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Abstract

In the area of data mining, the discovery of valuable changes and connections
(e.g., causality) from multiple data sets has been recognized as an important
issue. This issue essentially differs from finding statistical associations in
a single data set because it is complicated by the different data behaviors
and relationships across multiple data sets. Using rough set theory, this pa-
per proposes a change and connection mining algorithm for discovering a
time delay between the quantitative changes in the data of two temporal
information systems and for generating the association rules of changes from
their connected decision table. We establish evaluation criteria for the con-
nectedness of two temporal information systems with varying time delays by
calculating weight-based accuracy and coverage of the association rules of
changes, adjusted by a fuzzy membership function.

Keywords: rough set theory, fuzzy theory, multiple datasets, causality

1. Introduction

Data mining algorithms [2, 3] enable us to find useful patterns and rules
generated from the frequent itemsets in databases. Alternatively, numerous
techniques for extracting decision rules have been proposed in the field of
rough set theory [4, 5, 6, 7]. In the environment of computer networks, there
is a further requirement to integrate and analyze distributed data for discov-
ering valuable patterns and rules across distributed multiple databases. Ex-

1This paper is an extended version of [1].
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isting data mining algorithms [8, 9, 10] effectively and statistically integrate
multiple data sets, but do not deal with data behaviors and relationships
across multiple data sets.

To enable integration and discovery, we have to analyze and integrate
various data in a highly sophisticated manner due to the different contexts
of multiple databases. In particular, time and space stamps should be used
for examining changes and connections among different data sets. In this
way, we can find a time delay between the time-stamped data of two dis-
tributed databases. The quantitative changes in the temporal data of such
time stamped databases can be interpreted as events; therefore, a time de-
layed connection implies that one quantitative change causes another. From
this perspective, a candidate causality is analyzed and obtained by connect-
ing the quantitative changes in the distributed data.

The causality [11, 12] derived from changes and connections is valuable
knowledge obtained from the integration of multiple databases. Such causal
knowledge has an advantage in that each of the conditions implies a different
effect. Yet there are few approaches to mining the changes and connections
in data across multiple data sets. As discussed [13, 14], most knowledge-
discovery algorithms capture only statistical associations that are substan-
tially different from causality.

In this paper, we propose a change and connection mining algorithm based
on the notions of attribute reduction and minimal rule generation in rough set
theory. We assume that attribute data in information systems are associated
with time stamps. For the purpose of causality mining, we formalize the
quantitative changes estimated using different operators. These results are
used to derive the association rules of changes by slidingly connecting two
temporal information systems for varying time delays. In order to measure the
changes (including fast-changing events), we propose weight-based accuracy
and coverage of the association rules with respect to the indiscernibility of
changes. These evaluations identify the connectedness of the two temporal
information systems for each time delay.

Our algorithm for mining changes and connections has the following in-
teresting features.

• Minimal rules: The minimal rule generation in rough set theory en-
ables us to obtain minimal association rules using attribute reduction.
Minimal causes provide better explanations of effects, as employed in
abductive reasoning [15].
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• Consistent rules: The discernibility of decision classes in rough set
theory is used to derive consistent rules; i.e., logically, inconsistent
rules ϕ → α and ϕ → ¬α are excluded. As a result, the consistency is
suitable for establishing the connectedness of distributed data due to
the small conflict among the consistent rules.

• Connections between quantitative changes: In order to uncover a
strong connection between information systems, we evaluate the associ-
ation rules of changes that are generated from the quantitative changes
in estimating the values of data.

• Time delays: Mining of changes and connections is realized by con-
sidering differing time delays between the data of two temporal infor-
mation systems. This is temporally consistent because of adherence to
the assumption in the causal theory [16]; i.e., “if A causes B, then A
occurs earlier than B.”

These features follow the three classical conditions under which A causes B
(as defined in [13]): (i) statistical associations between the values of A and
B, (ii) direction of causality, and (iii) no common causes of A and B.

This paper is arranged as follows. In Section 2, we describe a connection
method of two temporal information systems for various time delays. As part
of the method, we propose the notions of quantitative changes in attribute
values and the association rules of changes. Then we establish the connect-
edness of two temporal information systems for each time delay evaluated by
weight-based accuracy and coverage. In Section 3, we present our algorithm
for mining changes and connections from two temporal information systems.
The experimental results are reported in Section 4. Finally, we discuss the
related work to our approach in Section 5 and conclude the paper in Section
6. In addition, we briefly describe the basic notions of rough sets in Appendix
A.

2. Changes and Connections in Data

In this section, we present a connection method for two temporal informa-
tion systems with various time delays. We establish the quantitative changes
in the attribute values of temporal information systems and formulate the
association rules of changes in a connected decision table. For each time
delay, the connectedness of two temporal information systems is evaluated
by our proposed weight-based accuracy and coverage.
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2.1. Connecting Temporal Information Systems

A considerable number of databases are distributed across multiple sites
and domains in computer networks. This is because each database is devel-
oped for a different purpose by a different person and/or enterprise. If we
integrate and analyze these distributed databases and their relationships, we
can obtain very useful information for the discovery of valuable patterns and
rules from various combinations of databases. However, data mining across
differently constructed datasets is not an easy task because we do not know
whether a relationship exists among the datasets.

As an approach to the task, we focus on finding useful patterns and rules
by analyzing time series data in many different datasets. Time series data
contain time information, which we can use for identifying a temporal rela-
tionship between databases. Consider the climate data and medical data on
Tokyo in Figure 1. From these data, experts can conclude that the number
of influenza patients increases when the temperature decreases and the hu-
midity is below 45 percent. They can also find that changes in the medical
data are observed two to three days after changes in the climate data.

To enable the data analysis above, we first connect two temporal databases
by sliding their time delays. Then we find a causal connection of the two
temporal databases by evaluating the consistency of each time-delayed con-
nection. Roughly speaking, we attempt to discover a cause-effect relationship
between each pair of multiple databases.

2.2. Time Delays between Two Temporal Information Systems

In rough set theory, each database is represented by an information sys-
tem T = (U,A) where U is a non-empty finite set of objects and A is a
non-empty finite set of attributes (see the basic concept of rough set theory
in Appendix A). In order to represent time series data (each of climate data,
medical data, etc.) in an information system, we originally define a specific
information system with time stamps.

A temporal information system is an information system T = (Utime, A)
wherein the objects x of Utime denote time stamps (e.g., dates and weeks)
and for each attribute a ∈ A, a(x) maps the value of a at time stamp x.
Each temporal information system T = (Utime, A) is normalized such that
all the elements of Utime are replaced by natural numbers. Let Nat i,j de-
note a finite set of natural numbers such that {x ∈ Nat | i ≤ x ≤ j}.
Then, we define the normalization of a temporal information system T =
(Utime, A) by N(T ) = (Nat i,j , A

′) with a bijection n : Utime → Nat i,j such
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that for every x, y ∈ Utime, x < y ⇔ n(x) < n(y), |Utime| = |Nat i,j|,
and A′ = {a′ | a ∈ A & ∀x ∈ Utime.a

′(n(x)) = a(x)}. For example,
T1 = ({2001-1-1, 2001-1-2, 2001-1-3}, A1) is normalized by the natural num-
ber set Nat1,3 = {1, 2, 3}; i.e., N(T1) = (Nat1,3, A

′
1) where n(2001-1-1) = 1,

n(2001-1-2) = 2, and n(2001-1-3) = 3.

Lemma 1. Every temporal information system is translated into a normal-
ized temporal information system.

In the remainder of this paper, we will focus on normalized temporal infor-
mation systems because of this lemma.

We define a connection of two normalized temporal information systems
with a time delay by matching and arranging time stamps.

Definition 1 (Connections with a Time Delay). Let T1 = (Nat i,j , A1)
and T2 = (Nath,m, A2) be two normalized temporal information systems such
that T1 and T2 have no common attributes (A1 ∩ A2 = ∅). The connection
con(T1, T2, Δ) of T1 and T2 with a time delay Δ (∈ Nat) is defined as an
information system T = (Utime, A) such that

• Utime = Nat i,j ∩ Nath′,m−Δ and

• A = {a�Utime | a ∈ A1} ∪ {b′ | b ∈ A2 & ∀x ∈ Utime.b
′(x) = b(x − Δ)}

where a�Utime denotes the attribute a restricted to domain Utime, and h′ = i
if h − Δ < i, otherwise, h′ = h − Δ.

In Figure 2, the tables on the left-hand side present two normalized temporal
information systems T1 = (Nat1,7, A1) and T2 = (Nat2,6, A2), and the table on
the right-hand side shows the connection con(T1, T2, 1) of T1 and T2. The time
stamps of attributes b1 and b2 in T2 are decreased by the time delay Δ = 1.
For example, time stamp 3 of values 2 and 1 of b1 and b2 in T2 is changed into
time stamp 2 in con(T1, T2, 1). As a result of the connection, the lowest two
rows in T1 are deleted to adjust for the size of T2. This connection method
can also be applied to more than two information systems. For example, the
connection con(con(T1, T2, Δ1), T3, Δ2) is obtained when we integrate three
information systems T1, T2, and T3 with time delays Δ1 and Δ2.

Let T1 = (Utime, A1) and T2 = (U ′
time, A2) be two temporal information

systems. Their connection builds a decision table T = con(T1, T2, Δ) in
rough set theory if A2 is a singleton as a decision attribute. If A2 is not a
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singleton, then T2 is reduced to an information system T2[b] = (U ′
time, {b})

for an attribute b ∈ A2. Alternatively, we can translate from A2 into a
singleton without losing the information. Let A2 = {b1, . . . , bn}. Then
the translation is defined such that the attributes b1, . . . , bn are expressed
by an n-tuple; i.e., T f

2 = (U ′
time, {f(b1,...,bn)}) where for every x ∈ U ′

time,
f(b1,...,bn)(x) = (b1(x), . . . , bn(x)). Therefore, we obtain the two decision ta-

bles con(T1, T2[b], Δ) and con(T1, T
f
2 , Δ). If T1 and T2 are regarded as cause-

and-effect information systems, then the connection of T1 and T2 with a time
delay leads to a cause-effect decision table. However, if the data behavior
cannot be interpreted in terms of a decision table, a cause-effect decision ta-
ble cannot be generated. In addition to the varying of time delays, we have
to extract data behaviors by estimating the changes in the data values of
both cause-and-effect information systems.

2.3. Quantitative Changes

In order to classify data behaviors such as increase and decrease, we de-
fine the quantitative changes in the data values of temporal information sys-
tems. Given two temporal information systems T1 and T2, their quantitative
changes may represent a connection between the candidate data of causes
and effects. Through the diversity of time delays, numerous connections of
the quantitative changes will be analyzed to determine whether changing
the values of attributes in an information system T1 affects the values of
attributes in another information system T2.

Definition 2 (Quantitative Estimation Operators).
Based on [17], several quantitative estimation operators for the numeric val-
ues a(x) of attributes are defined by the following.

(difference) πd(a(x)) = a(x) − a(x − 1)

(variation rate) πv(a(x)) =
a(x) − a(x − 1)

a(x)

(threshold) π≥k(a(x)) =

{
1 if a(x) ≥ k

0 otherwise

(variation rate of difference) π2v(a(x)) = πv(πd(a(x)))

(trend) πtr(k)(a(x)) =
a(x−k)+· · ·+a(x)+· · ·+a(x+k)

2k + 1
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These operators are (sometimes compositionally) used to estimate the quan-
titative changes in temporal information systems T as follows.

Definition 3 (Quantitative Changes). Let T = (Nat i,j, A) be a normal-
ized temporal information system. The quantitative change of T obtained
by a quantitative estimation operator π ∈ {πd, πv, π≥k, π≤k, π2v, πtr(k)} with
h,m ∈ Nat is an information system π(T ) = (Utime, A

′) such that

• Utime = Nat i+h,j−m with i + h ≤ j − m and

• A′ = {a′ | a ∈ A & ∀x ∈ Utime.a
′(x) = π(a(x))}

where h = 1 and m = 0 if π = πd or πv, h = m = 0 if π = π≥k or π≤k, h = 2
and m = 0 if π = π2v, and h = k and m = k if π = πtr(k).

The natural numbers h and m indicate that Nat i,j is reduced to Nat i+h,j−m

because the number of values obtained by some operators decreases. For ex-
ample, Figure 3 shows the differences πd(T1) = (Nat2,7, A

′
1) and the results of

the high threshold π≥2.5(T2) = (Nat2,6, A
′
2) estimated from T1 = (Nat1,7, A1)

and T2 = (Nat2,6, A2), respectively.
In the process of data analysis, we are not certain about the tempo-

ral relationship between two information systems; therefore, they should be
combined exhaustively within the scope of time delays. By increasing the
time delay Δ from 0, the quantitative changes π1(T1) and π2(T2[b]) of two
temporal information systems T1 and T2[b] are slidingly connected to achieve
numerous cause-effect decision tables as follows.

con(π1(T1), π2(T2[b]), 0), con(π1(T1), π2(T2[b]), 1),

con(π1(T1), π2(T2[b]), 2), . . . , con(π1(T1), π2(T2[b]),m)

Let T = (Utime, A) with A = {a1, . . . , an} and let quantitative estima-
tion operators π1, . . . , πn be applied to each attribute aj in T . Then, the
decomposed and estimated information systems π1(T [a1]), . . . , πn(T [an]) are
reconnected by

con(π1(T [a1]), con(π2(T [a2]), · · · con(πn−1(T [an−1]),

πn(T [an]), 0) · · · , 0), 0)

which is simply denoted by π1(T [a1]) ◦ · · · ◦ πn(T [an]). For example, let
πd be a difference operator, πv be a variation rate operator, and π≥2.5 be
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a high threshold operator. Figure 4 shows that the quantitative changes
πd(T1[a1]) ◦ πv(T1[a2]) and π≥2.5(T2[b1]) of T1 and T2[b1] in Figure 2 and
Figure 3 are transformed into the connected decision table con(πd(T1[a1]) ◦
πv(T1[a2]), π≥2.5(T2[b1]), 2) with time delay Δ = 2 and the decision attribute
b1 ∈ A2.

2.4. Association Rules of Changes
We define association rules with respect to quantitative changes, which

are employed to evaluate the connectedness of two temporal information
systems. Let T1 and T2[b] be two temporal information systems and π1 and
π2 be quantitative estimation operators. A decision rule in rough set theory
is called an association rule of changes if it is generated from a cause-effect
decision table con(π1(T1), π2(T2[b]), Δ) consisting of the quantitative changes
π1(T1) and π2(T2[b]). It should be noted that the association rules of changes
(a1 = v1) ∧ · · · ∧ (an = vn) → (b = v) adhere to the natures of causality as
follows.

(i) The cause-effect decision table is built by the quantitative changes in
the data of two temporal information systems T1 and T2[b] that corre-
spond to the data behaviors of causes and effects.

(ii) A time delay exists such that the time stamps of the condition at-
tributes a1 = v1, . . . , an = vn in π1(T1) occur earlier than those of the
decision attribute b = v in π2(T2[b]).

For example, the following association rules of changes are generated from
the connected decision table con(πd(T1[a1]) ◦ πv(T1[a2]), π≥2.5(T2[b1]), 2) in
Figure 4.

(difference) ∧ (variation)→(threshold) ∧ (time delay)

(a1 = 0) ∧ (a2 = 0.0)→(b1 = 0) ∧ (Δ = 2)

(a1 = +11) ∧ (a2 = +1/3)→(b1 = 1) ∧ (Δ = 2)

In these rules, the condition attributes are difference πd and variation rate πv

and the decision attribute is threshold π≥2.5 with time delay Δ = 2. The first
rule implies that if the values of attributes a1 and a2 are neither decreased
nor increased, then the value of attribute b1 does not exceed threshold 2.5 in
the next two time slots. The second rule means that if the value of attribute
a1 is increased by +11 and the variation rate of the value of attribute a2 is
+1/3, then the value of attribute b1 exceeds threshold 2.5 in the next two
time slots.
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2.5. Indiscernibility and Weight

To interpret the association rules of changes, we would like to distinguish
between the indiscernibility and weight of quantitative changes by improving
the evaluation of decision rules in rough set theory. In this study, indiscerni-
bility captures the increase and decrease of values, and weight measures the
quantity of data behaviors.

Let T = (Utime, A ∪ {d}) be a decision table and B be a relative reduct
of T . The B-indiscernibility relation of quantitative changes is defined by an
equivalence relation Iqc

B on Utime such that

Iqc
B = {(x, y) ∈ U2

time | ∀a ∈ B.sign(a(x)) = sign(a(y))}.

The sign function sign(n) is defined by sign(n) = 1 if n > 0, sign(n) = −1
if n < 0, and sign(n) = 0 if n = 0 (as in [18]).

By the B-indiscernibility Iqc
B of quantitative changes, the semantics of the

formula (a1 = v1)∧ · · · ∧ (an = vn) in T is refined by [[(a1 = v1)∧ · · · ∧ (an =
vn)]]qc

T = {x ∈ Utime | sign(a1(x)) = sign(v1), . . . , sign(an(x)) = sign(vn)}.
Let {s1, . . . , su} denote sign(Vd) = {sign(dj) | dj ∈ Vd}. For each value si of
sign(Vd) of the decision attribute d, we define a decision class on quantitative
changes Ui = {x ∈ U | sign(d(x)) = si} where U = U1 ∪ · · · ∪ U|sign(Vd)| (i.e.,
u = |sign(Vd)|) and for every x, y ∈ Ui, sign(d(x)) = sign(d(y)).

We consider scanning not only quantitative changes but also those events
that drastically change attribute values (which we refer to as fast changing
events). As a measuring method, the weight w(x) of changes for each time
stamp x ∈ Utime is defined by the following.

w(x) =
∑

a∈A∪{d}
||a(x)||

where || || : R → R is the absolute value function such that ||n|| = n if
n ≥ 0, otherwise ||n|| = −n. For example, the connected decision table in
Figure 4 contains fast-changing events because a1(4) = +11 is an intensively
higher value than the other values. Therefore, we obtain high weight w(4) =
12.33 · · · for time stamp 4 but low weight w(1) = 0 for time stamp 1. Weights
w(1) and w(4) can be used to respectively evaluate the two association rules
(a1 = 0) ∧ (a2 = 0.0) → (b1 = 0) and (a1 = +11) ∧ (a2 = +1/3) → (b1 = 1)
(shown in Section 2.4). The second association rule importantly includes a
fast-changing event because of high weight w(4).
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Definition 4. (Weight-Based Accuracy and Coverage on Iqc
B ) Let Ui

be a decision class on quantitative changes and let x ∈ Ui. The weight-based
accuracy w accuracy and weight-based coverage w coverage of a decision rule
r of the form ϕ → (d = d(x)) with d(x) ∈ Vd are defined as follows.

w accuracy(T, r, Ui) =
w(Ui ∩ [[ϕ]]qc

T )

w([[ϕ]]qc
T )

w coverage(T, r, Ui) =
w(Ui ∩ [[ϕ]]qc

T )

w(Ui)

where w(X) =
∑

x∈X w(x).

The accuracy and coverage unify similar data behaviors on indiscernibility
and measure the quantity of data behaviors on the weight (by extending the
standard accuracy and coverage in Appendix A).

2.6. Connectedness

The connectedness of two temporal information systems is significantly
evaluated by weight-based accuracy and coverage. First, we define a con-
sistency evaluation that finds the most consistent association rule for each
decision class. Second, we estimate the total value of the maximum consis-
tency evaluations for all decision classes.

The consistency evaluation eval(T, r, Ui) is defined by using the weight-
based coverage and accuracy of a decision rule r with a fuzzy membership
function μS as follows.

eval(T, r, Ui) = w coverage(T, r, Ui) × μS(w accuracy(T, r, Ui))

The fuzzy membership function μS : [0, 1] → [0, 1] (similar to the S fuzzy
set [19]) is defined by the following.

μS(v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if 0 ≤ v ≤ 1

2

8(v − 1

2
)2 if

1

2
< v ≤ 3

4

1 − 8(v − 1)2 if
3

4
< v ≤ 1

By applying the membership function to each accuracy value, we determine
whether each association rule is suitable for connecting two temporal infor-
mation systems. In other words, association rules with low accuracy values
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should be eliminated even if their coverage values are high. This is because
such rules are inconsistent with some other rules; though we intend to find
consistent rules beyond statistical associations. We use the fuzzy membership
function to emphasize the accuracy values of (in)consistent rules.

For example, consider the following association rules r1 and r2 in a con-
nected decision table T = (U,A ∪ {d}).

r1 : (a1 = +1) ∧ (a2 = −1) → (d = +1)

r2 : (a1 = +1) ∧ (a2 = −1) → (d = −1)

These association rules have identical conditions; though their decisions con-
tradict each other. Let U1 = {x ∈ U | d(x) = +1} and U2 = {x ∈ U |
d(x) = −1}. If we have w accuracy(T, r1, U1) = 0.45 and w accuracy(T, r2,
U2) = 0.55, then these rules are inconsistent with each other. Therefore,
the membership function results in μS(0.45) = 0 and μS(0.55) = 0.02, and
the consistency evaluations eval(T, r1, U1) = coverage(T, r1, U1) × 0.02 and
eval(T, r2, U2) = coverage(T, r2, U2)×0 return very low values. In contrast, if
we have the other values w accuracy(T, r1, U1) = 0.89 and w accuracy(T, r2,
U2) = 0.1, then the first rule should be highly evaluated due to the low
conflict between r1 and r2. In this case, the membership function yields
μS(0.89) = 0.9032 and μS(0.1) = 0. Thus, the accuracy value of the
first association rule will affect the consistency evaluation by calculating
eval(T, r1, U1) = coverage(T, r1, U1) × 0.9032.

Let R be the family of subsets B of A in a decision table T = (Utime, A∪
{d}) such that B is a relative reduct of T . For each reduct B ∈ R, we can
obtain the set RB of minimal association rules for every decision class Ui; i.e.,
each reduct B provides a minimal set of condition attributes in A. The max-
imum consistency evaluation in the set RB is defined by max eval(T,RB, Ui)
= eval(T, r, Ui) if r ∈ RB and for every rule r′ ∈ RB, eval(T, r, Ui) ≥
eval(T, r′, Ui).

Definition 5 (Connectedness on Association Rules of Changes).
The connectedness of condition and decision attributes for each relative reduct
B of T is defined by

connectedness(T,B) =
∑

i=1,...,|sign(Vd)|
max eval(T,RB, Ui)

The underlying assumption behind the maximum evaluation max eval(T,RB,
Ui) is that the connectedness is strengthened by the existence of one-sided
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association rules. That is, it is required that a rule has a high consistency
evaluation in Ui rather than the total value of consistency evaluations for
all the association rules in Ui. From that assumption, a maximum value of
one is selected from the association rules of different conditions implying the
same decision. For example, consider the above rule r1 and the following rule
r3.

r3 : (a1 = −1) ∧ (a2 = +1) → (d = +1)

A higher value of one is selected from the consistency evaluations eval(T, r1, U1)
and eval(T, r3, U1) rather than their sum. This is because the two rules have
opposite conditions (a1 = +1) ∧ (a2 = −1) and (a1 = −1) ∧ (a2 = +1)
deriving the same decision (d = +1). The sum of their consistency eval-
uations aggregates different behaviors and therefore does not indicate the
connectedness of condition and decision attributes.

We calculate the connectedness for each connected decision table such
that the association rules of changes are generated and evaluated by sliding
the connection of two temporal information systems. From various time
delays, a maximum connectedness is discovered as a strong connection of the
systems.

3. Change and Connection Mining Algorithm

In this section, we describe a change and connection mining algorithm for
two temporal information systems T1 and T2[b] and a maximum time delay
m(∈ Nat), as shown in Figure 5. For the input data, this algorithm returns
a time delay as a result of generating and evaluating association rules of
changes in the connections of T1 and T2[b] for various time delays (from 0 to
m). The algorithm is outlined as follows.

1. Change and connection mining: For each time delay Δ from 0 to
m, two temporal information systems T1 and T2[b] are connected in
order to analyze changes and connections in their connected decision
table by the following sub-processes.

(a) Quantitative change calculation: Two temporal information
systems T1 and T2[b] are decomposed into T1[a1], . . . , T1[an] and
T2[b] for each attribute data. Then the quantitative changes π1(T1[a1]),
. . . , πn(T1[an]) and π(T2[b]) of the data in the decomposed infor-
mation systems are calculated.
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(b) Connection of two information systems: After the quan-
titative change calculation, the two information systems T ′

1 =
π1(T1[a1]) ◦ · · · ◦ πn(T1[an]) and T ′

2 = π(T2[b]) that correspond
to the data behaviors of causes and effects are connected into
T = con(T ′

1, T
′
2, Δ) for each time delay Δ.

(c) Rule generation: By using the rough set rule generation method,
association rules of changes are generated from the connected
cause-effect decision table T = con(T ′

1, T
′
2, Δ).

2. Connectedness evaluation: The consistency evaluation eval(T, r, Ui)
is calculated by using the weight-based accuracy and coverage of the as-
sociation rules of changes. Then the connectedness of the two temporal
information systems T1 and T2[b] is evaluated by the sum of maximum
consistency evaluations. Finally, the value of the connectedness decides
which time delay implies the strongest connection of the two informa-
tion systems.

3.1. Change and Connection Mining

The process of change and connection mining is carried out as follows.
In Line 2 of Figure 5, in order to analyze hidden behaviors in T1 =

(Utime, {a1, . . . , an}) and T2[b] = (U ′
time, {b}), quantitative estimation op-

erators π1, . . . , πn and π are applied to the decomposed information sys-
tems T1[a1], . . . , T1[an] and T2[b], and the estimated results π1(T1[a1]) ◦ · · · ◦
πn(T1[an]) and π(T2[b]) are stored in the variables T ′

1 and T ′
2.

Since we are not certain which time delay constructs a temporal relation
suitable for T ′

1 and T ′
2, in Lines 3 - 19, this algorithm functions to connect

them in varying time delays Δ from 0 to m. In the loop of the time delays,
the connected decision table T = (U ′′

time, {a1, . . . , an} ∪ {b}) of T ′
1 and T ′

2

is computed by T = con(T ′
1, T

′
2, Δ) (in Line 4). Therefore, the connected

decision table T is one of the candidate cause-effect decision tables to generate
association rules of changes.

In Line 11, using rough set theory, minimal association rules r = rule(x,
B, T ) are created for each relative reduct B in R = reducts(T ) [20], i.e., B is
a subset of the set {a1, . . . , an} in T that supplies a minimal set of condition
attributes of rules. Computing the set R = reducts(T ) of relative reducts of
T = con(T ′

1, T
′
2, Δ) is based on the B-indiscernibility relation of quantitative

changes by extending the standard reduct set computation in [21]. In other
words, the reducts are computed by the standard reduct set algorithm that
is extended by the B-indiscernibility relation of quantitative changes.
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Let Ui be a decision class on quantitative changes where U ′′
time = U1 ∪

· · ·∪U|sign(Vb)| in the connected decision table T . Each decision class on quan-
titative changes Ui corresponds to one of the values of sign(Vb) of decision
attribute b. Then, in Lines 8 - 16, the association rules r = rule(x,B, T ) for
all time stamps x in Ui are generated for every i = 1, . . . , |sign(Vb)|. The
function rule(x,B, T ) simply determines a decision rule for each item x (in
U) in information system T using each reduct of B.

3.2. Connectedness Evaluation

In the process of connectedness evaluation, in Line 12 the consistency
evaluation eval(T, r, Ui) is calculated by using the weight-based coverage of
each association rule r in decision classes Ui. In Lines 12 - 13, for each i
from 1 to |sign(Vb)|, we obtain the maximum consistency evaluation (stored
in the variable max evali) by the evaluation eval(T, r, Ui). Finally, in Line
15, the connectedness of T ′

1 and T ′
2 for each relative reduct B (stored in

variable CB) is calculated. For every current time delay Δ, we select the
maximum connectedness denoted by connectednessΔ from all the relative
reducts B in R (in Line 18). After the loop of the time delays (Lines 3 - 19),
a time delay t with the maximum connectedness is returned by comparing
the connectedness for each time delay in 0 ≤ j ≤ m.

4. Experimental Results

We implemented the change and connection mining algorithm in Java.
In order to evaluate the proposed mining algorithm on real-world data,
two time-series data sets were built as shown in Figure 1, by download-
ing climate data and medical data on Tokyo from web sites [22, 23]. On
the left-hand side of Figure 1, the climate data set contains the daily ob-
served data on minimum temperature and humidity in Tokyo from August
7, 2006 to July 15, 2007. On the right-hand side of Figure 1, the medi-
cal data set consists of weekly reported numbers of influenza victims per
hospital in Tokyo from September 4, 2006 to June 17, 2007. These data
sets can be represented by the two normalized temporal information systems
T1 = (N1,315, {temperature, humidity}) and T2 = (N5,45, {influenza}). The
sizes of data sets and attributes are obtained from information systems, e.g.,
T1 = (N1,315, {temperature, humidity}) implies (daily) 315 items and two
attributes. We simply denote the attributes temperature, humidity, and
influenza by at, ah, and bf , respectively.
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Let πv, πtr(10), π≤35, and πd be quantitative estimation operators. Fig-
ures 6 - 8 demonstrate the results of applying the quantitative estimation
operators to climate data and medical data on Tokyo.

For the climate data, first, to exclude noisy data the long-term behaviors
of daily observed temperatures are estimated by the trends πtr(10)(T1[at])
of the temperatures in T1[at] on the left-hand side in Figure 6. Then, the
increase-decrease rates of the trends are calculated by the variation rates
πv(πtr(10)(T1[at])) from the data of the trends πtr(10)(T1[at]) on the right-hand
side. Second, we set the threshold such that the changes π≤35(T1[ah]) of
humidity in T1[ah] are denoted by −1 if their values decrease to equal to
or less than 35% at the time stamp. Figure 7 presents the daily observed
humidity levels in the temporal information system T1[ah] on the left-hand
side. Then, the quantitative changes π≤35(T1[ah]) are estimated from the
data of T1[ah] on the right-hand side.

For the medical data, the increase or decrease πd(T2[bf ]) of the numbers
of influenza victims in T2[bf ] are regarded as candidate effects of the quanti-
tative changes πv(πtr(10)(T1[at]))◦π≤35(T1[ah]). Figure 8 shows the number of
influenza victims for each week in the temporal information system T1[bf ] on
the left-hand side and the increase or decrease πd(T2[bf ]) estimated from the
data of T1[bf ] on the right-hand side. Unlike estimating the variation rates
of temperatures, the numbers of victims are absolute values; therefore, the
increase or decrease should be calculated (since absolute values contain 0).

After the estimation, we turn to connecting the climate data and medical
data by using the quantitative changes πv(πtr(10)(T1[at])) ◦ π≤35(T1[ah]) and
exp7(πd(T2[bf ])) of T1 and T2[bf ] with an expansion function exp7. Since T2[bf ]
consists of weekly data, we expand it to daily data denoting the differences
of values per week. Let T = (Nat i,j, A) and k > 1. Then the expansion
function is defined by expk(T ) = (Utime, A

′) such that

• Utime = Nat (i−1)·k+1,j·k and

• A′ = {a′ | a ∈ A & ∀x ∈ Utime.a
′(x) = a(quotient(x + k − 1, k))}.

Figure 9 represents the outcomes of applying the algorithm to the two
temporal information systems T1 and T2[bf ]. Let T be the connected de-
cision table con(πv(πtr(10)(T1[at])) ◦ π≤35(T1[ah]), exp7(πd(T2[bf ])), Δ). The
left-hand side of Figure 9 shows the consistency evaluations eval(T, r, Ui)
for the time delays Δ = 0, . . . , 13 where r is an association rule (at =
at(x)) ∧ (ah = ah(x)) → (bf = bf (x)) for a time stamp x ∈ Ui where
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at(x) ∈ Vat , ah(x) ∈ Vah
, and bf (x) ∈ Vbf . In order to overview the association

rules with respect to the B-indiscernibility Iqc
B , each association rule is gener-

alized by (at = sign(at(x))) ∧ (ah = sign(ah(x))) → (bf = sign(bf (x))) for a
time stamp x ∈ Ui where sign(at(x)) ∈ {−1, 0, +1}, sign(ah(x)) ∈ {−1, 0},
and sign(bf (x)) ∈ {−1, 0, +1}. In this figure above, the generalized associ-
ation rules are listed by indexing the plot styles for their consistency eval-
uations. In particular, it can be seen that the generalized association rule
(at = −1) ∧ (ah = −1) → (bf = +1), compared with the other rules, has
a high consistency evaluation through all the time delays. Note that the
value of each generalized association rule in the figure in total indicates the
evaluation obtained by measuring the weights of association rules with sim-
ilar data behaviors. The high evaluation of the generalized rule reports that
if the temperature values decrease, and humidity is equal to or under the
percent limit, then the number of influenza victims increases. Without the
consistency evaluation and various time delays, it would be difficult to select
a time-delayed decision table that consistently connects the different contexts
of distributed data.

On the right-hand side of Figure 9, our experimental result indicates
the connectedness evaluated for each of the time delays Δ = 0, . . . , 13. As
indicated by the result in the figure, the algorithm returns the time delay
Δ = 2 (denoting two days) that has the maximum connectedness 0.2698 of
T1 and T2[bf ]. High connectedness values 0.2685 and 0.2617 are also given for
the time delays Δ = 3 and 1 (denoting three days and one day, respectively).
This result confirms the existence of certain time delays that strongly connect
climate data and medical data on Tokyo.

5. Related Work

Many data-mining algorithms for multiple databases have been proposed
in the area of data mining and knowledge discovery. Cheung et al [8] devel-
oped a distributed algorithm for Distributed Mining of Association (DMA)
rules.. This algorithm is efficient because the number of candidate item-
sets is reduced by locally pruning them into multiple databases. Jin and
Agrawal [9] established new operators for querying frequent patterns across
multiple databases and presented an algorithm for finding an optimized query
plan across multiple databases. These approaches can find frequent patterns
in multiple databases, but they cannot analyze quantitative changes and
temporal relationships in data across multiple databases. Zhu and Wu [10]
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developed an algorithm for discovering relational patterns where multiple
databases are jointed together to construct a hybrid frequent pattern tree.
The relational patterns are constraints described by relationships and op-
erators on support values in multiple databases. Unlike their algorithm,
our algorithm for mining changes and connections with some time delays
is closely related to the mining of causality in time-series data, essentially
differing from the frequent relational patterns.

As described in [24], several causal discovery systems have been devel-
oped, such as CaMML, TETRAD, and TimeSleuth. Their algorithms and
systems infer causal relationships based on Bayesian learning ideas. Silver-
stein et al.[14] proposed a constraint-based algorithm for discovering causal-
ity. They distinguished causality mining from traditional association rule
mining as simply finding a statistical relationship between itemsets. Our
method is related to such causal discovery research because the minimal and
consistent rules with time delays follow some notions of the causal theories. In
comparison, their methods basically analyze the values of original data, but
our work attempts to estimate quantitative changes (including fast-changing
events) and time-delayed connections in the data of two temporal databases.
In other words, our algorithm formulates association rules under the indis-
cernibility of unifying similar data behaviors and the weight of measuring
quantities. These rules are significantly used to evaluate the connectedness
of two databases for each different time delay.

In the area of rough set theory, several studies have been undertaken on
mining temporal data. Hirano and Tsumoto [25] presented a method for
finding patterns from spatio-temporal data using rough-set-based clustering.
This approach can group sequences from a single spatio-temporal information
system wherein data are associated with time and spatial positions. In com-
parison, our work proposes to distinguish between the indiscernibility and
weight in the rule generation so that fast changing events and time-delayed
connections can be detected from the quantitative changes in distributed
data.

As rough set research, Milton, Maheswari, and Siromoney [26] proposed
simply combining multiple information systems on the axis of common at-
tributes. Their work is based on the relational learning of multiple relations
in inductive logic programming. However, in the research, no evaluation
criteria for connecting multiple information systems were presented and no
algorithm for analyzing quantitative changes and time delays between two
information systems was considered. In addition, Inuiguchi [27] extended a
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rule induction method for multi-agent rough sets. His method can analyze a
conflict tolerance of multiple decision tables that have identical objects and
attributes. In contrast, we consider multiple information systems with differ-
ent attributes for analyzing their changes and time-delayed connections. By
using the time stamps of data, a connected decision table is constructed such
that one information system is used as condition attributes and the other is
used as decision attributes.

In the discussion of the above related works, we summarize that our
approach is based on a new combination of the following three aspects of
causality mining:

(i) Data mining for the qualitative changes in time series data

(ii) Discarding inconsistent rules as causal rules using rough set theory

(iii) Analyzing various time delays between the data of two temporal infor-
mation systems

No other approach covers all of the three aspects in (i), (ii), and (iii) that
enable us to discover causal relations across multiple databases. The combi-
nation is implemented in our algorithm that cannot be achieved by simply
combining existing works, as discussed below.

First, related works on rough set theory do not analyze the qualitative
changes in data for (i) and various time delays between two temporal in-
formation systems for (iii). For causality mining, these are very important
for exploring differently time-delayed data behaviors across two temporal
information systems.

Second, frequency-based data mining algorithms or Bayesian-based algo-
rithms can find a correlation between data, yet they do not consider logical
inconsistency of data for (ii) and various time delays in causal relations for
(iii). The consistency analysis is necessary to exclude some redundant or
inconsistent causal rules when evaluating a large amount of generated rules
for various time delays.

Third, the discovery of a time delay that implies a strong connection
between multiple data sets is considered as an original problem. To the best
of my knowledge, existing works on causality mining have not attempted to
find a time delay wherein the data behaviors in two temporal information
systems strongly affect each other in consistent causal rules.
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6. Conclusion and Future Work

We have proposed a method for mining the changes and time-delayed
connections from two temporal information systems in rough set theory.
As a novel approach, we establish a distinction between the indiscernibility
and weight of quantitative changes in rough-set rule generation and evalua-
tion. Our method contains quantitative estimations for extracting changes
in numeric values from different data sets. The proposed mining algorithm
slidingly connects the quantitative changes in distributed data to generate
(candidate) cause-effect decision tables for various time delays. We devise
an evaluation method for the consistency in the association rules of changes
by adjusting weight-based accuracy and coverage in order to compute the
connectedness between two information systems. The experimental result
indicates that our method can discover certain time delays that causally
connect climate data and medical data on Tokyo.

Our future research is concerned with establishing an algebra for complex
queries of quantitative estimation operators in order to discover changes and
connections across multiple information systems for users’ requirements. In
practical applications, users could indicate such complex queries that help
decide the direction to capture the implicit essence of data when data mining
relies on domain knowledge.
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Appendix

A. Rough Sets, Information Systems, and Decision Rules

In this appendix, we introduce the basic concept of rough set theory,
based on the mathematical foundations in [28, 5].

An attribute a is a mapping a : U → Va where U is a non-empty finite set
of objects (called the universe) and Va is the value set of a. An information
system is a pair T = (U,A) of the universe U and a non-empty finite set
A of attributes. Let B be a subset of A. The B-indiscernibility relation
is defined by an equivalence relation IB on U such that IB = {(x, y) ∈
U2 | ∀a ∈ B.a(x) = a(y)}. The equivalence class of IB for each object x
(∈ U) is denoted by [x]B. Let X be a subset of U . We define the lower
and upper approximations of X by B(X) = {x ∈ U | [x]B ⊆ X} and
B(X) = {x ∈ U | [x]B ∩X �= ∅}. A subset B of A is a reduct of T if IB = IA

and there is no subset B′ of B with IB′ = IA (i.e., B is a minimal set of
attributes without losing discernibility).

A decision table is an information system T = (U,A∪{d}) such that each
a ∈ A is a condition attribute and d �∈ A is a decision attribute. Let Vd be
the value set {d1, . . . , du} of the decision attribute d. For each value di ∈ Vd,
we obtain a decision class Ui = {x ∈ U | d(x) = di} where U = U1∪· · ·∪U|Vd|
(i.e., u = |Vd|) and for every x, y ∈ Ui, d(x) = d(y). The B-positive region of
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d is defined by PB(d) = B(U1) ∪ · · · ∪B(U|Vd|). A subset B of A is a relative
reduct of T if PB(d) = PA(d) and there is no subset B′ of B with PB′(d) =
PA(d).

We define a formula (a1 = v1) ∧ · · · ∧ (an = vn) in T (denoting the
condition of a rule) where aj ∈ A and vj ∈ Vaj

(1 ≤ j ≤ n). The semantics
of the formula in T is defined by [[(a1 = v1) ∧ · · · ∧ (an = vn)]]T = {x ∈ U |
a1(x) = v1, . . . , an(x) = vn}. Let ϕ be a formula (a1 = v1) ∧ · · · ∧ (an = vn)
in T . A decision rule for T is of the form ϕ → (d = di), and it is true if
[[ϕ]]T ⊆ [[(d = di)]]T (= Ui). The accuracy and coverage of a decision rule r of
the form ϕ → (d = di) are respectively defined as follows.

accuracy(T, r, Ui) =
|Ui ∩ [[ϕ]]T |

|[[ϕ]]T |
coverage(T, r, Ui) =

|Ui ∩ [[ϕ]]T |
|Ui|

In the evaluations, |Ui| is the number of objects in a decision class Ui and
|[[ϕ]]T | is the number of objects in the universe U = U1 ∪ · · · ∪ U|Vd| that
satisfy condition ϕ of rule r. Therefore, |Ui ∩ [[ϕ]]T | is the number of objects
satisfying the condition ϕ restricted to a decision class Ui.
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Figure 1: Climate data and medical data in Tokyo.

time a1 a2

1 3 1
2 3 1
3 3 2
4 5 3
5 16 4
6 3 4
7 1 2

&

time b1 b2

2 2 1
3 2 1
4 1 3
5 3 4
6 5 5

=⇒

time a1 a2 b1 b2

1 3 1 2 1
2 3 1 2 1
3 3 2 1 3
4 5 3 3 4
5 16 4 5 5

Figure 2: The connection con(T1, T2, 1) of T1 = (Nat1,7, A1) and T2 = (Nat2,6, A2) with
time delay Δ = 1.
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time a1 a2

1 3 1
2 3 1
3 3 2
4 5 3
5 16 4
6 3 4
7 1 2

=⇒

time a1 a2

2 0 0
3 0 +1
4 +2 +1
5 +11 +1
6 -13 0
7 -2 -2

time b1 b2

2 2 1
3 2 1
4 1 3
5 3 4
6 5 5

=⇒

time b1 b2

2 0 0
3 0 0
4 0 1
5 1 1
6 1 1

Figure 3: The quantitative changes πd(T1) and π≥2.5(T2).

time a1 a2

1 0 0.0
2 0 +1.0
3 +2 +0.5
4 +11 +1/3
5 -13 0.0
6 -2 −0.5

&

time b1

2 0
3 0
4 0
5 1
6 1

=⇒

time a1 a2 b1

1 0 0 0
2 0 +1.0 0
3 +2 +0.5 1
4 +11 +1/3 1

Figure 4: The connected decision table con(πd(T1[a1]) ◦ πv(T1[a2]), π≥2.5(T2[b1]), 2) with
time delay Δ = 2.
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Algorithm: Change and Connection Mining

Input: temporal information systems T1 and T2[b],
maximum time delay m (∈ Nat)

Output: time delay t
1: begin
2: T ′

1 = π1(T1[a1]) ◦ · · · ◦ πn(T1[an]); T ′
2 = π(T2[b]);

3: for Δ = 0 to m do
4: T = con(T ′

1, T
′
2, Δ);

5: R = reducts(T ); (based on Iqc
B )

6: for B ∈ R do
7: CB = 0;
8: for i = 1 to |sign(Vd)| do
9: max evali = 0;
10: for x ∈ Ui do
11: r = rule(x,B, T );
12: evali = eval(T, r, Ui); (using μS)
13: if max evali < evali then max evali = evali;
14: rof
15: CB = CB + max evali;
16: rof
17: rof
18: connectednessΔ = max({CB | B ∈ R);
19: rof
20: return t (connectednesst = max({connectednessj | 0 ≤ j ≤ m}));
21: end;

Figure 5: The change and connection mining algorithm for two temporal information
systems T1 and T2[b].
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Figure 6: Temperature data in T1[at], and the quantitative changes πtr(10)(T1[at]) and
πv(πtr(10)(T1[at])).
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Figure 7: Humidity data in T1[ah] and the quantitative change π≤35(T1[ah])).
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Figure 8: Influenza data in T1[bf ] and the quantitative change πd(T2[bf ]).

Figure 9: The consistency evaluation and the connectedness in con(πv(πtr(10)(T1[at])) ◦
π≤35(T1[ah]), exp7(πd(T2[bf ]),Δ)).
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