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Abstract. In [10], several constructive description logics were proposed as intu-
itionistic variants of description logics, in which classical negation was replaced
by strong negation as a component to treat negative atomic information. For con-
ceptual representation, not only strong negation but also combining it with clas-
sical negation seems to be useful and necessary due to their respective features
corresponding to predicate denial (e.g., not happy) and predicate term negation
(e.g., unhappy). In this paper, we propose an alternative description logic ALC∼
with classical negation and strong negation. In particular, we adhere to the no-
tions of contraries, contradictories, and subcontraries (in [5]), generated from
conceivable statement types using predicate denial and predicate term negation.
To capture these notions, our formalization provides an improved semantics that
suitably interprets various combinations of classical negation and strong nega-
tion. We show that our semantics preserves contradictoriness and contrariness for
ALC∼-concepts but the semantics of constructive description logic CALC∼ with
Heyting negation and strong negation cannot preserve the property for CALC∼-
concepts.

1 Introduction

Negative information plays an important role in knowledge representation and reason-
ing (cf. [16, 8, 18]). Classical negation ¬F represents the negation of a statement F ,
but a strong negation ∼F may be more suitable for expressing explicit negative infor-
mation (or negative facts). In other worlds, ∼F indicates information that is directly
opposite and exclusive to F rather than its complementary negation. Therefore the law
of contradiction ¬(F ∧ ∼F ) holds but the law of excluded middle F ∨ ∼F does not
hold [9, 1, 16]. For example, given the formula rich(x) that represents “x is rich,” the
antonymous formula poor(x) is defined by the strong negation ∼rich(x), and not by
the classical negation ¬rich(x). Thus, we can logically recognize the inconsistency of
rich(x) and ∼rich(x) (as poor(x)), and because rich(x) ∨ ∼rich(x) is not valid, we
can represent “x is neither rich nor poor” as ¬rich(x) ∧ ¬∼rich(x).

In [10], several constructive description logics were proposed as intuitionistic vari-
ants of description logics, in which classical negation was replaced by strong negation
as a component to treat negative atomic information. In contrast, since basic description
logics correspond to a subclass of classical first-order logic (i.e., they have classical
negation), negative concepts are expressed by classical negation. Due to the different



features of negative information, complex negative statements using strong negation
and classical negation can be usefully employed in conceptual representation. In the
philosophical study of negation, there is a distinction between predicate denial (e.g.,
not happy) and predicate term negation (e.g., unhappy) [5, 18]. Moreover, conceivable
statement types using predicate denial and predicate term negation give rise to oppo-
sition between affirmation and negation (contraries, contradictories, and subcontraries)
[5]. When we logically establish classical negation and strong negation in concept lan-
guages, such philosophical notions are a rather suitable exposition of formalization.

In this paper, we propose a description logic ALC∼ extended to include the two
types of negation (classical negation ¬ and strong negation ∼), that is, an extension
of the basic description logic ALC. The following are the primary results of this pa-
per. First, we present an improved semantics of ALC∼, which adheres to oppositions
– contraries, contradictories, and subcontraries in concept languages. We remark that
the conventional semantics of strong negation [1] yields the undesirable equivalence
C ≡ ∼¬C as opposed to our proposed semantics. Secondly, we show that our se-
mantics preserves the property of contradictoriness and contrariness that there exists an
element such that it belongs to the contradictory negation ¬C but it does not belong to
the contrary negation ∼C . When considering Heyting negation and classical negation
in constructive description logics, the property cannot be preserved for some interpre-
tations. The disadvantage motivates us to formalize a new semantics for contradictory
negation and contrary negation. Based on the semantics, we develop a tableau-based al-
gorithm for testing concept satisfiability in ALC∼ and show the correctness (soundness,
completeness, and termination) and complexity of the algorithm.

2 Contradictories and contraries between concepts

Strong negation can be used to describe conceptual oppositions in description logics
such as the concepts Happy and Unhappy. For example, let us denote by Happy,
¬Happy (classical negation), and ∼Happy (strong negation) the concepts “individu-
als that are happy,” “individuals that are not happy,” and “individuals that are unhappy,”
respectively. We can then construct the complex concepts ∃has-child.¬Happy as “Par-
ents who have children that are not happy,” ∃has-child.∼Happy as “Parents who have
unhappy children,” and (¬Happy � ¬∼Happy)� Person as “Persons who are neither
happy nor unhappy.” Syntactically, these allow us to express concepts composed of var-
ious combinations of classical negation and strong negation, e.g., ∼¬C and ∼¬∼C .
As discussed in [12], the two negations represent the following oppositions between
affirmation and negation (which Horn [5] renders):

S is Happy contraries

S is ¬∼Happy S is ¬Happysubcontraries

contradictories

S is ∼Happy
(S is unhappy)

(S is not happy)

(S is happy)

(S is not unhappy)
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In our conceptual explanation of them, the contraries (Happy and ∼Happy) imply
that both concepts cannot contain an identical element. The contradictories (Happy
and ¬Happy) imply that one concept must contain an element when it does not belong
to the other. The subcontraries (¬∼Happy and ¬Happy) imply that every element
belongs to either of the concepts. In order to apply the oppositions to any DL-concepts,
we require to generalize them as follows 1:

(¬∼)iA,∼(¬∼)iA and ¬(∼¬)iA, (∼¬)i+1A : contraries
(∼¬)iA,¬(∼¬)iA and ∼(¬∼)iA, (¬∼)i+1A : contradictories
(¬∼)i+1A,¬(¬∼)iA and ¬(∼¬)i+1A, (∼¬)iA : subcontraries

where A is a concept name (i.e., an atomic concept). In reasoning algorithms for de-
scription logics with the two negations, contraries and contradictories will be taken as
a criterion of checking inconsistent pairs of DL-concepts.

In intuitionistic logic, Heyting negation and strong negation exist as methods of
dealing with the oppositions. In general, strong negation has been formalized as a con-
structive negation of intuitionistic logic. Thomason [14] proposed the semantics of intu-
itionistic first-order logic only with strong negation, Akama [1] formalized intuitionistic
logic with Heyting negation and strong negation, Wagner [15] and Herre et al.[3] de-
fined weak negation and strong negation in the logic developed by them, and Pearce and
Wagner [11] proposed logic programming with strong negation that was regarded as a
subsystem of intuitionistic logic. While intuitionistic logic and strong negation allow us
to represent term negation and predicate denial, we would like to propose a description
logic such that:

1. It contains classical negation and strong negation since ALC is based on classical
logic.

2. It fulfills the property that contradictoriness and contrariness are preserved for every
interpretation.

Here, we observe the properties of Heyting negation (−) and strong negation (∼).
Let F be a formula (but not a concept). The law of double negation −− F ↔ F and
the law of excluded middle −F ∨ F do not hold for Heyting negation, but the law of
double negation ∼∼F ↔ F is valid for strong negation. The combinations of these
negations lead to the valid axiom ∼−F ↔ F . Hence, the contradictory F and −F can
be replaced with ∼−F and −F by the equivalence ∼−F ↔ F ; however, it should be
recognized as a contrary. This is in partial disagreement with the abovementioned op-
positions in which contradictories and contraries are defined differently. With regard to
these features, Heyting negation and strong negation using the conventional semantics
in intuitionistic logic [14, 1, 3] do not satisfy our requirements. Thus, we need to model
contradictory negation and contrary negation in description logics and compare it with
the constructive description logics in [10].

To incorporate strong negation into classical first-order logic and to remove the
equivalence ∼¬F ↔ F , we have improved the semantics by capturing the following

1 (∼¬)i (resp. (¬∼)i) denotes a chain of length i of ∼¬ (resp. ¬∼).
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properties [7]. The law of double negation ¬¬F and the law of excluded middle ¬F∨F
hold for classical negation, and the equivalence ∼¬F ↔ F is not valid. In conceptual
representation based on this semantics, the strong negation ∼C of a concept C is partial
and exclusive to its affirmative expression C . The partiality of strong negation entails
the existence of information that is neither affirmative nor strongly negative, i.e., ¬C �
¬∼C 	≡ ⊥. In contrast, the classical negation ¬C is complementary and exclusive
to its affirmative expression C . Hence, the disjunction of affirmation and its classical
negation expresses the set of all individuals, i.e., C �¬C ≡ �. Additionally, the simple
double negations ¬¬C and ∼∼C are interpreted to be equivalent to the affirmation C .
We can constructively define the complicated double negations ∼¬C and ¬∼C without
losing the features of the two negations by the refinement of the conventional semantics.
If we strongly deny the classical negation ¬C , then the double negation ∼¬C (called
constructive double negation) must be partial and exclusive to ¬C . If we express the
classical negation of a strong negation ∼C , then the double negation ¬∼C (called weak
double negation) must be complementary and exclusive to ∼C .

3 Strong negation in description logic

In this section, we define a description logic with classical negation and strong negation
that is interpreted by two different semantics and analyze the property of contradic-
toriness and contrariness for the proposed logic. In addition, we define a constructive
description logic obtained by including Heyting negation and strong negation.

3.1 The description logic with classical negation and strong negation: ALC∼

The description logic ALC∼ (as an extension of ALC [13]) is based upon a set C of
concept names A (including � and ⊥), a set R of role names R, and a set I of individual
names a. The concepts of the language (called ALC∼-concepts) are constructed by
concept names A; role names R; the connectives �, �, ¬ (classical negation), and ∼
(strong negation); and the quantifiers ∀ and ∃. Every concept name A ∈ C is an ALC∼-
concept. If R is a role name and C,D are ALC∼-concepts, then ¬C ,∼C , C�D, C�D,
∀R.C , and ∃R.C are ALC∼-concepts.

We denote as sub(C) the set of subconcepts of an ALC∼-concept C . Let X be a
sequence of classical negation ¬ and strong negation ∼. We denote (X)n as a chain
of length n of X . For instance, ∼(¬∼)2C1 and (∼¬)0C2 denote ∼¬∼¬∼C1 and C2,
respectively. Next, we define an interpretation of ALC∼-concepts (called an ALC2

∼-
interpretation) by using the conventional semantics of strong negation.

Definition 1. An ALC2
∼-interpretation I is a tuple (ΔI , ·I+

, ·I−
), where ΔI is a non-

empty set and ·I+
and ·I−

are interpretation functions (AI+ ⊆ ΔI , AI− ⊆ ΔI , RI+ ⊆
ΔI × ΔI , and aI+ ∈ ΔI ) such that:

1. ⊥I+
= ∅ and �I+

= ΔI ,
2. AI+ ∩ AI−

= ∅.

4



I+(C)

d is ∼C

d is ¬∼C d is ¬C

subcontraries

contradictories

d is C

I−(C)

ΔI/I−(C) ΔI/I+(C)

d is ∼¬C

contraries

d is ¬∼¬C

contraries

Fig. 1. Oppositions in ALC2
∼-interpretations

The interpretation functions ·I+
and ·I−

are expanded to ALC∼-concepts as follows:

(¬C)I
+

= ΔI\CI+
(∼C)I

+
= CI−

(C � D)I
+

= CI+∩ DI+
(C � D)I

+
= CI+∪ DI+

(∀R.C)I
+

= {d1 ∈ ΔI | ∀d2[(d1, d2) ∈ RI+ → d2 ∈ CI+
]}

(∃R.C)I
+

= {d1 ∈ ΔI | ∃d2[(d1, d2) ∈ RI+ ∧ d2 ∈ CI+
]}

(¬C)I
−

= CI+
(∼C)I

−
= CI+

(C � D)I
−

= CI−∪ DI−
(C � D)I

−
= CI−∩ DI−

(∀R.C)I
−

= {d1 ∈ ΔI | ∃d2[(d1, d2) ∈ RI+ ∧ d2 ∈ CI−
]}

(∃R.C)I
−

= {d1 ∈ ΔI | ∀d2[(d1, d2) ∈ RI+ → d2 ∈ CI−
]}

An ALC2
∼-interpretation I satisfies the contrary condition if for all concept names

A, AI+ ∪ AI− 	= ΔI . The ALC2
∼-interpretation is defined by the two interpreta-

tion functions ·I+
and ·I−

, but it causes an undesirable equation C ≡ ∼¬C , i.e.,
CI+

= (∼¬C)I
+

. Contradictoriness and contrariness are preserved in an ALC2
∼-

interpretation I of ALC∼ if ∼CI � ¬CI . The interpretation results in the following
negative property:

Theorem 1 (Contradictoriness and contrariness for ALC2
∼).

Contradictoriness and contrariness are not preserved in every ALC2
∼-interpretation

that satisfies the contrary condition.

Subsequently, we define an alternative interpretation of ALC∼-concepts (called
an ALCn

∼-interpretation), which is based on the semantics [7] obtained by improving
Akama’s semantics [1].

Definition 2. An ALCn
∼-interpretation I is a tuple (ΔI , {·I+

i | i ∈ ω}, {·I−
i | i ∈

ω}), 2 where ΔI is a non-empty set and ·I+
i and ·I−

i are interpretation functions (AI+
i

⊆ ΔI , AI−
i ⊆ ΔI , RI+

0 ⊆ ΔI × ΔI , and aI+
0 ∈ ΔI ), such that:

2 The symbol ω denotes the set of natural numbers. Thus, {·I+
i | i ∈ ω} is infinite as

{·I+
0 , ·I+

1 , ·I+
2 , ·I+

3 , . . . }.
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I+
i (C) contraries

d is ∼C

d is ¬∼C d is ¬C

subcontraries

contradictories

d is C

I−
i (C)

I−
i−1(C)I+

i−1(C)

d is ¬∼¬C

I−
i+1(C)

contraries
d is ∼¬C

I+
i+1(C)

contradictories

Fig. 2. Oppositions in ALCn
∼-interpretations

1. ⊥I+
0 = ∅ and �I+

0 = ΔI ,
2. AI+

0 ∩ AI−
0 = ∅,

3. AI+
i+1 ⊆ AI+

i and AI−
i+1 ⊆ AI−

i .

The interpretation functions ·I+
i and ·I−

i are expanded to ALC∼-concepts as follows:

(¬C)I
+
0 = ΔI\CI+

0

(¬C)I
+
i = CI−

i−1(i > 0) (∼C)I
+
i = CI−

i

(C � D)I
+
i = CI+

i ∩ DI+
i (C � D)I

+
i = CI+

i ∪ DI+
i

(∀R.C)I
+
i = {d1 ∈ ΔI | ∀d2[(d1, d2) ∈ RI+

0 → d2 ∈ CI+
i ]}

(∃R.C)I
+
i = {d1 ∈ ΔI | ∃d2[(d1, d2) ∈ RI+

0 ∧ d2 ∈ CI+
i ]}

(¬C)I
−
i = CI+

i+1 (∼C)I
−
i = CI+

i

(C � D)I
−
i = CI−

i ∪ DI−
i (C � D)I

−
i = CI−

i ∩ DI−
i

(∀R.C)I
−
i = {d1 ∈ ΔI | ∃d2[(d1, d2) ∈ RI+

0 ∧ d2 ∈ CI−
i ]}

(∃R.C)I
−
i = {d1 ∈ ΔI | ∀d2[(d1, d2) ∈ RI+

0 → d2 ∈ CI−
i ]}

An ALCn
∼-interpretation I satisfies the contrary condition if for all concept names

A, AI+
0 ∪AI−

0 	= ΔI , AI+
i+1 � AI+

i , and AI−
i+1 � AI−

i . In the two types of interpreta-
tions, conceptual oppositions are characterized as shown in Fig.1 and Fig.2. TheALC2

∼-
interpretation is defined as (∼¬C)I

+
= (¬C)I

−
= CI+

, and hence, d ∈ (∼¬C)I if
and only if d ∈ CI . This semantically causes loss in distinction between contraries
(∼¬C and ¬C) and contradictories (C and ¬C). Instead, the ALCn

∼-interpretation in-

cludes the definition (∼¬C)I
+
i = (¬C)I

−
i = CI+

i+1 and (¬C)I
+
i = CI−

i−1 (i > 0),
where infinite interpretation functions are required. That is, the ALCn

∼-interpretation is
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improved in order to capture the oppositions – contraries, contradictories, and subcon-
traries in the philosophical study of negation [5].

Each ALCn
∼-interpretation (resp. ALC2

∼-interpretation) CI of each ALC∼-concept
is given by CI+

0 (resp. CI+
). An ALC∼-concept C (or a concept equation C ≡ D)

is ALCn
∼-satisfiable (resp. ALC2

∼-satisfiable) if there exists an ALCn
∼-interpretation

(resp. ALC2
∼-interpretation) I, called an ALCn

∼-model (resp. ALC2
∼-model) of C (or

C ≡ D), such that CI 	= ∅ (or CI = DI). Otherwise, it is ALCn
∼-unsatisfiable (resp.

ALC2
∼-unsatisfiable). In particular, if an ALC∼-concept C is ALCn

∼-satisfiable (resp.
ALC2

∼-satisfiable) and the ALCn
∼-model (resp. ALC2

∼-model) satisfies the contrary
condition, then it is ALCn

∼-satisfiable (resp. ALC2
∼-satisfiable) under the contrary con-

dition. Otherwise, it is ALCn
∼-unsatisfiable (resp. ALC2

∼-unsatisfiable) under the con-
trary condition. A concept equation C ≡ D is ALCn

∼-valid (resp. ALC2
∼-valid) if every

ALCn
∼-interpretation (ALC2

∼-interpretation) I is an ALCn
∼-model (ALC2

∼-model) of
C ≡ D. We can derive the following fact from these interpretations:

Proposition 1. If C is an ALC∼-concept, then the concept equation C ≡ ∼¬C is not
ALCn

∼-valid, but it is ALC2
∼-valid.

In addition, since ALC∼-concepts do not contain the negation of roles, each role
is interpreted only by the interpretation function ·I+

0 (or ·I+
). Let us give an exam-

ple of an ALCn
∼-interpretation I = (ΔI , {·I+

i | i ∈ ω}, {·I−
i | i ∈ ω}) such that

ΔI = {John,Mary, Tom}, HappyI+
0 = {John}, HappyI−

0 = {Mary,Tom},
HappyI+

1 = ∅, HappyI−
1 = {Tom}, HappyI+

2 = ∅, . . . , has-childI+
0 = {(John,

Tom)} with HappyI+
0 ∩ HappyI−

0 = ∅, HappyI+
i+1 ⊆ HappyI+

i , and HappyI−
i+1 ⊆

HappyI−
i . Then, we obtain the interpretation functions ·I+

i and ·I−
i expanded to the

ALC∼-concepts ∃has-child.∼Happy, ¬∼¬∼Happy, and ¬∼∼¬Happy as below:

(∃has-child.∼Happy)I
+
0 = {d1 ∈ ΔI | ∃d2[(d1, d2) ∈ has-childI+

0 ∧ d2 ∈ HappyI−
0 ]}

= {John}

(¬∼¬∼Happy)I
+
0 = ΔI\(∼¬∼Happy)I

+
0 (¬∼∼¬Happy)I

+
0 = ΔI\(∼∼¬Happy)I

+
0

= ΔI\(¬∼Happy)I
−
0 = ΔI\(∼¬Happy)I

−
0

= ΔI\(∼Happy)I
+
1 = ΔI\(¬Happy)I

+
0

= ΔI\HappyI−
1 = {John}

= {John,Mary}

Remark. Semantically, the three conditions AI+
0 ∩ AI−

0 = ∅, AI+
i+1 ⊆ AI+

i , and
AI−

i+1 ⊆ AI−
i in the ALCn

∼-interpretation I define the inconsistency of contraries
between ALC∼-concepts. Syntactically, the conditions lead to the inconsistent pairs
〈A,∼A〉, 〈¬(∼¬)iA, (∼¬)i+1A〉, and 〈(¬∼)i+1A,∼(¬∼)i+1A〉 of ALC∼-concepts.
Each pair consists of a concept C and its strong negation ∼C (i.e., 〈C,∼C〉) where
C is of the form A, ¬(∼¬)iA, or (¬∼)i+1A. For example, ¬Red and ∼¬Red are
inconsistent. In the next lemma, these conditions are generalized to any ALC∼-concept.
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Lemma 1. Let I = (ΔI , {·I+
i | i ∈ ω}, {·I−

i | i ∈ ω}) be an ALCn
∼-interpretation.

For any ALC∼-concept C , the following statements hold:

1. CI ∩ ∼CI = ∅,
2. (∼¬)i+1CI ⊆ (∼¬)iCI ,
3. ∼(¬∼)i+1CI ⊆ ∼(¬∼)iCI .

This lemma will be used to prove the correspondence between a tableau for an ALC∼-
concept and the satisfiability of the concept.

Any ALC∼-concept is transformed into an equivalent one in a normal negation form
(that is more complicated than the normal negation form in ALC) using the following
equivalences from left to right:

(¬)k(∼¬)i∼∼C ≡ (¬)k(∼¬)iC

(∼)k(¬∼)i¬¬C ≡ (∼)k(¬∼)iC

(¬)k(∼¬)i∼(C � D) ≡ (¬)k(∼¬)i(∼C � ∼D)

(¬)k(∼¬)i∼(C � D) ≡ (¬)k(∼¬)i(∼C � ∼D)

(¬)k(∼¬)i∼(∀R.C) ≡ (¬)k(∼¬)i(∃R.∼C)

(¬)k(∼¬)i∼(∃R.C) ≡ (¬)k(∼¬)i(∀R.∼C)

(∼)k(¬∼)i¬(C � D) ≡ (∼)k(¬∼)i(¬C � ¬D)

(∼)k(¬∼)i¬(C � D) ≡ (∼)k(¬∼)i(¬C � ¬D)

(∼)k(¬∼)i¬(∀R.C) ≡ (∼)k(¬∼)i(∃R.¬C)

(∼)k(¬∼)i¬(∃R.C) ≡ (∼)k(¬∼)i(∀R.¬C)

where k ∈ {0, 1} and i ∈ ω. The form of the concepts obtained by this transformation
is called a constructive normal negation form, where the four types of negation forms
(∼¬)i+1, ¬(∼¬)i, (¬∼)i+1, and ∼(¬∼)i occur only in front of a concept name. For
example, (∼¬A1�¬∼¬A2)�∼(¬∼)4A3 is in the constructive normal negation form.

Proposition 2. Every concept equation C ≡ D in the translation is ALCn
∼-valid.

Next, we will discuss an important property of ALCn
∼-interpretations that is derived

from the contrary condition.

Lemma 2. Let I = (ΔI , {·I+
i | i ∈ ω}, {·I−

i | i ∈ ω}) be an ALCn
∼-interpretation

that satisfies the contrary condition. For any ALC∼-concept C , the following state-
ments hold:

1. CI ∪ ∼CI 	= ΔI ,
2. (∼¬)i+1CI � (∼¬)iCI ,
3. ∼(¬∼)i+1CI � ∼(¬∼)iCI .

This lemma guarantees that the proposed semantics characterizes the differences
between contradictories and contraries in every interpretation. The following theorem
states the property of contradictoriness and contrariness for ALCn

∼-interpretations. Con-
tradictoriness and contrariness are preserved in an ALCn

∼-interpretation I of ALC∼ if
∼CI � ¬CI .
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Theorem 2 (Contradictoriness and contrariness for ALCn
∼).

If an ALCn
∼-interpretation satisfies the contrary condition, then contradictoriness and

contrariness are preserved in the ALCn
∼-interpretation.

We would like to apply the replacement property [17] to conceptual representation
and strong negation in ALC∼. Knowledge base designers rewrite concepts by their
equivalent concepts in the context of (conceptual) knowledge representation (e.g., re-
building ontologies in the Semantic Web). However, the replacement property provides
a limitation such that concepts can only be replaced by strongly equivalent concepts
when various combinations of the two types of negation are used. Let C, D be ALC∼-
concepts. C and D are equivalent if, for every ALCn

∼-interpretation I, CI = DI . C

and D are strongly equivalent if, for every ALCn
∼-interpretation I, CI+

i = DI+
i and

CI−
i = DI−

i . The concept EC denotes a (complex) concept that contains the concept
C as a subconcept of EC and ED denotes the concept obtained by replacing C in EC

by D.

Theorem 3 (Replacement for ALC∼). Let C, D be ALC∼-concepts. If C and D are
strongly equivalent, then EC and ED are also equivalent.

It should be noted that the replacement property under strong equivalence is natural
in the presence of strong negation.

3.2 The constructive description logic with Heyting negation and strong
negation: CALC∼

We define the description logic CALC∼ (as an extension of the constructive description
logic CALCN4 [10]) by combining Heyting negation and strong negation. The concepts
in the language (called CALC∼-concepts) are constructed by concept names A; role
names R; the connectives �, �, − (Heyting negation), and ∼ (strong negation); and the
quantifiers ∀, ∃. Every concept name A ∈ C is a CALC∼-concept. If R is a role name
and C,D are CALC∼-concepts, then −C , ∼C , C � D, C � D, ∀R.C , and ∃R.C are
CALC∼-concepts. We give an interpretation of CALC∼-concepts (called a CALC2

∼-
interpretation) as follows:

Definition 3. A CALC2
∼-interpretation I is a tuple (W,�,ΔI , {·I+

t | t ∈ W}, {·I−
t |

t ∈ W}), where W is a set of worlds, ΔI = {ΔIt | t ∈ W} is the family of non-empty
sets and ·I+

t and ·I−
t are interpretation functions for each world t ∈ W (AI+

t ⊆ ΔI ,
AI−

t ⊆ ΔI , RI+
t ⊆ ΔIt × ΔIt , and aI+

t ∈ ΔIt) such that:

1. ⊥I+
t = ∅ and �I+

t = ΔIt ,
2. AI+

t ∩ AI−
t = ∅,

3. if t, t′ ∈ W and t � t′, then ΔIt ⊆ ΔIt′ , AI+
t ⊆ AI+

t′ , AI−
t ⊆ AI−

t′ , and

RI+
t ⊆ RI+

t′ .
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For every world t ∈ W , the interpretation functions ·I+
t and ·I−

t are expanded to
CALC∼-concepts as follows:

(−C)I
+
t = {d |d ∈ ΔIt′\CI+

t′ s.t. t � t′} (∼C)I
+
t = CI−

t

(C � D)I
+
t = CI+

t ∩ DI+
t (C � D)I

+
t = CI+

t ∪ DI+
t

(∀R.C)I
+
t = {d1 ∈ ΔIt |∀t′[t � t′→∀d2 ∈ ΔIt′[(d1, d2) ∈ RI+

t′ →d2 ∈ CI+
t′ ]]}

(∃R.C)I
+
t = {d1 ∈ ΔIt |∃d2 ∈ ΔIt′ [(d1, d2) ∈ RI+

t ∧ d2 ∈ CI+
t ]}

(−C)I
−
t = CI+

t (∼C)I
−
t = CI+

t

(C � D)I
−
t = CI−

t ∪ DI−
t (C � D)I

−
t = CI−

t ∩ DI−
t

(∀R.C)I
−
t = {d1 ∈ ΔIt |∃d2 ∈ ΔIt′ [(d1, d2) ∈ RI+

t ∧ d2 ∈ CI−
t ]}

(∃R.C)I
−
t = {d1 ∈ ΔIt |∀t′[t � t′→∀d2 ∈ ΔIt′[(d1, d2) ∈ RI+

t′ →d2 ∈ CI−
t′ ]]}

An ALCn
∼-interpretation I satisfies the contrary condition if AI+ ∪ AI− 	= ΔI ,

where AI+
=

⋃
t∈W AI+

t and AI−
=

⋃
t∈W AI−

t . The CALC2
∼-interpretation CI

of each CALC∼-concept is given by
⋃

t∈W CI+
t . A CALC∼-concept C (or a concept

equation C ≡ D) is CALC2
∼-satisfiable if there exists an CALC2

∼-interpretation I,
called a CALC2

∼-model of C (or C ≡ D), such that CI 	= ∅ (or CI = DI); otherwise,
it is CALC2

∼-unsatisfiable. In particular, if a CALC∼-concept C is CALC2
∼-satisfiable

and the CALC2
∼-model satisfies the contrary condition, then it is CALC2

∼-satisfiable
under the contrary condition. Otherwise, it is CALC2

∼-unsatisfiable under the contrary
condition. A concept equation C ≡ D is CALC2

∼-valid if every CALC2
∼-interpretation

I is a CALC2
∼-model of C ≡ D. Contradictoriness and contrariness are preserved in

an CALC2
∼-interpretation of CALC∼ if ∼CI � −CI .

Theorem 4 (Contradictoriness and contrariness for CALC2
∼).

Contradictoriness and contrariness are not preserved in some CALC2
∼-interpretations

that satisfy the contrary condition.

Table 1 shows the contradictoriness and contrariness for ALC∼ and CALC∼. The
CALC∼-concepts can be used to represent predicate denial and predicate term negation
that capture conceptual models or describe a certain domain of interest; however, the
contradictoriness and contrariness are not preserved in some CALC2

∼-interpretations.
For the ALC∼-concepts, the contradictoriness and contrariness are preserved in ev-
ery ALCn

∼-interpretation since strong negation is suitably added to the classical de-
scription logic ALC without the undesirable equivalent C ≡ ∼¬C in the semantics.
In the next section, the tableau-based satisfiability algorithm for ALC is extended to
ALC∼. This extension is based on the contradictoriness and contrariness for theALCn

∼-
interpretations.

Additionally, we show that the replacement property holds for strongly equivalent
CALC∼-concepts. Let C, D be CALC∼-concepts. C and D are equivalent if, for every
CALC2

∼-interpretation I, CI = DI . Let CI+
denote

⋃
t∈W CI+

t and CI−
denote

⋃
t∈W CI−

t . C and D are strongly equivalent if, for every CALC2
∼-interpretation I,

CI+
= DI+

and CI−
= DI−

.
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Table 1. Contradictoriness and contrariness for ALC∼ and CALC∼

DL Syntax Semantics Contradictoriness and contrariness

ALC∼ ALC2
∼ not preserved for every interpretation

ALCn
∼ preserved for every interpretation

CALC∼ CALC2
∼ not preserved for some interpretations

Theorem 5 (Replacement for CALC∼). Let C, D be CALC∼-concepts. If C and D
are strongly equivalent, then EC and ED are (strongly) equivalent.

4 Tableau-based algorithm for ALC
�

We denote rol(C) as the set of roles occurring in an ALC∼-concept C . For instance,
rol(¬∀R1.∃R2.C1 � ∼C2) = {R1, R2}. To prove the soundness and completeness of
the tableau-based satisfiability algorithm, a tableau for an ALC∼-concept is created by
adding conditions for the forms ∼C and (∼¬)iC to a tableau for an ALC-concept (as
in [6]).

Definition 4. Let D be an ALC∼-concept in the constructive normal negation form. A
tableau T for D is a tuple (S,L,E), where S is a set of individuals, L : S → 2sub(D)

is a mapping from each individual into a set of concepts in sub(D), and E : rol(D) →
2S×S is a mapping from each role into a set of pairs of individuals. There exists some
s0 ∈ S such that D ∈ L(s0), and for all s, t ∈ S, the following conditions hold:

1. if C ∈ L(s), then ∼C,¬C 	∈ L(s),
2. if C1 � C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),
3. if C1 � C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),
4. if ∀R.C ∈ L(s) and (s, t) ∈ E(R), then C ∈ L(t),
5. if ∃R.C ∈ L(s), then there exists t ∈ S such that (s, t) ∈ E(R) and C ∈ L(t),
6. for every i ∈ ω, if (∼¬)i+1C ∈ L(s), then (∼¬)iC ∈ L(s).

In particular, it is called a C-tableau if the the following conditions hold:

7. for every i ∈ ω, there exists s ∈ S such that (∼¬)iC ∈ L(s) and (∼¬)i+1C 	∈
L(s),

8. there exists s ∈ S such that C 	∈ L(s) and ∼C 	∈ L(s).

Conditions 1 and 6 reflect the ALCn
∼-interpretation of ALC∼-concepts combining

classical and strong negations. Condition 1 states that C ∈ L(s) implies ∼C 	∈ L(s) (in
addition to ¬C 	∈ L(s)) to satisfy the semantic condition AI+

0 ∩ AI−
0 = ∅. Moreover,

Condition 6 is imposed for the semantic conditions AI+
i+1 ⊆ AI+

i and AI−
i+1 ⊆ AI−

i .
For example, by Condition 6, if ∼¬∼Happy ∈ L(s), then ∼Happy ∈ L(s). In the
corresponding semantics, if d ∈ (∼¬∼Happy)I

+
0 , then d ∈ (∼Happy)I

+
1 . Hence,

by the condition AI+
i+1 ⊆ AI+

i , we obtain d ∈ (∼Happy)I
+
0 . Conditions 7 and 8

correspond to the contrary condition for the ALCn
∼-interpretation, i.e., AI+

0 ∪ AI−
0 	=

ΔI , AI+
i+1 � AI+

i , and AI−
i+1 � AI−

i . The next lemma shows the correspondence
between the existence of a tableau for an ALC∼-concept and its satisfiability.
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�-rule: L(x) = L(x) ∪ {C1, C2}
if C1 � C2 ∈ L(x) and {C1, C2} �⊆ L(x)


-rule: L(x) = L(x) ∪ {C1} or L(x) = L(x) ∪ {C2}
if C1 
 C2 ∈ L(x) and {C1, C2} ∩ L(x) = ∅

∀-rule: L(y) = L(y) ∪ {C}
if ∀R.C ∈ L(x), (x, y) ∈ E(R) and C �∈ L(y)

∃-rule: S = S ∪ {y} with y �∈ S, E(R) = E(R) ∪ {(x, y)} and L(y) = {C}
if ∃R.C ∈ L(x) and {z | (x, z) ∈ E(R), C ∈ L(z)} = ∅

(∼¬)i-rule 1: L(x) = L(x) ∪ {(∼¬)iC}
if (∼¬)i+1C ∈ L(x) and (∼¬)iC �∈ L(x)

(∼¬)i-rule 2: S = S ∪ {y} with y �∈ S and L(y) = {(∼¬)iC}
if (∼¬)iC ∈ L(x) and
there exists no z ∈ S such that (∼¬)i+1C �∈ L(z) and (∼¬)iC ∈ L(z)

∼-rule: S = S ∪ {y} with y �∈ S and L(y) = ∅
if A ∈ L(x) or ∼A ∈ L(x) and
there exists no z ∈ S such that {A,∼A} ∩ L(z) = ∅.

Fig. 3. Completion rules for ALC∼-concepts

Lemma 3. Let D be an ALC∼-concept. There exists a tableau for D if and only if it
is ALCn

∼-satisfiable. In particular, there exists a C-tableau for D if and only if it is
ALCn

∼-satisfiable under the contrary condition.

Note that while everyALCn
∼-interpretation I consists of infinite interpretation func-

tions ·I+
i and ·I−

i for i ∈ ω, the tableau corresponding to an ALCn
∼-model of an

ALC∼-concept is finitely defined. Each ALC∼-concept can be satisfied by finite in-
terpretation functions because the number of connectives occurring in it is finite. For
example, (∼¬)mA can be satisfied by the maximum 2m +1 of interpretation functions

·I+
0 , . . . , ·I+

m , ·I−
0 , . . . , ·I−

m−1 . Lemma 3 indicates that given a tableau for an ALC∼-
concept D, we can define an ALCn

∼-interpretation I satisfying it (i.e., its ALCn
∼-

model). The model is constructed in such a manner that for every constructive double
negation (∼¬)iA (resp. ∼(¬∼)iA) in sub(D), AI+

i (resp. AI−
i ) is defined by the set of

individuals {s | (∼¬)iA ∈ L(s)} (resp. {s | ∼(¬∼)iA ∈ L(s)}). Thus, the finiteness
of a tableau for an ALC∼-concept leads to the termination of its satisfiability algorithm
which we will present.

In order to determine the satisfiability of ALC∼-concepts, the tableau-based algo-
rithm for ALC will be extended by introducing three new completion rules ((∼¬)i-rule
1, (∼¬)i-rule 2, and ∼-rule) and clash forms with respect to strong negation and con-
structive double negation. In Fig.3, the completion rules for ALC∼-concepts are pre-
sented (as in [4, 13]). (∼¬)i-rule 1 is applied to ALC∼-concepts of the forms (∼¬)iA
and ∼(¬∼)iA. (∼¬)i-rule 2 and ∼-rule introduce new variables if there exists no z ∈ S
such that (∼¬)i+1C 	∈ L(z) and (∼¬)iC ∈ L(z); or {A,∼A} ∩ L(z) = ∅.

Remark. The algorithm has to recognize additional clash forms besides {A,¬A} and
{⊥}. That is, L(x) contains a clash if it contains {C1,¬C1}, {C2,∼C2}, or {⊥}, where
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C1 is of the form (∼¬)iA or ∼(¬∼)iA and C2 is of the form (¬∼)iA or ¬(∼¬)iA.
For example, if {¬∼¬A1,∼¬∼¬A1} ⊆ L(x1), then it contains a clash.

We present a tableau-based satisfiability algorithm for ALC∼. Given an ALC∼-
concept D, the following procedure constructs a forest ST = (S,Erol(D) ∪ E∼ ∪
E(∼¬)i , x0) for D, where S is a set of individuals, each node x ∈ S is labeled as L(x),
Erol(D) = {(x, y) ∈ E(R) | R ∈ rol(D)} (each edge (x, y) ∈ E(R) is labeled as R),
(x, y) ∈ E∼ ⇔ y is introduced for A ∈ L(x) or ∼A ∈ L(x) in ∼-rule, (x, y) ∈ E(∼¬)i

⇔ y is introduced for (∼¬)iC ∈ L(x) in (∼¬)i-rule 2, and x0 is the root. First, set the
initial forest ST = ({x0}, ∅, x0), where S = {x0}, L(x0) = {D}, E(R) = ∅ for all
R ∈ rol(D), and E∼ = E(∼¬)i = ∅. Then, apply completion rules in Fig.3 to ST until
none of the rules are applicable. A forest ST is called complete if any completion rule is
not applicable to it. If there is a clash-free complete forest ST , then return “satisfiable,”
and otherwise return “unsatisfiable.”

We show the correctness of the tableau-based satisfiability algorithm under the con-
trary condition (soundness, completeness and termination)3 and the complexity of the
satisfiability problem. We sketch the behavior of the new completion rules in the al-
gorithm. Unlike the other completion rules, each application of the new completion
rules does not subdivide a concept. However, since (∼¬)i-rules 1 and 2 add only a
subconcept to each node, ∼-rule creates an empty node, and the number of variables
introduced in (∼¬)i-rule 2 and ∼-rule is bounded by polynomial, the termination can
be established.

Theorem 6 (Satisfiability under the contrary condition).
Let D be an ALC∼-concept. The following statements hold:

1. The tableau-based algorithm terminates.
2. The tableau-based algorithm constructs a clash-free complete forest for an ALC∼-

concept D if and only if D is ALCn
∼-satisfiable under the contrary condition.

3. Satisfiability of ALC∼-concepts is PSPACE-complete.

5 Conclusion

We have presented an extended description logic ALC∼ that incorporates classical
negation and strong negation for representing contraries, contradictories, and subcon-
traries between concepts. The important specification of the description logic is that
strong negation is added to the classical description logic ALC and the property of
contradictoriness and contrariness holds for every interpretation. The two negations
are adequately characterized by ALCn

∼-interpretations, unlike ALC2
∼- and CALC2

∼-
interpretations. Technically, the semantics of strong negation is adapted to the oppo-
sitions in the philosophical study of negation [7]. Furthermore, we have developed a
satisfiability algorithm for ALC∼ that is extended to add three new completion rules
to the tableau-based algorithm for ALC [13]. It constructs an ALCn

∼-model satisfy-
ing the contrary condition, in which a constructive normal negation form and various

3 The tableau-based satisfiability algorithm is complete in the class of ALCn
∼-interpretations

where (∼¬)i-rule 2 and ∼-rule are used to construct a model satisfying the contrary condition.
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clash forms are defined to treat complex negative concepts. The description logic pro-
vides a decidable fragment (precisely, PSPACE-complete) of classical first-order logic
with classical negation and strong negation (but not constructive description logic with
Heyting negation and strong negation).
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ber, 8–10 1989. Springer-Verlag.

12. M. La Palme Reyes, J. Macnamara, G. E. Reyes, and H. Zolfaghari. Models for non-boolean
negations in natural languages based on aspect. In D.M. Gabbay and H. Wansing, editors,
What is Negation ?, pages 241–260. Kluwer Academic Publishers, 1999.

13. M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with complements.
Artificial Intelligence, 48:1–26, 1991.

14. R. H. Thomason. A semantical study of constructible falsity. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik, 15:247–257, 1969.

15. G. Wagner. A database needs two kinds of negation. In B. Thalheim, J. Demetrovics, and
H-D. Gerhardt, editors, Mathematical Foundations of Database Systems, pages 357–371.
LNCS 495, Springer–Verlag, 1991.

16. G. Wagner. Vivid Logic: Knowledge-Based Reasoning with Two Kinds of Negation. Springer-
Verlag, 1994.

17. H. Wansing. The logic of information structures, volume 681 of LNAI. Springer-Verlag,
1993.

18. H. Wansing. Negation. In L. Goble, editor, The Blackwell Guide to Philosophical Logic,
pages 415–436. Basil Blackwell Publishers, 2001.

14


