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Abstract—Sequential pattern mining is a crucial but chal-
lenging task in many applications, e.g., analyzing the behaviors
of data in transactions and discovering frequent patterns in
time series data. This task becomes difficult when valuable
patterns are locally or implicitly involved in noisy data. In this
paper, we propose a method for mining such local patterns from
sequences. Using rough set theory, we describe an algorithm for
generating decision rules that take into account local patterns
for arriving at a particular decision. To apply sequential data
to rough set theory, the size of local patterns is specified,
allowing a set of sequences to be transformed into a sequential
information system. We use the discernibility of decision classes
to establish evaluation criteria for the decision rules in the
sequential information system.

I. INTRODUCTION

Data mining algorithms have been developed as tools to
discover valuable patterns and rules from large amounts
of data. Sequential pattern mining algorithms [1], [2], [3]
enable us to find frequent patterns in sequential datasets.
Sequential pattern mining requires the analysis of an ordered
list of itemsets (e.g., a list of actions or orders) that can be
modeled by a sequence. In order to effectively carry out
the task, we have to extract only valuable patterns included
in sequences by skipping noisy and meaningless patterns.
However, frequent data mining algorithms are not feasible
when it comes to extracting local (or implicit) patterns from
noisy data. This is because the algorithms may not work
when valuable patterns do not appear frequently or when
waste patterns appear frequently. In fact, the frequencies
of such valuable patterns may be less than a user-specified
threshold, but setting a lower threshold leads to the recovery
of a number of meaningless patterns.

In order to solve the problem, we have to logically and
combinationally analyze patterns in sequences by checking
the occurrences of local patterns that consistently result in
a decision. For such an analysis, rule generation in rough
set theory [4], [6], [7] provides a data mining algorithm
based on the notions of attribute reduction and reduced
decision rules. One of the advantages of rough set data
mining is that it can generate reduced and consistent decision
rules by logically checking all combinations of condition

and decision attributes in an information system. Thus,
rough set theory can be used to generate essential attributes
through attribute reduction of logical combinations. How-
ever, sequential pattern mining algorithms have not been
well studied in the context of rough set theory. Extending
this approach to sequential pattern mining entails a logical
analysis of local patterns in granular computing, which
differs from the frequency analysis of sequential patterns.

In this paper, we propose a sequential pattern mining
algorithm using the rule generation from discernibility in
rough set theory. This algorithm computes subsequences
of a fixed size that are regarded as local patterns hidden
inside sequences. A sequential information system consists
of the subsequences obtained from a set of sequences so
that we can apply sequential data to the rough set data
mining. The decision rules generated from a sequential
information system are said to be sequential decision rules.
In each of the rules, the condition attributes represent the
occurrences of local patterns in a sequence. In order to
estimate the local patterns in the rules, we establish the
evaluation of occurrence-based accuracy and coverage for
sequential decision rules.

Our algorithm has the following interesting features.
• Occurrences of Local Patterns: Given a set of se-

quences, a sequential information system is constructed
from the attributes that denote the subsequences of a
fixed size, where each attribute value represents the
number of occurrences of a local pattern in a sequence.

• Granularities of Sequences: The different sizes of
local sequence patterns determine the diversity of gran-
ularities in a sequential information system. In other
words, longer subsequences correspond to smaller gran-
ularities because they contain more information.

• Reduced and Consistent Decision Rules: In rough set
theory, attribute reduction generates reduced decision
rules. In addition, the decision rules are consistent, and
hence, they are significantly different from the frequent
association rules in traditional data mining, because
logically inconsistent rules are excluded due to the
discernibility of decision classes.



II. ROUGH SETS

An attribute a is a mapping a : U → Va where U is a non-
empty finite set of objects (called the universe) and Va is the
value set of a. An information system is a pair T = (U,A)
of the universe U and a non-empty finite set A of attributes.
Let B be a subset of A. The B-indiscernibility relation is
defined by an equivalence relation IB on U such that IB =
{(x, y) ∈ U2 | ∀a ∈ B.a(x) = a(y)}. The equivalence
class of IB for each object x (∈ U ) is denoted by [x]B .
Let X be a subset of U . We define the lower and upper
approximations of X by B(X) = {x ∈ U | [x]B ⊆ X} and
B(X) = {x ∈ U | [x]B ∩ X �= ∅}. A subset B of A is
a reduct of T if IB = IA and there is no subset B′ of B
with IB′ = IA (i.e., B is a minimal subset of the condition
attributes without losing discernibility).

A decision table is an information system T = (U,A ∪
{d}) such that each a ∈ A is a condition attribute and d �∈ A
is a decision attribute. Let Vd be the value set {d1, . . . , du}
of the decision attribute d. For each value di ∈ Vd, we
obtain a decision class Ui = {x ∈ U | d(x) = di} where
U = U1 ∪ · · · ∪U|Vd| and for every x, y ∈ Ui, d(x) = d(y).
The B-positive region of d is defined by PB(d) = B(U1)
∪ · · · ∪B(U|Vd|). A subset B of A is a relative reduct of
T if PB(d) = PA(d) and there is no subset B′ of B with
PB′(d) = PA(d).

We define a formula (a1 = v1) ∧ · · · ∧ (an = vn) in
T (denoting the condition of a rule) where aj ∈ A and
vj ∈ Vaj (1 ≤ j ≤ n). The semantics of the formula in
T is defined by [[(a1 = v1) ∧ · · · ∧ (an = vn)]]T = {x ∈
U | a1(x) = v1, . . . , an(x) = vn}. Let ϕ be a formula
(a1 = v1) ∧ · · · ∧ (an = vn) in T . A decision rule for T is
of the form ϕ → (d = di), and it is true if [[ϕ]]T ⊆ [[(d =
di)]]T (= Ui). The accuracy and coverage of a decision rule
r of the form ϕ → (d = di) are respectively defined by:

accuracy(T, r, Ui) =
|Ui ∩ [[ϕ]]T |

|[[ϕ]]T |
coverage(T, r, Ui) =

|Ui ∩ [[ϕ]]T |
|Ui|

In the evaluations, |Ui| is the number of objects in a decision
class Ui and |[[ϕ]]T | is the number of objects in the universe
U = U1 ∪ · · · ∪ U|Vd| that satisfy condition ϕ of rule r.
Therefore, |Ui ∩ [[ϕ]]T | is the number of objects satisfying
the condition ϕ restricted to a decision class Ui.

III. SEQUENTIAL DATA IN ROUGH SETS

A. Sequential Information Systems

An itemset ai is a non-empty set of items, and the size
of ai is the cardinality of ai, i.e., |ai|. A sequence s is an
ordered list of itemsets 〈a1, a2, . . . , an〉, simply denoted by
a1a2 · · · an. The size of s (denoted ||s||) is the number of
elements of the list a1a2 · · · an, and the length of s is the
total number of the sizes |a1|, |a2|, . . . , |an|. A sequence

s1 = a1a2 · · · an is a subsequence of another sequence s2 =
b1b2 · · · bm (denoted s1 � s2), if there are integers i1 <
i2 < · · · < in such that a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin .
The empty sequence ε is a subsequence of any sequence.
A sequence s1 is a strict subsequence of another sequence
s2 (denoted s1 �st s2) if there exists an integer i such that
a1 ⊆ bi, a2 ⊆ bi+1, . . . , an ⊆ bi+n−1.

As a practical example, an ordered list of itemsets can
be used to represent a list of sequential actions of an agent
where each itemset corresponds to an action, which consists
of a set of operations corresponding to items. Let us consider
the following four sequences:

s1 = aabcac

s2 = bcca

s3 = cba

s4 = aabca

where a = {i1, i2}, b = {i2, i3, i4}, and c = {i2, i3} are
itemsets and i1, i2, i3, and i4 are items. The sequence s1 is
the series aabcac of actions of an agent and the sequence
s2 is the series bcca of actions of another agent. In addition,
the sequences s3 and s4 are the series cba and aabca of
actions, respectively, of two other agents.

In order to apply this sequential data to rough set theory,
we characterize the local patterns of sequences in an infor-
mation system that can be used to discern the sequences. In
our new method, the occurrences of subsequences in each
sequence are calculated to express the local features of a set
of sequences by using an information system.

Definition 1 (Sequential Information System): Let Usq =
{s1, . . . , sn} be a set of sequences and Asq be a set of
subsequences of sequences s1, . . . , sn in Usq. A sequential
information system is an information system T = (Usq, Asq)
where for each attribute a ∈ A (named by a subsequence),
a(x) maps the number of occurrences of the subsequence a
in each sequence x ∈ Usq .

We denote the concatenation
n︷ ︸︸ ︷

s · · · s of sequence s by sn

(in particular, s0 denotes the empty sequence ε). We can
precisely define the number n of occurrences of subsequence
s1 in sequence s2 as follows:

Ωs1(s2) = n

if the concatenation sn
1 is a subsequence of s2 but the

concatenation sn+1
1 is not a subsequence of s2. For example,

Ωac(caac) = 1 and Ωac(abcbacc) = 2, i.e., ac appears once
in the sequence caac and twice in the sequence abcbacc.

Definition 2 (Sequential Decision Table): A sequential
decision table is a decision table T ′ = (Usq, Asq ∪ {d})
such that T = (Usq, Asq) is a sequential information system
and d �∈ Asq is a decision attribute.



B. Granularities of Sequences

The local size of valuable patterns varies depending on the
property of sequential data in many application domains. To
deal with the diversity of sequential data, we consider the
different sizes of subsequences in a sequential information
system that set granularities for the features of sequences
in rough set theory. As a result of this method, the size k
subsequences of a sequence have a smaller granularity than
the size k − 1 subsequences of that.

In order to capture local patterns from a sequence s, we
define the set of subsequences of a size occurring in the
sequence s as follows.

Definition 3 (Size k Subsequences): The set of size k
subsequences of s is defined by

Subk(s) = {s′ | s′ � s & ||s′|| = k}
For sequences s1, s2, s3, and s4 shown in Section III-A,

we obtain the following sets of size 2 subsequences:

Sub2(s1) = {aa, ab, ac, ba, bc, ca, cc}
Sub2(s2) = {ba, bc, ca, cc}
Sub2(s3) = {ba, ca, cb, cc}
Sub2(s4) = {aa, ab, ac, ba, bc, ca, cc}

In Sub2(s1) with s1 = aabcac, subsequence aa consists
of the first and second itemsets in s1; subsequence ab
consists of the second and third itemsets in s1. In this
example, we can intuitively interpret the size 2 subsequences
as changes from one action to another when the sequences
describe agents’ actions. Therefore, the size 2 subsequence
sets Sub2(s1), . . . , Sub2(s4) indicate the local changes in
actions of the four agents.

Furthermore, local patterns in a sequential information
system are analyzed more strictly as follows. By limiting
the definition of subsequences, we obtain the set of strict
subsequences occurring in the sequence s.

Definition 4 (Size k Strict Subsequences): The set of
strict size k subsequences of s is defined by

Subst
k (s) = {s′ | s′ �st s & ||s′|| = k}.

For example, we have the following sets of strict size 2
subsequences in the sequences s1, s2, s3, and s4:

Subst
2 (s1) = {aa, ab, ac, bc, ca, cc}

Subst
2 (s2) = {bc, ca, cc}

Subst
2 (s3) = {ba, cb, ca, cc}

Subst
2 (s4) = {aa, ab, ac, bc, ca, cc}

In Subst
2 (s1) with s1 = aabcac, the local pattern ba

in Sub2(s1) is not a strict subsequence of s1, but it is
nevertheless a subsequence of s1. This is because there is
an itemset c between b and a (i.e., bca) in the sequence s1.
That is, we can use Subk to generate lazy local patterns by
skipping itemset c in sequence bca.

aa ab ac ba bc ca cb cc d
s1 1 1 2 1 1 1 0 1 1
s2 0 0 0 1 1 1 0 1 0
s3 0 0 0 1 0 1 1 1 0
s4 1 1 1 1 1 1 0 1 1

Table I
SIZE 2 SEQUENTIAL INFORMATION SYSTEM T1

Another granularity can be analyzed by extracting size
3 subsequences from the sequences s1, s2, s3, and s4.
Intuitively, in the analysis of actions, the size 3 subsequences
imply more complex combinations of action changes than
the size 2 subsequences. Similar to the above example, the
sets of size 3 subsequences are captured from the sequences
s1, s2, s3, and s4 as follows.

Sub3(s1) = {aaa, aab, aac, aba, abc, aca, acc, bac, bca,

bcc, cac, cca, ccc}
Sub3(s2) = {bca, bcc, cca, ccc}
Sub3(s3) = {cba, cca}
Sub3(s4) = {aaa, aab, aac, aba, abc, aca, acc, bca, cca}
The combinations of itemsets occurring in the size 3 subse-
quences are more complex (e.g., Sub3(s1) contains 12 local
patterns) but those in the strict size 3 subsequences are not
very complex, as can be seen in the following:

Subst
3 (s1) = {aab, aac, abc, acc, bca, cac}

Subst
3 (s2) = {bcc, cca, ccc}

Subst
3 (s3) = {cba, cca}

Subst
3 (s4) = {aab, aac, abc, acc, bca, cca}

Let S be a set of sequences. We denote Subk(S) =⋃
s∈S Subk(s) (resp. Subst

k (S) =
⋃

s∈S Subst
k (s)).

C. Transformation of Sequences

We define a transformation from a finite set of sequences
into a sequential information system with respect to size k.

Definition 5 (Transformation): Let k > 0 be a non-
negative integer, and let S = {s1, . . . , sj} be a finite set
of sequences. The size k sequential information system is
defined as a sequential information system T = (Usq, Asq):

Usq = S and Asq = Subk(S)

In addition, if Asq is defined by Subst
k (S), then T is the

strict size k sequential information system.
After a finite set of sequences is transformed into a

sequential information system T = (Usq, Asq), the in-
formation system is extended to a decision table T ′ =
(Usq, Asq∪{d}) by adding decision attribute d. For example,
we can set a decision attribute such that the sequences s1 and
s4 result in a success (denoted value 1), but the sequences
s2 and s3 cause a failure (denoted value 0). This setting is
modeled by supplementing the decision attribute d to the



aa ab ac ba bc ca cb cc d
s1 1 1 1 0 1 1 0 1 1
s2 0 0 0 0 1 1 0 1 0
s3 0 0 0 1 0 1 1 1 0
s4 1 1 1 0 1 1 0 1 1

Table II
STRICT SIZE 2 SEQUENTIAL INFORMATION SYSTEM T2

information system T = (Usq, Asq) with d(s1) = d(s4) = 1
and d(s2) = d(s3) = 0. In Table I, we show a sequential
decision table that is obtained from the transformation from
the sequences s1, s2, s3, and s4 into the size 2 sequential
information system T1, and the decision attribute d. In the
table, the attributes are labeled by the size 2 subsequences

aa, ab, ac, ba, bc, ca, cb, and cc

in Sub2(s1)∪Sub2(s2)∪Sub2(s3)∪Sub2(s4). For example,
aa(s1) = 1 and ac(s1) = 2 indicate that the local patterns
aa and ac occur in s1 once and twice, respectively, and
cb(s1) = 0 indicates that cb does not occur in s1.

Table II shows a sequential decision table of a strict
size 2 sequential information system transformed from the
sequences s1, s2, s3, and s4 along with the decision attribute
d. The size 2 subsequences in Table I contain some discon-
tinuous ordered patterns but the strict size 2 subsequences
in Table II do not include them. For example, ba(s1) = 0
means that the strict pattern ba does not occur in sequence
s1, but the lazy pattern ba does occur in the sequence.

From the sets of subsequences in Sub3(s1), Sub3(s2),
Sub3(s3), and Sub3(s4), the size 3 sequential and strict
size 3 sequential information systems T1 and T2 in Tables III
and IV, respectively, are transformed from the sequences s1,
s2, s3, and s4. Consequently, the number of subsequences
increases in comparison with the size 2 sequential informa-
tion systems.

D. Accuracy and Coverage

Using the transformation discussed in Section III-C, we
can obtain a size k sequential information system Tk =
(Usq, Asq) from a set of sequences. The sequential decision
table T ′

k = (Usq, Asq∪{d}) is constructed by adding a deci-
sion attribute d for the sequences in Usq to the information
system Tk. This decision table is used to generate decision
rules for Tk of the form:

(a1 = n1) ∧ · · · ∧ (an = nn) ⇒ (d = v)

where each ai denotes a subsequence and each ni expresses
the number of occurrences of subsequence ai by a non-
negative integer. Let T be a sequential decision table. A
decision rule for T can be called a sequential decision rule
if there is an attribute condition ai = ni in the rule such
that ni �= 0.

Here, we discuss the interpretation of such a sequential
decision rule. From the sequential decision table T =

(Usq, Asq ∪ {d}), we can generate sequential decision rules
as follows:

(cca = 1) ∧ (acc = 1) ⇒ (d = 1)

This rule implies that if a sequence contains the local
patterns cca and acc, then it results in d = 1. However,
the following decision rule is not valuable for our purpose.

(cba = 0) ∧ (bcc = 0) ⇒ (d = 1)

This is because the condition attributes indicate that no
occurrence of the local patterns cba and bcc in a sequence
results in the derivation of the decision attribute d = 1.
In order to analyze agents’ behaviors, some patterns that
actually occur have to be mined from the sequential data.
However, we do not exclude decision rules if they indicate
the occurrence and non-occurrence of local patterns:

(cac = 1) ∧ (acc = 0) ⇒ (d = 1)

This rule means that the occurrence of local pattern cac
results in the decision attribute d = 1 as long as the local
pattern acc does not appear.

We define an evaluation function for sequential decision
rules that determines whether each size k sequential informa-
tion system is well represented when it comes to classifying
the decision class. To measure varieties of local sequence
patterns for each sequence, we calculate the sum of numbers
of the occurring patterns as follows.

Definition 6 (Sum of Occurring Local Patterns): Let
S be a set of sequences and let A′ ⊆ Asq . The sum
of numbers of occurring local patterns o(s,A′) in each
sequence s ∈ S is defined by

o(s,A′) =
∑
a∈A′

sign(a(s))

where the sign function sign(n) is defined by sign(n) = 1
if n > 0 and sign(n) = 0 if n = 0.

We extend the function o(s,A′) to a set of sequences S
by defining o(S,A′) =

∑
s∈S o(s,A′).

Definition 7 (Occurrence-Based Accuracy and Coverage):
Let Si be a decision class in S and let s ∈ Si. The
occurrence-based accuracy o accuracy and occurrence-
based coverage o coverage of a sequential decision rule r
of the form ϕ → (d = d(s)) with d(s) ∈ Vd are defined as
follows.

o accuracy(T, r, Si) =
o(Si ∩ [[ϕ]]T , Aϕ)

o([[ϕ]]T , Aϕ)

o coverage(T, r, Si) =
o(Si ∩ [[ϕ]]T , Aϕ)

o(Si, Aϕ)

where Aϕ = {a ∈ A | a = v occurs in ϕ}.
We can define another measurement of the occurrence-

based coverage by replacing o(Si, Aϕ) with |Si| · |Aϕ|.
Definition 8 (Variant of Occurrence-Based Coverage):

Let Si be a decision class and let s ∈ Si. A variant



aaa aab aac aba abc aca acc bac bca bcc cac cba cca ccc d
s1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
s2 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0
s3 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
s4 1 1 1 1 1 1 1 0 1 0 0 0 1 0 1

Table III
SIZE 3 SEQUENTIAL INFORMATION SYSTEM T3

aab aac abc acc bca bcc cac cba cca ccc d
s1 1 1 1 1 1 0 1 0 1 0 1
s2 0 0 0 0 0 1 0 0 1 1 0
s3 0 0 0 0 0 0 0 1 1 0 0
s4 1 1 1 1 1 0 0 0 1 0 1

Table IV
STRICT SIZE 3 SEQUENTIAL INFORMATION SYSTEM T4

Algorithm sq mining

input: set of sequences S = {s1, . . . , sn},
maximum subsequence size m,
decision attribute d, bool b

output: list of sets of decision rules (R2, . . . , Rm)
1: begin
2: for k = 2 to m do
3: Rk = ∅;
4: Ak = subsq(s1, k, b) ∪ · · · ∪ subsq(sn, k, b);
5: for s ∈ S and a ∈ Ak do
6: a(s) = subsq count(s, a, b)
7: rof
8: Tk = (S,Ak ∪ {d});
9: R = reducts(Tk);
10: for B ∈ R do
11: for i = 1 to |Vd| do
12: for s ∈ Si do
13: Rk = Rk ∪ {rule(s,B, Tk)};
14: rof
15: rof
16: rof
17: rof
18: return (R2, . . . , Rm);
19: end;

Figure 1. Sequential pattern mining algorithm.

vo coverage of the occurrence-based coverage of a
sequential decision rule r of the form ϕ → (d = d(s)) with
d(s) ∈ Vd is defined as follows.

vo coverage(T, r, Si) =
o(Si ∩ [[ϕ]]T , Aϕ)

|Si| · |Aϕ|
where Aϕ = {a ∈ A | a = v occurs in ϕ}.

IV. SEQUENTIAL PATTERN MINING ALGORITHM

This section describes a sequential pattern mining al-
gorithm sq mining(S,m, d) for a set of sequences S, a
maximum subsequence size m, and a decision attribute d.

In Fig.1, we show a sequential data mining algorithm that re-
turns a list of sets of (sequential) decision rules R2, . . . , Rm

(from size 2 to m), such that the condition attributes in
each rule indicate the occurrences of subsequences. This
algorithm is outlined as follows.

1) Transformation: For each size k from 2 to m, a set
of sequences is transformed into size k (resp. strict
size k) sequential information systems if b = 0 (resp.
b = 1) by calling the following subroutines.

a) Subsequence generation: The set of size k
subsequences Sub(S) or strict subsequences
Subst(S) is generated by checking all the partial
patterns of given sequences. These subsequences
are used to represent attribute names in the
sequential information system.

b) Subsequence counting: The occurrences of sub-
sequences are counted to set the values of at-
tributes in the sequential information system.

2) Rule generation: By a rough set rule generation
method, reduced decision rules are generated from the
sequential decision table where condition attributes are
represented by the occurrences of size k subsequences.

A. Transformation

In lines 2 - 17 of the mining algorithm sq mining, for
each size k from 2 to m, the set of size k subsequences
Sub(S) or strict size k subsequences Subst(S) is extracted
from sequences in order to construct the size k or the
strict size k sequential information system. In line 4, all the
subsequences of size k in S are generated as attribute names,
which are in Ak = subsq(s1, k, b) ∪ · · · ∪ subsq(sn, k, b).

As shown in Fig.2, the subsequence generation algorithm
subsq(s, k, b) for sequence s, subsequence size k, and bool
value b. This algorithm computes Subk(s) if b = 0 and
Subst

k (s) if b = 1. In subsq(s, k, b), we use some operations
for sequences. Let s = a1a2 · · · an be a sequence. Then,
start(s) and other(s) return the first itemset a1 and the
sequence of the other itemsets a2 · · · an. Let s1 and s2 be
two sequences. Then, concat(s1, s2) is the concatenation of



Algorithm subsq

input: sequence s, subsequence size k, bool b
output: a set of sequences S
1: begin
2: Δ = ∅;
3: if size(s) < k then return ∅
4: else if k = 0 then return {ε}
5: else if b = 0 then
6: Δ = {concat(start(s), s′) |
7: s′ ∈ subsq(other(s), k − 1, 0)}
8: ∪subsq(other(s), k, 0);
9: else if b = 1 then
10: Δ = {concat(start(s), s′) |
11: s′ ∈ subsq(other(s) ↑ k − 1, k − 1, 1)}
12: ∪subsq(other(s), k, 1)
13: for x ⊆ start(s) do
14: Δ = Δ ∪ subsq(concat(x, other(s)), k, b);
15: rof
16: return Δ;
17: end;

Figure 2. Subsequence generation algorithm.

s1 and s2, i.e., concat(s1, s2) = s1s2. In lines 13 - 15 of al-
gorithm subsq(s, k, b), for every subset x of the first itemset
start(s), this algorithm is recursively called in order to gen-
erate the set of subsequences subsq(concat(x, other(s)).
This is because the subsequences of s contain subsets x
of the itemsets of s, i.e., the sequence ab is a subsequence
of the sequence ac if b ⊆ c where a, b, and c are itemsets.

After generating the subsequences, in lines 5 - 7 of the
mining algorithm, it calculates the numbers of occurrences
a(s) of local patterns denoted by the attributes a in Ak and
the sequences s in S, which become their attribute values
in a sequential information system Tk = (S,Ak ∪ {d}) (in
line 8). As a subroutine, the subsequence counting algorithm
subs count(s1, s2, b) shown in Fig.3 counts the number of
occurrences of subsequence pattern s2 in sequence s1.

B. Rule Generation

In line 9, the set R = reducts(Tk) [6] of all the
relative reducts of size k sequential information system
Tk = (Usq, Asq) is computed by the standard reduct set
computation in [7]. Each B ∈ R is a minimal subset of
the condition attributes that are the attributes a1, . . . , al ex-
pressed by subsequences. This means that the subsequences
denoted by a1, . . . , al are essential to discern the decision
classes S1, . . . , S|Vd|. In lines 10 - 16, the reduced decision
rules generated by rule(s,B, Tk) are added to the set Rk

of decision rules for size k for each relative reduct B ∈ R
where i is a natural number from 1 to |Vd| and Si is a
decision class of S.

Algorithm subsq count

input: sequence s1, sequence s2, bool b
output: number of subsequences ct
1: begin
2: π = s2; ct = 0;
3: while π ∈ subsq(s1, |π|, b) do
4: π = concat(π, s2);
5: ct = ct + 1;
6: elihw
7: return ct;
8: end;

Figure 3. Subsequence counting algorithm.

V. CONCLUSION

We have proposed an alternative method for sequential
pattern mining using rough set theory. In our method,
we represent the local features of sequences by using a
sequential information system where attributes correspond to
the occurrence of size k subsequences as local patterns. The
proposed mining algorithm computes sequential decision
rules according to the size of subsequences by changing the
size from 2 to a maximal number in order to check different
granulates for sequential data.
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