pn, but R3+

is applied to q〈ei〉(µ̄) ∈ G and q �1
P p1,. . . , q �1

P pn. The concatenation of the
rules R1 and R2+ (resp. R1 and R3+) yields the rule R2 (resp. R3).

We proceed to the definition of the resolution rules R2+ and R3+.

Definition 5.8 Let P = (Σ, CS) be a program and let 〈ϕp, ϕq〉 be 〈p, q〉,
〈p〈ei〉, q〈ei〉〉 or 〈p〈ei〉, q〉.

• R2+-resolution rule. Let G be a goal and let µ′ be an argument set of
p. If p �P q ∈ DP and θ is a unifier of ϕq(µ̄) ∈ G and σ(ϕq(µ̄

′)), then
(G−{ϕq(µ̄)})θ∪{ϕp(µ̄

′)}θ is an unrestricted resolvent of G with respect to
ϕq(µ̄) and ϕp(µ̄

′). We write

G
θ−→R2+ (G− {ϕq(µ̄)})θ ∪ {ϕp(µ̄

′)}θ.

• R3+-resolution rule. Let G be a goal and let µ1, . . . , µn be argument sets
of p1, . . . , pn. If p1, . . . , pn(n > 1) are all predicates such that q �1

P pj ∈ DP ,
and θ is a unifier of q〈ei〉(µ̄) ∈ G and σ(q〈ei〉(µ̄′)) where µ′ = µ1 ∪ · · · ∪ µn

is an argument set, then (G− {q〈ei〉(µ̄)})θ ∪ {p〈ei〉
1 (µ̄1), . . . , p

〈ei〉
n (µ̄n)}θ is an

unrestricted resolvent of G with respect to q〈ei〉(µ̄) and p
〈ei〉
1 (µ̄1), . . . , p

〈ei〉
n (µ̄n).

We write

G
θ−→R3+ (G− {q〈ei〉(µ̄)})θ ∪ {p〈ei〉

1 (µ̄1), . . . , p
〈ei〉
n (µ̄n)}θ.

We write G
θ−→+ G′ if G

θ−→ G′, G
θ−→R2+ G′, or G

θ−→R3+ G′. P :L
θ−→→+

G (or L −→→+ G) denotes an unrestricted resolution with these rules. The
soundness of the Horn clause resolution with the rules R2+,R3+ is proved as
follows.

Theorem 5.2 (Soundness of resolution with R2+, R3+) Let P be a pro-
gram and G a goal. If there exists a successful resolution P :G −→→+ � with a
computed answer substitution θ, then P |=HΣ Gθ.

Proof. Similar to Theorem 5.1.

As a prerequisite notion for the proof of the completeness, we define a deriva-
tion tree in a program P for a clause C as follows.

29



Definition 5.9 (Derivation tree) Let P = (Σ, CS) be a program, let C be
a ground clause and let 〈ϕp, ϕq〉 be 〈p, q〉, 〈p〈ei〉, q〈ei〉〉 or 〈p〈ei〉, q〉. A derivation
tree in P for C is a finite labeled tree such that

(1) the root is labeled with C,
(2) every node is labeled with a ground clause,
(3) every leaf is labeled with a clause in ground(P ),
(4) every non-leaf node Ck is one of the following clauses:

(a) Ck = L1 ← G1∪G2 where its children are labeled with L1 ← G1∪{L}
and L← G2,

(b) Ck = σ(ϕq(µ̄)) ← G where p �P q and its child is labeled with
ϕp(µ̄)← G, and

(c) Ck = σ(q〈ei〉(µ̄)) ← G1 ∪ · · · ∪ Gn where µ is a ground argument
set, p1, . . . , pn (n > 1) are all predicates such that q �1

P pj, and its

children are labeled with p
〈ei〉
1 (µ̄1) ← G1, . . . , p〈ei〉

n (µ̄n) ← Gn where
µ = µ1 ∪ · · · ∪ µn.

We write P � C if there exists a derivation tree in P for a clause C . To
show the completeness of the Horn clause resolution, we construct a canonical
interpretation IP [16] that satisfies each atom derivable in a program P .

Definition 5.10 Let P be a program and L an atom. A canonical interpre-
tation IP of P is an ordered triple (MH , ιP , α) such that

(1) MH = (IH , UH) where
(a) UH = TERM+

0 ,
(b) IH(s) = TERM+

0,s(⊆ UH), for s ∈ S,
(c) IH(c) = c: s, for c ∈ F0 with c: 〈s〉 ∈ DF ,
(d) IH(f)(t1, . . . , tn) = f(IH(t1), . . . , IH(tn)): s, for f ∈ Fn with f : 〈s1,

. . . , sn, s〉 ∈ DF ,
(e) IH(p) ⊆ {ρ ∈ (Arg(p)→ UH) | ∀ai ∈ Arg(p)[ρ(ai) ∈ IH(Scp(ai))]},
(f ) IH(p〈ei〉) ⊆ IH(p), for p ∈ P•.

(2) ιP is a set of interpretations ιq (for the argument manipulation) to all
event predicates q ∈ P• such that

ιq(ρ) = (ρ ∩ Arg(q)×UH) ∪ {(a1, c1:Scp(a1)), . . . , (an, cn:Scp(an))}

where ρ is an argument interpretation, {a1, . . . , an} = Arg(q) − ls∗(ρ)
and c1, . . . , cn are the supplement constants introduced in σ(ϕq(µ̄)) with
µ = {a⇒ t | (a, t) ∈ ρ}.

(3) IP |=HΣ L iff there exists a derivation tree in P for L←.

The next lemma shows that the canonical interpretation IP satisfies P (i.e. it
is an HΣ-model of P ).

Lemma 5.1 Let P be a program. A canonical interpretation IP of P is an
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HΣ-model of P .

Proof. In order to prove that IP is a model of P , we show IP |=HΣ L ← G
for all clauses L ← G in P = (Σ, CS). Let L ← G ∈ CS and let θ be a
ground substitution for L ← G. Suppose that IP |=HΣ L1θ ∧ . . . ∧ Lnθ with
G = {L1, . . . , Ln}. By the definition of IP , for 1 ≤ i ≤ n, P � Liθ ←. Then
P � Lθ ← L1θ ∧ . . . ∧ Lnθ because Lθ ← L1θ ∧ . . . ∧ Lnθ ∈ ground(P ), and
thus P � Lθ ← by Definition 5.9. So IP |=HΣ Lθ. Hence IP |=HΣ (L ← G)θ
is proved. IP |=HΣ L← G iff IP |=HΣ ground(L ← G) iff IP |=HΣ (L← G)θ
for all ground substitutions θ for L← G. It follows that IP |=HΣ L← G.

Next, we have to show that IP is an HΣ-interpretation. Let IP = (MH , ιP , α).
For p �P q ∈ DP and ρ ∈ IH(ϕp), by Definition 5.10, ιq(ρ) = (ρ∩Arg(q)×UH )∪
{(a1, c1:Scp(a1)), . . . , (ak, ck:Scp(ak))} where Arg(q)− ls∗(ρ) = {a1. . . . , ak}.
Now by Definition 4.12 and ρ ∈ IH(ϕp), we have IP |=HΣ ϕp(µ̄ρ) with µρ =
{a ⇒ t | (a, t) ∈ ρ}. Then P � ϕp(µ̄ρ) ← by the definition of IP . Hence
P � σ(ϕq(µ̄ρ))← by Definition 5.9 and p �P q, and thus IP |=HΣ σ(ϕq(µ̄ρ)).
Hence (ρ∩ (Arg(q)×UH ))∪ {(a1, c1:Scp(a1)), . . . , (ak, ck:Scp(ak))} ∈ IH(ϕq).

For q �P p1, . . . , q �P pn ∈ DP(n > 1) and for ρ ∈ IH(p
〈ei〉
1 ); · · · ; IH(p〈ei〉

n ),
we have ιq(ρ) = (ρ ∩ Arg(q)×UH) ∪ {(a1, c1:Scp(a1)), . . . , (ak, ck:Scp(ak))}
where Arg(q) − ls∗(ρ) = {a1. . . . , ak}. By Definitions 4.9 and 4.12 and by

ρ ∈ IH(p
〈ei〉
1 ); · · · ; IH(p〈ei〉

n ), IP |= p
〈ei〉
j (µ̄j) for 1 ≤ j ≤ n where µ1 ∪ · · · ∪µn =

{a ⇒ t | (a, t) ∈ ρ}. Then P � p
〈ei〉
j (µ̄j) ← for 1 ≤ j ≤ n by the defini-

tion of IP . By Definition 5.9 and q �P p1, . . . , q �P pn, P � σ(q〈ei〉(µ̄ρ)) ←
where µρ = µ1 ∪ · · · ∪ µn. Then IP |= σ(q〈ei〉(µ̄ρ)). So (ρ ∩ (Arg(q)×UH)) ∪
{(a1, c1:Scp(a1)), . . . , (ak, ck:Scp(ak))} ∈ IH(q〈ei〉).

Lemma 5.2 Let P = (Σ, CS) be a program and L ← G a ground clause. If
P � L← G, then P :G −→→+ � implies P :L −→→+ �.

Proof. We prove this lemma by induction on the height n of a derivation tree
of P � L← G.
Base case: n = 1.
Since L ← G ∈ ground(P ), there must be a clause L′ ← G′ ∈ CS such that

(L′ ← G′)θ = L← G. Hence if P :G −→→+ �, then P :L
θ−→R1 G −→→+ �.

Induction step: n > 1.

• If L ← G has only the children L ← G′ ∪ {L′} and L′ ← G′′ where G =
G′ ∪G′′, then

P � L← G′ ∪ {L′} and P � L′ ← G′′.

By the induction hypothesis, P :G′ ∪ {L′} −→→+ � implies P :L −→→+ �, and
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P :G′′ −→→+ � implies P :L′ −→→+ �. If P :G′ ∪ G′′ −→→+ �, then P :G′ ∪
{L′} −→→+ �. Hence P :L −→→+ �.
• If L← G with L = ϕq(µ̄) has only the child ϕp(µ̄

′)← G where p �P q and
ϕq(µ̄) = σ(ϕq(µ̄

′)), then

P � ϕp(µ̄
′)← G.

By the induction hypothesis, P :G −→→+ � implies P :ϕp(µ̄
′) −→→+ �. So,

we can obtain the resolution P :ϕq(µ̄)
ε−→R2+ ϕp(µ̄

′) since ϕp(µ̄
′) is ground.

Hence if P :G −→→+ �, then P :ϕq(µ̄)
ε−→R2+ ϕp(µ̄

′) −→→+ �.

• If L ← G with L = q〈ei〉(µ̄) has only the children p
〈ei〉
1 (µ̄1) ← G1, . . . ,

p〈ei〉
m (µ̄m)← Gm where G = G1 ∪ · · ·∪Gm, p1, . . . , pm are all predicates such

that q �1
P pj, and q〈ei〉(µ̄) = σ(q〈ei〉(µ̄′)) with µ′ = µ1 ∪ · · · ∪ µm, then

P � p〈ei〉
1 (µ̄1)← G1, . . . , P � p〈ei〉

m (µ̄m)← Gm.

By the induction hypothesis, for 1 ≤ j ≤ m, P :Gj −→→+ � implies P : p
〈ei〉
j (µ̄j)

−→→+ �. Now there exists the resolution P : q〈ei〉(µ̄)
ε−→R3+ {p〈ei〉

1 (µ̄1), . . . ,

p〈ei〉
m (µ̄m)} since p

〈ei〉
1 (µ̄1), . . . , p

〈ei〉
m (µ̄m) are ground. So if P :G1∪· · ·∪Gm −→

→+ �, then P : q〈ei〉(µ̄)
ε−→R3+ {p〈ei〉

1 (µ̄1), . . . , p
〈ei〉
m (µ̄m)} −→→+ �.

The completeness of the Horn clause resolution (with the rules R2+, R3+) for
ground goals is proved as follows.

Theorem 5.3 (Ground completeness of resolution with R2+, R3+)
Let P be a program and G a ground goal. If P |=HΣ G, then there exists a
successful resolution P :G −→→+ �.

Proof. Suppose that P |=HΣ {L1, . . . , Ln} where L1, . . . , Ln are ground. Since
IP |=HΣ P we have IP |=HΣ L1, . . . , IP |=HΣ Ln. Then by Definition 5.10,
P � L1 ←, . . . , P � Ln ←. So P :L1 −→→+ �, . . . , P :Ln −→→+ � by Lemma 5.2.
This derives that there exists P : {L1, . . . , Ln} −→→+ �.

The following lemma is needed to prove the completeness of the Horn clause
resolution for general goals.

Lemma 5.3 (Lifting) Let P be a program. If P has an unrestricted resolu-
tion

P :G0θ0
θ1−→+ G1

θ2−→+ G2
θ3−→+ · · · θn−→+ Gn,

then P has a resolution

P :G0

θ′1−→+ G′
1

θ′2−→+ G′
2

θ′3−→+ · · · θ′n−→+ G′
n,
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where (i) γ0 = θ0 and, for 1 ≤ i ≤ n, (γi−1 ↑CVar(G′
i−1))θi = θ′iγi and

Gi = G′
iγi, and (ii) there exists a substitution γ ′n such that G0θ0θ1

↑· · · θn
↑ =

G0θ
′
1
↑· · · θ′n↑γ ′n.

Proof. This lemma is proved by induction on the length n of an unrestricted
resolution of G0θ0.

n = 1: There exists G0θ0
θ1−→+ G1 with respect to L ∈ G0θ0 and clauses

C1, . . . , Cm. For 1 ≤ i ≤ m, Ci(θ0 ↑ CVar(G0)) = Ci where CVar(G0) ∩
CVar(Ci) = ∅, and thus there exists G0

(θ0 ↑CVar(G0))θ1−→+ G1. Hence we have a

resolution G0

θ′1−→+ G′
1 with respect to L and C1, . . . , Cm where there exists a

substitution γ1 such that (θ0↑CVar(G0))θ1 = θ′1γ1 and G1 = G′
1γ1.

n > 1: By the induction hypothesis, there exists a resolution

P :G0
θ′1−→+ G′

1

θ′2−→+ G′
2

θ′3−→+ · · ·
θ′n−1−→+ G′

n−1

where γ0 = θ0 and, for 1 ≤ i ≤ n− 1, there exists a substitution γi such
that (γi−1 ↑CVar(Gi−1))θi = θ′iγi and Gi = G′

iγi. By assumption, we have

P :Gn−1
θn−→+ Gn with respect to L ∈ Gn−1 and clauses C1, . . . , Cm where

Gn−1 = G′
n−1γn−1. For 1 ≤ i ≤ m, Ci(γn−1 ↑ CVar(G′

n−1)) = Ci where

CVar(G′
n−1) ∩ CVar(Ci) = ∅, and hence we have G′

n−1

(γn−1 ↑CVar(G′
n−1))θn−→+ Gn.

This yields the resolution G′
n−1

θ′n−→+ G′
n with respect to L and C1, . . . , Cm

where there exists a substitution γn such that (γn−1↑CVar(G′
n−1))θn = θ′nγn

and Gn = G′
nγn.

(ii) G0θ0θ1
↑· · · θn

↑= G0θ
′
1
↑· · · θ′n↑γ ′n can be proved by the method used in Theorem

5.37 in [12].

In the following theorem, we show that the Horn clause resolution (with the
rules R2+, R3+) is complete.

Theorem 5.4 (Completeness of resolution with R2+, R3+) Let P be a
program, G a goal and θ a sorted substitution. If P |=HΣ Gθ, then there exists

a successful resolution P :G
θ′−→→+ � with Gθ = Gθ′↑γ.

Proof. Let the substitution β = {x1: s1/cx1:s1 : s1, . . . , xn: sn/cxn:sn : sn} where
CVar(Gθ) = {x1: s1, . . . , xn: sn} and cx1:s1 , . . . , cxn:sn are new constants. If
P |=HΣ Gθ, then P |=HΣ Gθβ. So by Theorem 5.3, there exists a unrestricted

resolution P :Gθβ
δ−→→+ �. By Lemma 5.3, we have a resolution P :G

θ′−→→+ �

with Gθβδ ↑ = Gθ′↑γ. Moreover, since Gθβ is ground, Gθβδ ↑ = Gθβ. Be-
cause cx1:s1 : s1, . . . , cxn:sn : sn do not occur in Gθ′, we have y1: s1/cx1:s1 , . . . , yn:
sn/cxn:sn ∈ γ. Let γ0 be defined by (yi: si)γ0 = xi: si for 1 ≤ i ≤ n, and let
γ ′ = (γ − {y1: s1/cx1:s1 , . . . , yn: sn/cxn:sn}) ∪ γ0. It follows that Gθ = Gθ′↑γ ′.
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6 Related work

The logical system presented in this paper is related to an extension of order-
sorted logics and typed (sorted) logic programming languages, for practical
knowledge representation.

Beierle et al. [8] developed an order-sorted logic to combine taxonomical knowl-
edge and assertional knowledge in knowledge representation systems. In the
logic, sorts s can be used to denote not only the types of terms (e.g. x: s
and c: s) but also unary predicates (e.g. s(t)), called sort predicates [8,20].
Using this notion, we can derive formulas with sort predicates (as assertional
knowledge) from sort-hierarchies (as taxonomical knowledge). For example, a
subsort relation s1 ≤ s2 implies the formula s1(x) → s2(x) with sort predi-
cates s1, s2. Consequently, a sorted resolution system was extended by adding
inference rules concerning subsort relations and sort predicates. On the other
hand, Frisch [14] proposed an order-sorted logic that contains a sort theory
(instead of a sort signature) to describe sort information in first-order logic. A
sort theory is a set of formulas constructed only by sort predicates. In addition
to a subsort relation s1 ≤ s2 (represented by the formula s1(x) → s2(x)) it
can describe more complicated sort information (e.g. s1(x)∧ s2(x)→ ¬s3(x)).
However, neither approach deals with a hierarchy of n-ary predicates and
manipulating arguments in the predicates as this paper proposes. The sort
predicates and a sort-hierarchy only correspond to a hierarchy of unary pred-
icates.

The logic programming language LOGIN is equipped with typed terms includ-
ing feature structures (called ψ-terms), which can represent what are express-
ible by predicates in ordinary logic programming. For example, the predicate
symbol apple (used in the formula apple(x)) can be represented as a type in
the following ψ-term.

X: apple[taste⇒ sour; color ⇒ red]

which expresses “sour red apples.” Such types are ordered and build a class-
hierarchy, together with feature structures (such as [taste ⇒ sour; color ⇒
red] in the above ψ-term) that give us expressive types being able to describe
more specific types with attributes.

In the legal reasoning system New HELIC-II developed by Nitta et al., a
typed logic programming language was used as an inference engine for legal
reasoning. The language provides term expressions (called H-terms) obtained
by extending ψ-terms in LOGIN. In legal reasoning systems, the description
of a legal affair consisting of events is needed from which legal results are in-
ferred. In addition to class-hierarchies limited to represent nominal concepts,
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New HELIC-II allows us to represent a hierarchy of verbal concepts indicat-
ing events. The hierarchical reasoning for the verbal concepts is based on
the fact that informative verbal concepts result in general verbal concepts.
For example, an event illegal acting is derived from a more informative event
acting of violence. Obviously, it is distinguished from reasoning in a hierarchy
of nominal concepts (as a sort-hierarchy). For formalizing the logic program-
ming language in New HELIC-II, our work provides a theoretical foundation
of an order-sorted logic that is extended by incorporating a predicate hierarchy
corresponding to a hierarchy of verbal concepts.

Furthermore, the argument manipulation proposed in this paper is based on
the work in [22]. The authors presented a way to supplement missing argu-
ments for the event and property aspects of assertions as follows.

Event assertion:
hit(actor ⇒ john : man) −→ hit(actor ⇒ john : man, vic⇒ c: person)
“John hit a person.”
Property assertion:
hit(actor ⇒ john : man) −→ hit(actor ⇒ john : man, vic⇒ x: person)
“John has the property of being able to hit any person.”

The supplemented arguments c: person and x: person are interpreted as a per-
son and any person respectively. By adopting the supplementation for event
assertions, our work formalizes a sorted logic programming language with
predicate hierarchy. In the area of databases, there is a well-known approach to
deal with incomplete information, related to missing arguments. It introduces
null values for representing missing information in databases [38,1]. Compared
with this approach, the argument manipulation contains two new ideas. First,
it distinguishes supplemented arguments in the event and property aspects
of predicates. Existential and universal terms are supplemented to event and
property assertions respectively. Secondly, it uses sorted terms for supple-
mented arguments that are differently quantified and restricts each domain
by sorts. The sorts in supplemented arguments are determined by each argu-
ment role and their restricted domains result in adequate supplementation.
Hence, we can say that order-sorted logic is a useful tool to express supple-
mented arguments, not only a sort-hierarchy. The argument manipulation is
applied to the hierarchical reasoning of predicates and is operated by sorted
terms in a sort-hierarchy. In other words, our inference method for predicate
hierarchies is actualized by interacting the two kinds of hierarchies and the
argument manipulation with sorted terms.

35



7 Conclusions and future work

This paper has presented an order-sorted logic programming language that
is extended by a reasoning mechanism for a predicate hierarchy, in addition
to substitutions in a sort-hierarchy. As a generalized language for structural
knowledge, it can enrich hierarchical reasoning, namely, it enables us to derive
general and concrete expressions in the two kinds of hierarchies. In particular,
hierarchical reasoning of predicates enhances the usefulness and the feasibility
of logical knowledge representation systems, such as representing event as-
sertions in legal reasoning. The inference machinery for deriving general and
concrete predicates that allows for various argument structures is obtained by
including an argument manipulation that follows the event aspect of predi-
cates. By embedding this new manipulation in the inference rules proposed:
specialization and generalization rules for hierarchical predicates, we are able
to deal successfully with derivations of flexibly argumented and hierarchical
predicates (i.e. we can set various argument structures for predicates in the
hierarchy) in logic programming. Specifically, we have developed a Horn clause
resolution system equipped with the notion of a predicate hierarchy. In the
semantics of this language, the predicate hierarchy is interpreted in the class
of restricted Σ-structures (called HΣ-structures). The semantic models en-
sure the soundness and the completeness of the resolution for the extended
order-sorted logic with sort and predicate hierarchies.

We believe that further research is needed on the meaning of negation derived
from the event aspect of predicates. Due to the event and property aspects of
predicates [22], negative assertions do not always have uniform interpretation
and reasoning. If the negation of an event means an opposite and disjointed
event (which we call negative event), then its meaning is stronger than the
negation of a property. Hence, in order to derive general predicates in a hi-
erarchy, differently quantified arguments must be supplemented to negative
event assertions and the negation of assertions in the argument manipulation.
For these assertions, strong negation (proposed in constructive logic [4]) is
a prime candidate to represent the negative event assertions. By introducing
this strong negation with classical negation, we can formalize the diversity of
negations in event and property assertions, and develop an inference system
for full formulas or general causal forms in our proposed logic.
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[2] H. Äıt-Kaci, R. Nasr, LOGIN: A logic programming language with built-in
inheritance, Journal of Logic Programming 3 (3) (1986) 185–215.
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