
An Order-Sorted Resolution with Implicitly

Negative Sorts

Ken Kaneiwa1 and Satoshi Tojo2

1 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 JAPAN

kaneiwa@nii.ac.jp
2 Japan Advanced Institute of Science and Technology
1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292 JAPAN

tojo@jaist.ac.jp

Abstract. We usually use natural language vocabulary for sort names in
order-sorted logics, and some sort names may contradict other sort names
in the sort-hierarchy. These implicit negations, called lexical negations in
linguistics, are not explicitly prefixed by the negation connective. In this
paper, we propose the notions of structured sorts, sort relations, and the
contradiction in the sort-hierarchy. These notions specify the properties
of these implicit negations and the classical negation, and thus, we can
declare the exclusivity and the totality between two sorts, one of which
is affirmative while the other is negative. We regard the negative affix as
a strong negation operator, and the negative lexicon as an antonymous
sort that is exclusive to its counterpart in the hierarchy. In order to infer
from these negations, we integrate a structured sort constraint system
into a clausal inference system.

1 Introduction

Order-sorted logics, or many-sorted logics, have been well discussed as tools to
represent hierarchical knowledge in the field of artificial intelligence [18, 4, 3, 7,
14, 16, 19]. Recently, description logics [15, 1, 2, 10] as outlined in [6] have been
studied as a theoretical approach to terminological knowledge representation,
which represent structured concepts by more primitive concepts, as are similar
to those in a sort-hierarchy.

However, a sort-hierarchy may contain sorts with implicitly negative mean-
ings. These negations are called lexical negations in linguistics and are distinct
from the negative particle not. Since every sort name is a mere string or a sym-
bol, these implicitly negative sorts are not interpreted to represent their original
meanings. Nevertheless, a knowledge representation system should take account
of the fact that the lexical negation ‘unhappy’ is opposite in meaning to the
positive expression ‘happy’, or ‘winner’ contradicts ‘loser’, in a sort-hierarchy.

In order to realize this, we have to analyze the properties of lexical negations
in natural language and then consider dealing with these negations in a sort-
hierarchy. In [12], lexical negations (words that implicitly have negative meaning)
are classified as follows:

2

(i) Negative affix (in-,un-,non-):
incoherent, inactive, unfix, nonselfish, illogical, impolite, etc.

(ii) Lexicon with negative meaning:
doubt (believe not), deny (approve not), prohibit (permit not), forget (re-
member not), etc.

First, we introduce a hybrid knowledge representation system of Beierle [3]
that distinguishes between taxonomical information (in the sort-hierarchy) and
assertional information (in the assertional knowledge base), as an extension of an
order-sorted logic. This system can deal with the taxonomical information in an
assertional knowledge base in which a sort symbol can be expressed as a unary
predicate (called a sort predicate) in clausal forms. Since a sort and a unary
predicate have the same expressive power, we can regard a subsort declaration
s1 � s2 as the following logical implication form:

s1(x) → s2(x)

where the unary predicates s1(x), s2(x) corresponding to the sorts s1, s2 are
sort predicates. Let C,C1, C2 be clauses, s, s1, s2 sorts (or sort predicates), θ a
sorted substitution, and t, t1, t2 sorted terms. In order to use the information in
a sort-hierarchy in a clausal knowledge base, or an assertional knowledge base,
the following inference rules:

¬s1(t1) ∨ C1 s2(t2) ∨ C2

θ(C1 ∨ C2)
(subsort resolution)

where s2 �S s1 and θ(t1) = θ(t2), and

¬s(t) ∨ C

C
(elimination)

where Sort(t)1 �S s, are added to his resolution system. This hybrid knowledge
representation system provides a useful way to deal with a sort-hierarchy in a
clausal knowledge base.

Hereafter, we illustrate the deductions which we would like to realize in a
sort-hierarchy with lexical negations. The first example concerns a negative affix:
unhappy. A sort unhappy is not only a negative expression but also a subex-
pression of emotional. Hence, the sort emotional can be derived from unhappy
(like happy), whereas it cannot be derived from the classical negation ¬happy.
In addition, the sort unhappy is a stronger negative statement than the classical
negation ¬happy, so that ¬happy can be derived from unhappy, but unhappy
cannot be derived from ¬happy. The fact ¬emotional(bob), that is the person
bob is not emotional, yields that ‘¬happy(bob)∧¬unhappy(bob).’ In contrast, no
premise can derive ‘¬happy(bob)∧¬¬happy(bob).’ This shows the sort unhappy
has the meaning of emotional, but the classical negation ¬happy does not have
the meaning of emotional.
1 For any sorted term t, the function Sort(t) assigns its sort to term t.

3

The next example concerns lexicon with negative meaning: loser. Suppose a
sort-hierarchy where both of winner and loser are subsumed by player. Needless
to say, loser is different from the classical negation ¬winner of winner, because
loser means the negative event opposite to an event denoted by win but the
classical negation ¬winner denies the event denoted by win. Therefore, the
supersort player can be derived from loser (or winner), but not from ¬winner.
Furthermore, if the person tom is not a player, then the negations ¬winner and
¬loser can be derived. In contrary, if the person tom is a player, then winner
or loser holds in the totality (i.e. tom must be a winner or a loser) of winner
and loser. By the totality, if the person tom is a player but not a loser (¬loser),
then tom is a winner. If tom is neither a winner nor a loser (¬winner∧¬loser),
then tom is not a player (¬player)

We would like to derive these facts from implicitly negative sorts. However,
it is hard to describe implicitly negative sorts in the sort-hierarchy, so that many
knowledge bases would lose the property that implicit negations are exclusive
to their antonyms and partial to their classical negation. In fact, Beierle’s infer-
ence system for sort-hierarchy and order-sorted substitutions in clauses do not
generate any reasoning mechanism for negative sorts. Description logics and fea-
ture logics [16] provide complex sort expressions but not any clausal reasoning
mechanism with these expressions. Therefore, these inference systems with sort-
hierarchy cannot immediately derive the above results from subsorts, supersorts
and classical negation. In the following sections, we will propose a method to
describe the properties of lexical negations implicitly included in a sort-hierarchy
and develop an inference machinery.

This paper is organized as follows. In Section 2 presents an order-sorted logic
that includes the complex sort expressions of implicit negations. We give an
account of structured sorts, sort relations, and contradiction in a sort-hierarchy.
Section 3 and Section 4 present the formalization of order-sorted logic with
structured sorts, and systems of clausal resolution. In Section 5, we give our
conclusions and discuss future work.

2 Implicitly negative sorts

In order to deal with implicitly negative sorts in a sort-hierarchy, we introduce
structured sorts, sort relations, and contradiction in a sort-hierarchy into an
order-sorted logic. These notions can be used to declare the properties of implic-
itly negative sorts in a sort-hierarchy.

2.1 Structured sorts and sort relations

We consider the representation of sorts in a hierarchy whose names are declared
as lexical negations (classified as negative affixes or lexicons with negative mean-
ing). In this paper, we call a sort denoted by a word with negative affix a negative
sort and a sort denoted by a lexicon with negative meaning an opposite sort. In
general, we call these sorts implicitly negative sorts. To represent these negative

4

sorts, we introduce the notation of structured sorts and relations between sorts
whereby a negative sort is defined by the structured sort with strong negation
operator [17] and an opposite sort is defined by exclusivity. In particular, we
denote an opposite sort as exclusive to its antonymous sort in a hierarchy, so
that these two sorts exclude each other but neither sort is negative. In fact, we
should not say that an opposite sort is negative, rather we should say that these
two sorts are opposite in meaning.

Structured sorts are constructed from atomic sorts, the connectives �,�, and
the negative operators; happy is a complement (classical negation) of happy, and
∼happy is a negative sort (strong negation) of that.

We now give several relations between structured sorts in order to represent
implicitly negative sorts embedded in a sort-hierarchy. ‘�S ’ denotes a subsort
relation between structured sorts. With this relation, a set of sorts are partially
ordered (i.e. reflexive, anti-symmetric, and transitive). ‘=S ’ denotes an equiv-
alence relation between structured sorts. Furthermore, we add an exclusivity
relation ‘‖’ and a totality relation ‘|si ’ between structured sorts; if s ‖ s′ then s
and s′ are exclusive, and if s |si s′ then s together with s′ composes the whole
of si.

Using these sort relations, we can define the following properties (totality,
partiality, and exclusivity) to declare various negations (in particular, lexical
negations), as in Table 1.

Table 1. Three negations

Negation type Expression Relationship Property

(1) Complement happy happy |� happy (in Axioms) totality

(classical negation) happy ‖ happy exclusivity

(2) Negative sort ∼happy ∼happy ‖ happy (in Axioms) exclusivity

(strong negation) ∼happy �S happy partiality

(3) Opposite sort sad sad ‖ happy (in Declarations) exclusivity
(antonym)

2.2 A contradiction in a sort-hierarchy

We present a contradiction in a sort-hierarchy containing the three negations
(complement, negative sort, and opposite sort) that we have explained.

A deductive system with implicitly negative sorts has to determine a con-
tradiction in a sort-hierarchy in order that it can provide a sound inference

5

mechanism derived from the three negations and their relations to each other.
In classical logic, we can say that a set ∆ of formulas is contradictory if a for-
mula A and its classical negation ¬A are simultaneously derivable from ∆. In
this case, we can syntactically establish the contradiction, because ¬A indicates
the negation of A by the negative operator ¬. Given the opposite sorts s and s′

(e.g. winner and loser), we should also say that ∆ is contradictory if the two
formulas s(x), s′(x) denoted by the sort predicates s and s′ are simultaneously
derivable from ∆. This indicates that the sort symbols s and s′ have a negative
relation to each other in our language definition. 2

Using an exclusivity relation between sorts, we give a definition of contra-
dictions in a sort-hierarchy that supports deduction from the three negations. A
set ∆ of formulas is said to be contradictory if there exist sorts s, s′ such that
s ‖ s′ and s(t) and s′(t) are derivable from ∆. In section 3, we will redefine the
notion of contradiction in a sort-hierarchy that enables our deduction system to
ensure the consistency of a knowledge base.

3 An order-sorted logic with structured sorts

On the specification we propose in Section 2, we define the syntax and semantics
of an order-sorted logic with structured sorts.

3.1 Structured sort signature

Given a set S of sort symbols, every sort si ∈ S is called an atomic sort. We
define the set of structured sorts composed by the atomic sorts, the connectives,
and the negative operators as follows.

Definition 1 (Structured sorts). Given a set S of atomic sorts, the set S+

of structured sorts is defined by:

(1) If s ∈ S, then s ∈ S+,
(2) If s, s′ ∈ S+, then (s � s′), (s � s′), (s), (∼s) ∈ S+.

The structured sort s is called the classical negation of sort s and the structured
sort ∼s is called the strong negation of sort s. For convenience, we can denote
s � s′, s � s′, s and ∼s without parentheses when there is no confusion.

Example 1. Given the atomic sorts male, student, person and happy, we can
give structured sorts as follows.

student � male, person� ∼happy.

2 Gabbay and Hunter introduce the notation ¬αβ that means ‘α negates β,’ concerning
the contradictory sorts [8].

6

The structured sort student � male means “students that are not male,” and
the structured sort person� ∼happy means “individuals that are persons or
unhappy.”

We define a sorted signature on the set S+ of structured sorts. Fn is a set of
n-ary function symbols (f, f0, f1, . . .), and Pn is a set of n-ary predicate symbols
(p, p0, p1, . . .). Let S = {s1, . . . , sn} be a set of atomic sorts. We introduce the
sort predicates ps1 , . . . , psn (discussed in [3]) indexed by the sorts s1, . . . , sn where
psi is a unary predicate (i.e. psi ∈ P1) and equivalent to the sort si. We simply
write s for ps when this will not cause confusion. For example, instead of the
formula ps(t) where t is a term, we use the notation s(t). We denote by PS the
set {ps ∈ P1 | s ∈ S − {
,⊥}} of the sort predicates indexed by all sorts in
S − {
,⊥}. A sorted signature extended to include structured sorts and sort
predicates is defined as follows.

Definition 2 (Sorted signature on S+). A sorted signature on S+, which
we call a structured sort signature, is an ordered quadruple Σ+ = (S+,F ,P , Ω)
satisfying the following conditions:

(1) S+ is the set of all structured sorts constructed by S.
(2) F is the set

⋃
n≥0 Fn of all function symbols.

(3) P is the set
⋃

n≥0 Pn of all predicate symbols.
(4) Ω is a set of sort declarations of functions and predicates such that:

(i) If f ∈ Fn, then f : s1 × . . . × sn → s ∈ Ω where s1, . . . , sn, s ∈ S − {⊥}.
In particular, if c ∈ F0, then c:→ s ∈ Ω.

(ii) If p ∈ Pn, then p: s1 × . . . × sn ∈ Ω where s1, . . . , sn ∈ S − {⊥}. In
particular, if ps ∈ PS , then ps:
 ∈ Ω.

Note that the sort declarations of functions and predicates are given by atomic
sorts. The structured sort signatures do not include subsort declarations.

3.2 Sort-hierarchy declaration

We will build a sort-hierarchy over S+, instead of subsort declarations in sorted
signatures of typical order-sorted logics. In our logic, we cannot enumerate all
the subsort relations on S+ because the set of subsort declarations representing
a subsort relation may be infinite. Hence, we first give a finite set of subsort
declarations, so that the subsort relation should be derived by a sort constraint
system. For this purpose, we deal with subsort declarations as subsort formulas
but not as static expressions in signatures. Let Σ+ = (S+,F ,P , Ω) be a struc-
tured sort signature. For s, s′ ∈ S+, s �S s′ is said to be a subsort declaration
over Σ+ that indicates s is a subsort of s′. For instance,

player � winner �S person

is a subsort declaration over a structured sort signature. We denote by DS+ =
{s �S s′|s, s′ ∈ S+} the set of all subsort declarations on S+. In the next
definition, the sort-hierarchy is obtained by a finite set of subsort declarations.

7

Definition 3 (Sort-hierarchy declaration). A sort-hierarchy declaration
is an ordered pair H = (S+, D), where

(1) S+ is the set of structured sorts constructed by S,
(2) D is a finite set {s1 �S s′1, s2 �S s′2, . . .} of subsort declarations on S+.

Extended declarations on S+ are defined by subsort declarations as follows.

Definition 4. A sort equivalence declaration, an exclusivity declaration and a
totality declaration are defined respectively by

– s =S s′ iff s �S s′ and s′ �S s.
– s ‖ s′ iff (s � s′) =S ⊥.
– s |si s′ iff (s � s′) =S si.

We use the abbreviation s | s′ to denote s |� s′. The above notations are
useful for declaring complicated sort relations in a sort-hierarchy declaration
H = (S+, D).

Example 2. The sort-hierarchy declaration H = (S+, D) consists of the set S+

of structured sorts constructed by

S = {person, winner, loser, player,⊥,
}

and the finite set D of subsort declarations with

D = {winner �S player, player �S person,

loser �S player, winner |player loser, winner ‖ loser}.

The sorts winner and loser are subsorts of player, and the sort player is a
subsort of person. The totality declaration winner |player loser indicates that
winner and loser have the property totality in player. The exclusivity declara-
tion winner ‖ loser indicates that winner and loser are mutually exclusive.

3.3 Structured sort constraint system

We develop a constraint system with respect to a subsort relation on S+.

Definition 5. Let s, s′, s′′ be structured sorts. The axioms and rules of struc-
tured sort constraint system CS consist of:

Reflexivity s �S s
Idempotency s �S s � s, s � s �S s

Commutativity s � s′ �S s′ � s, s � s′ �S s′ � s
Associativity (s � s′) � s′′ =S s � (s′ � s′′), (s � s′) � s′′ =S s � (s′ � s′′)
Distributivity (s�s′)�s′′ =S (s�s′′)�(s′�s′′), (s�s′)�s′′ =S (s�s′′)�(s′�s′′)

8

Least and greatest sorts ⊥ �S s, s �S

Conjunction s � s′ �S s, s �S s �

Disjunction s �S s � s′, s � ⊥ �S s
Absorption (s � s′) � s �S s, s �S (s � s′) � s

Classical negation s ‖ s, s | s, s � s′ =S s � s′, s � s′ =S s � s′
Strong negation s ‖∼s, ∼s �S s

Transitivity rule
s �S s′ s′ �S s′′

s �S s′′

Introduction rule
s �S s′

s′′ � s �S s′′ � s′

Elimination rule
s � s′ �S s � s′′ s ‖ s′ s ‖ s′′

s′ �S s′′ .

A derivation of an expression (a subsort declaration, or a clause which we will
define) from a set of expressions is defined as follows.

Definition 6 (Derivation). Let ∆ a set of expressions. A derivation of Fn in
a system X from ∆ is a finite sequence F1, F2, . . . , Fn such that

(i) Fi ∈ ∆,
(ii) Fi is an axiom of system X, or
(iii) Fi follows from Fj(j < i) by one of the rules of system X.

We write ∆ �X F if F has a derivation from ∆ in the system X . This notion
of derivations can be used for the structured sort constraint system CS, and a
clausal inference system which we will present.

3.4 Sorted terms and formulas with structured sort constraints

An alphabet for an order-sorted first-order language LS+ of structured sort sig-
nature Σ+ contains the following: the set V =

⋃
s∈S−{⊥} Vs of variables for

all atomic sorts in S − {⊥} (where Vs is a set of variables x1: s, x2: s, . . . for
atomic sort s), the connectives ¬,∧,∨,→, the quantifiers ∀,∃, and the auxiliary
parentheses and commas.

We give the expressions sorted term and formula for our order-sorted first-
order language with structured sorts.

Definition 7 (Sorted terms). Let Σ+ = (S+,F ,P , Ω) be an structured sort
signature and let H = (S+, D) be a sort-hierarchy declaration. The set TERMΣ+,s

of terms of sort s is defined by:

(1) A variable x: s is a term of sort s.
(2) A constant c: s is a term of sort s where c ∈ F0 and c:→ s ∈ Ω.

9

(3) If t1, . . . , tn are terms of sorts s1, . . . , sn, then f(t1, . . . , tn): s is a term of
sort s where f ∈ Fn and f : s1 × . . . × sn → s ∈ Ω.

(4) If t is a term of sort s′ with D �CS s′ �S s, then t is a term of sort s.

We denote by TERMΣ+ the set of all sorted terms
⋃

s∈S−{⊥} TERMΣ+,s.
We define a structured sort substitution with respect to a subsort relation

derivable in the constraint system CS. That is, the subsort declarations are
obtained by an application of the rules from CS so that the substitution is
defined via the subsort declarations.

Definition 8 (Structured sort substitution). A structured sort substitution
is a function θ mapping from a finite set of variables to TERMΣ+ where θ(x: s) �=
x: s and θ(x: s) ∈ TERMΣ+,s

3.

In the above definition none of the terms of sort ⊥ can be substituted for vari-
ables. If there do not exist subsorts s′ of s such that s′ �= ⊥, then the substitutions
correspond to many-sorted substitutions (i.e. not order-sorted substitutions).

Definition 9 (Sorted formulas). Let Σ+ = (S+,F ,P , Ω) be a structured sort
signature and let H = (S+, D) be a sort-hierarchy declaration. The set FORMΣ+

of sorted formulas is defined by:

(1) If t1, . . . , tn are terms of s1, . . . , sn , then p(t1, . . . , tn) is an atomic formula
(or simply an atom) where p ∈ Pn and p: s1 × . . . × sn ∈ Ω,

(2) If A and B are formulas, then (¬A), (A ∧ B), (A ∨B), (A → B), (∀x: sA),
and (∃x: sA) are formulas.

We introduce literals in order to represent formulas in clause form. A positive
literal is an atomic formula p(t1, . . . , tn), and a negative literal is the negation
¬p(t1, . . . , tn) of an atomic formula. A literal is a positive or a negative literal.

Definition 10. Let L1, . . . , Ln be literals. The formula L1 ∨ . . . ∨ Ln(n ≥ 0) is
said to be a clause. We denote by CLΣ+ the set of all clauses.

3.5 Σ+-structure

As in the semantics of standard order-sorted logics, we consider a structure that
consists of the universe and an interpretation over S+ ∪ F ∪ P and satisfies the
sort declarations of functions and predicates on S. The interpretation of atomic
sorts is defined by subsets of the universe. Hence, the interpretation of structured
sorts is constructed by the interpretation of atomic sorts and the operations of
set theory.

Definition 11. Given a structured sort signature Σ+ = (S+,F ,P , Ω), a Σ+-
structure is an ordered pair M+ = (U, I+) such that
3 In order to substitute variables with terms of the subsorts, the set TERMΣ+,s of

terms of sort s contain the terms of their subsorts obtained by subsort declarations
that are derivable using a sort constraint system.

10

(1) U is a non-empty set.
(2) I+ is a function on S+ ∪ F ∪ P where

• I+(s) ⊆ U (in particular, I+(
) = U and I+(⊥) = ∅),
I+(s � s′) = I+(s) ∩ I+(s′),
I+(s � s′) = I+(s) ∪ I+(s′),
I+(s) = I+(
) − I+(s),
I+(∼s) ⊆ I+(
) − I+(s),

• I+(f): I+(s1)×. . .×I+(sn) → I+(s) where f ∈ Fn and f : s1×. . .×sn →
s ∈ Ω,

• I+(p) ⊆ I+(s1)× . . .× I+(sn) where p ∈ Pn and p: s1 × . . .× sn ∈ Ω (in
particular, I+(ps) = I+(s) where ps ∈ PS and ps:
 ∈ Ω).

A variable assignment (or simply an assignment) in a Σ+-structure M+ =
(I+, U) is a function α:V → U where α(x: s) ∈ I+(s) for all variables x: s ∈ V .
Let α be an assignment in a Σ+-structure M+ = (I+, U), let x: s be a variable
in V , and d ∈ I+(s). The assignment α[d/x: s] is defined by α[d/x: s] = (α −
{(x: s, α(x: s))}) ∪ {(x: s, d)}.

We now define an interpretation over structured sort signatures Σ+. If an
interpretation I+ consists of a Σ+-structure M+ and an assignment α in M+,
then I+ is said to be a Σ+-interpretation.

Definition 12. Let I+ = (M+, α) be a Σ+-interpretation. The denotation [[]]α
is defined by

(1) [[x: s]]α = α(x: s),
(2) [[c: s]]α = I+(c) with I+(c) ∈ I+(s),
(3) [[f(t1, . . . , tn): s]]α = I+(f)([[t1]]α, . . . , [[tn]]α).

We formalize a satisfiability relation indicating that a Σ+-interpretation sat-
isfies sorted formulas and subsort declarations.

Definition 13. Let I+ = (M+, α) be a Σ+-interpretation and let F be a sorted
formula or a subsort declaration. We define the satisfiability relation I |= F by
the following rules:

(1) I+ |= p(t1, . . . , tn) iff ([[t1]]α, . . . , [[tn]]α) ∈ I+(p),
(2) I+ |= (¬A) iff I+ �|= A,
(3) I+ |= (A ∧ B) iff I+ |= A and I+ |= B,
(4) I+ |= (A ∨ B) iff I+ |= A or I+ |= B,
(5) I+ |= (A → B) iff I+ �|= A or I+ |= B,
(6) I+ |= (∀x: s)A iff for all d ∈ I+(s), I+[d/x: s] |= A holds,
(7) I+ |= (∃x: s)A iff for some d ∈ I+(s), I+[d/x: s] |= A holds,
(8) I+ |= s �S s′ iff I+(s) ⊆ I+(s′).

Let F be a sorted formula or a subsort declaration and let Γ ⊆ FORMΣ+ ∪DS+ .
If I+ |= F , then I+ is said to be a Σ+-model of F . We denote I+ |= Γ if
I+ |= F for every F ∈ Γ . If I+ |= Γ , then I+ is said to be a Σ+-model of Γ . If
Γ has a Σ+-model , then Γ is Σ+-satisfiable. If Γ has no Σ+-model , then Γ is

11

Σ+-unsatisfiable. If every Σ+-interpretation I+ is a Σ+-model of F , then F is
said to be Σ+-valid. We write Γ |=Σ+ F (F is a consequence of Γ in the class of
Σ+-structures) if every Σ+-model of Γ is a Σ+-model of F (∈ FORMΣ+ ∪DS+).

Let H = (S+, D) be a sort-hierarchy declaration and ∆ a set of clauses. In
the clausal inference system we will present in the next section, their rules are
applied to clauses in ∆ (which expresses an assertional knowledge base), related
to a subsort relation derivable from D. If I+ is a Σ+-model of both D and ∆,
then I+ is said to be a Σ+-model of (D, ∆), denoted by I+ |= (D, ∆). We write
(D, ∆) |=Σ+ F (F is a consequence of (D, ∆) in the class of Σ+-structures) if
every Σ+-model of (D, ∆) is a Σ+-model of F (∈ FORMΣ+ ∪ DS+).

4 Resolution with structured sorts

In addition to structured sort constraint system CS, we design a (clausal) reso-
lution system with structured sorts. We adopt the method (proposed in [3]) of
coupling a clausal knowledge base [13, 11] and a sort-hierarchy in which every
sort can be used to express the sort predicate which is included in clauses. Then,
we define a hybrid inference system in order to combine the two systems.

4.1 Clausal inference system with sort predicates

We present a clausal inference system, in which clauses may include sort predi-
cates, e.g., p(t1, t2) ∨ s(t) where s is a sort predicate.

Definition 14 (Cut rule). Let L, L′ be positive literals and C,C′ clauses.

¬L ∨ C L′ ∨ C′

(C ∨ C′)θ

where there exists a mgu θ for L and L′.

The cut rule is one of the usual rules included in clausal inference systems. In
addition to the cut rule, our clausal inference system have to include inference
rules of sort predicates related to subsort declarations. We introduce the infer-
ence rules for resolution as follows.

Definition 15 (Resolution rules with sort predicates). Let s, s′, si be struc-
tured sorts or sort predicates, L, L′ positive literals, t, t′ sorted terms, and C,C′

clauses. Resolution rules with sort predicates are given as follows.

Subsort rule

¬s(t) ∨ C s′(t′) ∨ C′ s′ �S s

(C ∨ C′)θ

where there exists a mgu θ for t and t′.

12

Sort predicate rule 4

¬s(t) ∨ C s′ �S s

C

where t ∈ TERMΣ+,s′ .

Exclusivity rule

s(t) ∨ C s′(t′) ∨ C′ s ‖ s′

(C ∨ C′)θ

where there exists a mgu θ for t and t′.

Totality rule

si(t) ∨ C ¬s(t′) ∨ C′ s |si s′

(s′(t) ∨ C ∨ C′)θ

where there exists a mgu θ for t and t′.

In particular, the exclusivity rule and the totality rule are useful for resolutions
with respect to implicit negations embedded in a sort-hierarchy. The exclusivity
rule will be applied when an opposite sort is declared as s ‖ s′. We write resolu-
tion system MS for the system defined by the cut rule in Definition 14 and the
resolution rules in Definition 15.

4.2 Hybrid inference system with clauses and structured sort
constraints

We define a hybrid inference system obtained by combining a clausal inference
system with a sort constraint system. The inference rules in the hybrid system
are applied to subsort declarations and clauses including sort predicates, so that
they can deal with sort-hierarchy information in an assertional knowledge base.

Definition 16 (Hybrid inference system). A hybrid inference system is a
system obtained by adding the axioms and rules in a constraint system into a
clausal inference system. We write X+Y for the hybrid inference system obtained
from a clausal inference system X and a constraint system Y .

The hybrid inference system X+Y can be regarded as an extension of the clausal
inference system X . We write (D, ∆) �X+Y F to denote D ∪ ∆ �X+Y F .

Lemma 1. The axioms of the structured sort constraint system CS are Σ+-
valid.

Lemma 2. Let F,F1, . . . , Fn be subsort declarations. The conclusion F of each
rule in the structured sort constraint system CS is a consequence of its premise
{F1, . . . , Fn} in the class of Σ+-structures. That is, {F1, . . . , Fn} |=Σ+ F .
4 Instead of the sort predicate rule, the subsort rule can derive the same results by

adding valid atoms with sort predicates.

13

Proof. Elimination rule: Suppose that I+(s) ∪ I+(s′) = I+(s) ∪ I+(s′′), I+(s) ∩
I+(s′) = ∅, and I+(s) ∩ I+(s′′) = ∅. Let d ∈ I+(s′). Since I+(s′) ⊆ I+(s) ∪
I+(s′) ⊆ I+(s) ∪ I+(s′′), we have d ∈ I+(s) ∪ I+(s′′). d ∈ I(s′) and I+(s) ∩
I+(s′) = ∅ imply d �∈ I+(s). Therefore d ∈ I+(s′′). Similarly, the other rules can
be proved.

Lemma 3. Let F,F1, . . . , Fn be clauses or subsort declarations. The conclusion
F of each rule in the resolution system RS is a consequence of its premise
{F1, . . . , Fn} in the class of Σ+-structures. That is, {F1, . . . , Fn} |=Σ+ F .

Proof. For each rule we show {F1, . . . , Fn} |=Σ+ F .

1. Exclusivity rule: Suppose that I+ |= s(t)∨C, I+ |= s′(t′)∨C′, and I+(s)∩
I+(s′) = ∅. Let θ be a structured sort substitution such that θ(t) = θ(t′).
So I+ |= (s(t) ∨ C)θ and I+ |= (s′(t′) ∨ C′)θ. By I+(s) ∩ I+(s′) = ∅, either
I+ |= s(t)θ or I+ |= s′(t′)θ does not hold. By the hypothesis, I+ |= Cθ or
I+ |= C′θ. Therefore I+ |= Cθ ∨ C′θ

2. Totality rule: Assume that I+ |= si(t)∨C, I+ |= s′(t′)∨C′, and I+ |= s |si s′,
i.e. I+(s)∪I+(s′) = I+(si). Let θ be a structured sort substitution such that
θ(t) = θ(t′). If I+(s)∪I+(s′) = I+(si), then I+ |= s(t)∨s′(t′)∨C. Then, we
can obtain I+ |= s′(t)θ∨Cθ∨C′θ. Therefore the conclusion is a consequence
of its premise.

The next theorem shows the soundness of the structured sort constraint
system CS and the resolution system RS.

Theorem 1. Let H = (S+, D) be a sort-hierarchy declaration, ∆ a set of
clauses, and X a system. If (D, ∆) �X F , then (D, ∆) |=Σ+ F .

Proof. By Lemma 1, 2, and 3, this is proved.
We give the notion of contradiction in an exclusivity relation from the sort-

hierarchy. This notion is defined by deciding whether there is a contradiction
between an opposite sort and its antonymous sort.

Definition 17. Let H = (S+, D) be a sort-hierarchy declaration, ∆ a set of
clauses, and X a system. (D, ∆) is said to be contradictory on an exclusivity
relation if there exists sorts s, s′ such that (D, ∆) �X s ‖ s′ and (D, ∆) �X s(t)
and (D, ∆) �X s′(t). (D, ∆) is said to be logically contradictory if (D, ∆) �X A
and (D, ∆) �X ¬A.

The contradiction between A and ¬A (corresponding to “logically contradictory”
in the above definition) is defined in the usual manner of logics. We say that
(D, ∆) is consistent if (D, ∆) is neither contradictory on an exclusivity relation
nor logically contradictory.

Theorem 2. Let H = (S+, D) be a sort-hierarchy declaration and ∆ a set of
clauses. If (D, ∆) has a Σ+-model, then (D, ∆) is consistent.

14

Proof. Suppose that I+ is a Σ+-model of (D, ∆). If (D, ∆) is contradictory on
an exclusivity relation, then there exists s, s′ such that (D, ∆) �X s ‖ s′ and
(D, ∆) �X s(t) and (D, ∆) �X s′(t). By Theorem 1, I+ |= s ‖ s′ and then
I+ |= s(t) and I+ |= s′(t). Then I+(s) ∩ I+(s′) = ∅ but [[t]]α ∈ I+(s) and
[[t]]α ∈ I+(s′). If (D, ∆) is logically contradictory, then I+ |= ¬A and I+ |= A.
Hence, the both cases are contradiction to the hypothesis. Therefore (D, ∆) is
consistent.

A refutation is a derivation of the empty clause (denoted �) from (D, ∆),
written as (D, ∆) �X �. The next corollary guarantees that the hybrid inference
system CS + RS is sound.

Corollary 1. Let H = (S+, D) be a sort-hierarchy declaration and ∆ a set of
clauses. If (D, ∆) �CS+RS �, then (D, ∆) |=Σ+ �.

Proof. When the empty clause � is derived, the final rule applied in the refutation
must be one of the rules in the resolution system RS. We consider each case as
follows:

1. Cut rule: There exists a structured sort substitution θ such that Lθ = L′θ,
and (D, ∆) �CS+RS ¬L and (D, ∆) �CS+RS L′. So, by Theorem 1, we have
(D, ∆) |=Σ+ ¬L and (D, ∆) |=Σ+ L′. Now assume that I+ is a Σ+-model
of (D, ∆). Then I+ |= Lθ and I+ �|= L′θ(= Lθ) contradicts our assumption.
Since (D, ∆) has no Σ+-model, (D, ∆) |=Σ+ � is proved.

2. Resolution rules: Similar to 1.

5 Conclusions

This paper has presented an order-sorted logic that can deal with implicit nega-
tions in a sort hierarchy. We have presented a hybrid inference system that
consists of a clausal inference system and a structured sort constraint system.
This system includes structured sort expressions composed of atomic sorts, con-
nectives, and negative operators, in order to deal with implicitly negative sorts
embedded in a sort-hierarchy. To represent these negative sorts, we have pro-
posed the notions of sort relations (subsort relation, equivalence relation, exclu-
sivity relation, and totality relation) on the structured sorts, and we have ax-
iomatized the properties of implicitly negative sorts. Thus, the structured sort
constraint system can derive relationships between classical negation, strong
negation, and antonyms in a sort-hierarchy. Furthermore, the contradiction in
the sort-hierarchy as defined by the exclusivity relation enables us to prove the
soundness of our logic with structured sorts.

We need to improve our hybrid inference system in order to tackle imple-
mentation issues caused by the complicated sort expressions. As a work which
remains theoretical, the complete system must be given by revising the axioms
and rules.

15

References

1. Baader, F., & Hanschke, P. (1991). A scheme for integrating concrete domains into
concept languages. Pages 452–457 of: Twelfth international conference on artificial
intelligence.

2. Baader, F., & Sattker, U. (1999). Expressive number restrictions in description
logics. Journal of logic and computation, 9(3), 319–350.

3. Beierle, C., Hedtsuck, U., Pletat, U., Schmitt, P.H., & Siekmann, J. (1992). An
order-sorted logic for knowledge representation systems. Artificial intelligence, 55,
149–191.

4. Cohn, A. G. (1987). A more expressive formulation of many sorted logic. Journal
of automated reasoning, 3, 113–200.

5. Cohn, A. G. (1989). Taxonomic reasoning with many sorted logics. Artificial intel-
ligence review, 3, 89–128.

6. Donini, F. D., Lenzerini, M., Nardi, D., & Schaerf, A. (1996). Reasoning in descrip-
tion logic. Brewka, G. (ed), Principles of knowledge representation. CSLI Publica-
tions, FoLLI.

7. Frisch, Alan M. (1991). The substitutional framework for sorted deduction: funda-
mental results on hybrid reasoning. Artificial intelligence, 49, 161–198.

8. Gabbay, D., & Hunter, A. (1999). Negation and contradiction. Gabbay, D. M., &
Wansing, H. (eds), What is negation? Kluwer Academic Publishers.

9. Gallier, Jean H. (1986). Logic for computer science. foundations of automatic the-
orem proving. Harper & Row.

10. Horrocks, I. (1999). A description logic with transitive and inverse roles and role
hierarchies. Journal of logic and computation, 9(3), 385–410.

11. Lobo, J., Minker, J., & Rajasekar, A. (1992). Foundations of disjunctive logic
programming. The MIT Press.

12. Ota, A. (1980). Hitei no imi (in Japanese). Taishukan.
13. Richards, T. (1989). Clausal form logic. an introduction to the logic of computer

reasoning. Addison-Wesley Publishing Company.
14. Schmidt-Schauss, M. (1989). Computational aspects of an order-sorted logic with

term declarations. Springer-Verlag.
15. Schmidt-Schauss, M., & Smolka, G. (1991). Attributive concept descriptions with

complements. Artificial intelligence, 48, 1–26.
16. Smolka, G. (1992). Feature-constraint logics for unification grammars. Journal of

logic programming, 12, 51–87.
17. Wagner, G. (1991). Logic programming with strong negation and inexact predi-

cates. Journal of logic computation, 1(6), 835–859.
18. Walther, C. (1987). A many-sorted calculus based on resolution and paramodula-

tion. Pitman and Kaufman Publishers.
19. Weibel, T. (1997). An order-sorted resolution in theory and practice. Theoretical

computer science, 185(2), 393–410.

