Event, Property and Hierarchy in
Order-Sorted Logic

Ken Kaneiwa, Satoshi Tojo

School of Information Science

Japan Advanced Institute of Science and Technology
Tatsunokuchi, Ishikawa 923-1292, Japan

{kaneiwa,tojo}@jaist.ac.jp
Abstract

Knowledge representation in logics, even in the order-sorted logic that includes a
sort hierarchy, tends to lose the conciseness and the nuances of natural language.
If we could construct a logic that includes both predicates and terms as classes in
the hierarchies, it would be very useful for connecting general knowledge to specific
knowledge. Although there are actually logics that are equipped with such a pred-
icate hierarchy, they are built by logical implication and they cause the problem
of predicate unification between different argument structures. In this paper, we
present a logic language with a class hierarchy of predicates, where in the unification
of predicates we devise a mechanism for deriving superordinate predicates in the
hierarchy and for quantifying supplementary arguments. The arguments are quan-
tified differently, depending on whether a predicate is interpreted as an occurrence
of an event or a universal property. Thus, we include the distinction between events
and properties in predicates and present a logic language that can flexibly relate
predicates with different argument structures. We formalize the logic language both
by syntax and semantics, and develop the inference system.

1. Introduction

The goal of knowledge representation is not to put statements to be executed in
order into a computer system, but to describe declarative knowledge in the real
world. However, the logic language that is often applied to represent knowledge
is unable to express the various nuances of natural language. In order to realize
correct inferences in logic language, we need devices to describe more complicated
expressions.

In working on this problem, many logic languages have been investigated from
the viewpoints of knowledge representation and the rational reasoning. Amongst
these languages, there seem to be two approaches to knowledge representation.
One is typed logic programming [5], including order-sorted logic [13, 14, 4, 11].
LOGIN [1], LIFE [2], F-logic [6] and QuzxoTe [15, 16] are inference systems with
such type notions. They introduce class hierarchies together with feature struc-
tures, where a term represents a set of objects. New HELIC-II [10, 9], developed
as a legal reasoning system, introduces H-terms (based on ¥-terms in LOGIN) that
consist of verb-type and and noun-type symbols. The other approach is the tem-
poral reasoning [3, 8, 12] that considers various aspects of an eventuality. Allen [3]
distinguished between event, property, and process in English sentences, and so did
McDermott [8] between fact and event.

We consider defining both predicates and terms as classes in the hierarchies. In



order to do this, we amalgamate the above two approaches, and attribute both pred-
icate hierarchy and event/property distinction to the issue of proper quantification
of classes.

The objective of this paper is to propose a logic language which has two exten-
sions as follows:

o Class-hierarchy of predicates (as well as sorted terms), together with an in-
ference mechanism which is independent of argument structures;

¢ Distinction between event and property in predicate interpretation with the
appropriate unification/ resolution mechanism.

We develop an inference system that includes substitution, quantification and sup-
plementation of arguments, to realize the above specifications.

The paper is arranged as follows. Section 2 contains preliminaries about order-
sorted logic and U-terms [1]. Section 3 discusses the problem using examples. In
Section 4, we illustrate how we introduce our extensions into order-sorted logic.
In Section 5, we formalize the syntax and the semantics of the proposed logic. In
Section 6, we define the logic programming based on this logic. Finally in Section
7, we give our conclusions and discuss future works.

2. Preliminaries

In this section, we state the notation of order-sorted logic, especially for ¥-terms
in LOGIN. § is a set of sorts, and the sorts are ordered by a subsort relation
Cs (€ S xS). A hierarchy of sorts is a pair (S,Cg) of the set § and a subsort
relation Cg, containing the greatest sort T and the least L.

We can declare that apple and orange are subsorts of fruit as below.

apple Cg frut

orange Cg fruit
A sorted term ts is a term ¢ of sort s. A variable z of a sort s is written as
T8

which is called a sorted variable.

Ait-Kaci [1] proposes a notation, called ¥-terms, based on sorted terms in order-
sorted logic. A W-term accompanies a sorted term z:s with a feature structure
written by a sequent of pairs of an attribute label and its value. The ¥ terms with
feature structures represent more detailed information than simple sorted terms.
For instance, the ¥-term corresponding to ‘red sour apples’ is as below where color
and taste are attribute labels and red and sour are their values, respectively.

x: apple[color — y:red,taste — z: sour]

Since the meaning of a U-term is narrowed by the succeeding feature structure, the
sorted term z: apple is a more abstract expression than the ¥ term z: apple[color —
y:red, taste — z:sour]. Note that z:apple shows ‘apples’ and z: apple[color —
y:red, taste — z: sour| shows ‘red sour apples’.

LOGIN has been developed as a logic programming language where PROLOG’s
arguments are replaced by ¥-terms. For a predicate p, attribute labels ly1, ..., Ik,
U-terms t11, ..., tnk, and variables x1: 81, ..., Tp: Sg, a fact is written in LOGIN as:



p(ﬂ?ll Sl[lll — t11, ---7ln1 — tnl], ...,$k2 Sk[llk — tlk, ,lnk — lnk])

Thus, it can express the relation of the concepts as complex objects.

Although we can translate U-terms into the form of first order logic without
sorted terms, we cannot directly represent knowledge by them. Sorted expres-
sions(sorted terms or ¥-terms) do not only retain the meaning of the original knowl-
edge, but also represent the form simply. For example, the assertion describes an
expression of ‘John, who is a twenty years old man, is walking’ as below.

walk(z: John[age — y: twenty_years, sex — z: male)).

For the sake of simplicity, we use a sort John as a singleton instead of a constant.

In [1], Ait-Kaci contended that the inference by unification of sorted terms was
more efficient than by resolution processes. In Section 4 and Section 5, we will
extend the expression based on the ¥-term explained above.

3. Motivation

In this section, we shall discuss examples that raise the questions of knowledge
representation using ¥-terms.

Example 1: A Hierarchy of Predicates

We now consider that superordinate predicates are derived from subordinate ones
in the hierarchy of predicates. That is, the abstract expression of predicate can be
inferred from the concrete expression.

In the hierarchy of predicates in Fig. 1 we expect the following results of an
inference. Suppose a fact hit(x:John) holds, then the superordinate predicate
illegal_act can be derived from the predicate hit from the direction (1) in Fig. 1.
However, the first query ‘Did John do an illegal act against Mary?’ will give the
answer no. It is certain that John hit somebody but not that John hit Mary. Thus,
the second query ‘Did John do an illegal act against somebody?’” will yield yes.

hit(x:John).
?-illegal_act(x:John, y:Mary).
no.

7-illegal_act(x:John, y:persom).
yes.

This exemplifies the case of a derivation of predicate higher in the hierarchy of pred-
icates with more arguments than the predicate representing the fact. To make the
inference above, we have to supplement the arguments existing only in illegal_act
and not existing in hit. In addition, we have to take account of the quantification of
the supplemented arguments. When the second argument y:person is interpreted
as all persons, the answer to second query may be no. However the interpretation
does not fit with what we expect, so that y:person should be interpreted as a
person(somebody).

Similarly, assuming a predicate illegal_act with fewer arguments than the
predicate in a fact steal(x:John, y:Mary), in the direction (2) in Fig. 1 the
derivation of the following query results in yes. The answer is plausible because
a fact steal(x:John, y:Mary) implies illegal_act(x:John) as more abstract
information.



illegal_act

N

hit steal

e

rob_with_violence

Figure 1: A hierarchy of predicates

steal(x:John, y:Mary).
?-illegal_act(x:John).
yes.

Additionally, the predicate rob_with_violence as the conjunction of hit and
steal will be derived from the two predicates (on (3) in Fig. 1). That is, by the
facts hit(x:John, y:Mary) and steal(x:John, z:wallet) in an incident John’s
robbing with violence holds and then the query ‘Did John steal Mary’s wallet using
robbery with violence?’ will yield yes.

hit(x:John, y:Mary).

steal(x:John, z:wallet).
?-rob_with_violence(x:John, y:Mary, z:wallet).
yes.

Example 2: Event and Property Interpretations

Interpreting a predicate from a natural language assertion can result in the reason-
ing process having a different direction, depending on the interpretation. Using a
predicate in knowledge representation, there are two roles for the predicate, these
being event and property [3, 8]. In the example of the sort hierarchy in Fig. 2, we
consider the assertion fly(x:bird). This is ambiguous because the term can be
interpreted in two ways.

The fact £1y(x:bird), when interpreted as an event, states that a bird is flying.
The fact entails that an animal is flying so that the query ?-fly(x:animal) results
in yes. However the fact does not state that a penguin is flying, and the answer to
query ?-fly(x:penguin) is no as follows.

Interpretation 1: A bird is flying.

fly(x:bird).
?-fly(x:animal).
yes.
?-fly(x:penguin).
no.
?-move(x:animal) .
yes.



event V \ property # / \
bird bird
event y \ property y
penguin crow penguin crow

Figure 2: The inference by event and property

The assertion fly(x:bird) as an event can be used to deduce the superordinate
terms. For example, animal is one of the superordinate terms of bird as in Fig 2. In
contrast, the fact £1y(x:bird) which is interpreted as a property, states that birds
have the property of flight. If birds have this property, then penguins should have
the same property. Thus, the query ?-fly(x:penguin) will have the answer yes.
However since the information does not imply that all animals have the property of
flight, the following answer for query ?-fly(x:animal) will yield no.

Interpretation 2: Birds have the property of flight.

fly(x:bird).
?-fly(x:animal).

no.
?-fly(x:penguin).
yes.
7-move(x:animal).
no.

Fig. 2 demonstrates that the subordinate terms inherit the property from superor-
dinate terms. Namely, a conclusion fly(x:penguin) can be inferred from the fact
fly(x:bird) by an inheritance to the subordinate term x:penguin. If an asser-
tion does not distinguish between event and property, then we cannot deal with
inferences using the two kinds of directions in the hierarchy.

The problems of the above two examples we have seen suggest the necessity of
both hierarchies of sorts(terms) and predicates and the distinction of a predicate
(event or property).

4. Event, Property and Hierarchy

In order to realize the inference in the previous section, we introduce the hierarchy
and the event/property distinction in predicates.
4.1. A hierarchy of predicates

We would like to realize a hierarchy of predicates, independent of the hierarchy of
sorts (terms). A hierarchy of predicates is built by a binary relation C p of predicate



symbols that is a partial order, e.g. for any predicates p1,p2, p1 Cp p2 means that
P2 1s a superordinate predicate of p; and that p; is a subordinate predicate of p,.

Normally, a relation in the hierarchy of predicates is expressed by the implication
symbol, used in first order logic, as an ISA-relation. The following example will
illustrate a rule that move is a superordinate predicate of fly using the logical
implication.

Fly(X) — move(X)

The implication infers that if fly(a) holds, then move(a) does.

However, such rules do not completely represent the relation between predicates
in the hierarchy. The problem is that each superordinate/subordinate predicate
has its own unique argument structure, and that there may be a difference between
them. For example, suppose there are predicates explain and talk. Both predicates
have two arguments and are written like:

explain(z: John,y: book)
talk(z: John, z: Mary)

In this case, the first argument of both predicates is same, whereas the second
arguments are different. The role of both first arguments is agent, and the role of
the second argument in ezplain is object but in talk is coagent. Therefore, the second
argument cannot be unified between ezplain and talk when these predicates are in
the relation Cp in the hierarchy of predicates. If we were to stick to semantics by
logical implication, we may have to write several rules to associate arguments in the
premise with those in the conclusion (e.g. p(X,Y) — ¢(X,Y), p(X,Y) — ¢q(¥, X),
p(X, X) — ¢q(X, X),...). In particular, they would become more complicated as the
number of predicates in the hierarchy increased.
Suppose that

explain Cp talk

is declared, then to fill the gap between the argument structures of predicates, we
need to complement missing arguments by adding and deleting some of them. How
do we obtain the information for the argument structures of predicates? We use
argument labels to render arguments roles. Note that these differ from the attribute
labels in W-terms shown in Section 2. Argument labels agt,0bj and so on, which are
written like

explain(agt = x: John, obj = y: book)

uniquely represent the argument roles to build an argument structure. In this
example agtis an argument label ‘agent’ and o0bj is an argument label ‘object’. This
notation would be able to treat the query

?-talk(agt = z: person, coagt = y: person)
where the fact
explain(agt = z: John, obj = y: book)

is given, in the following way.



ezplain(agt = z: John, obj = y: book)
1(1) derivation of the superordinate predicate
talk(agt = ©: John, obj = y: book)
1(2) deletion of an argument
talk(agt = z: John)
1(3) addition of an argument
talk(agt = z: John, coagt = z:person)
1(4) substitution of the sort
talk(agt = z: person, coagt = z: person)

By (1), the predicate talk is derived from the subordinate predicate ezplain.
(2) deletes the argument obj = y:book that is a surplus argument in predicate
talk. (3) adds the argument coagt = z: person that is deficient in the arguments of
the predicate talk. Finally, (4) substitutes agt = z:person for the first argument
agt = z: John.

For (2) and (3), each argument label gives a scope to the argument. Let SCP be
a function from the set of argument labels to the set of sorts. For argument labels
agt,obj, if we define SCP(agt) = person and SCP(0bj) = thing, then the sorts person
and thing indicate the scope of agt and 0bj. In the supplementation of arguments,
the addition and deletion of arguments depend on the argument structure, and the
value of the added argument is supplied from the scope of the argument indicated
by the argument label.

4.2. Predicates as Event and Property

Predicate symbols can be used to represent features or states of objects. For ex-
ample, walk(z: John) means that John is walking, and red(y: apple) means that
an apple is red. However, predicates in these assertions may not have a consistent
usage. That is, the predicate in walk(z: John) implies an event and the predicate in
red(y: apple) implies a property. As a result, the inference in the hierarchy can give
rise to erroneous unification for the two kinds of usage. Also the single predicate
walk may have two kinds of interpretation as the event ‘is walking’ and the property
‘can walk’.

We need to present reasoning for each predicate either as an event or a property
with different notation and need to define the relevant unification. The distinction
is whether an assertion is interpreted as an occurrence of an event, or as a property
of objects. We define two aspects of predicates as follows.

Definition 4.1 (Two aspects of a predicate). For any predicate p; there are
the predicate p; as event and the predicate pg as property.

We alter terms, which are based on ¥-terms, to distinguish between an existen-
tial notation and a universal notation for the sorted domain, e.g. bird denotes all
birds and z: bird denotes a bird. Thus, examples of an assertion defined as event
and as a property are given below:

Event assertion: The predicate as event expresses that there is a fact or there
is an occurrence of such an event. The argument of the predicate is limited to an
object, so that the following assertion is interpreted as ‘A bird is flying’.

fly(z:bird) ~ Tz fly_as_event(z: bird)



Property assertion: The predicate as property expresses an attribute of objects.
The argument is universal in the set of objects within a sort, so that the following
form means ‘All birds have the property of flight’.

fly*(bird) ~ Vz fly_as_property(z: bird)

Moreover, the two aspects of a predicate naturally cause a difference in infer-
ences. If the predicate is an event, then the added argument should be one occur-
rence of an object corresponding to one event. If the predicate is a property, then
the added argument should not be a unique object but a global feature of that sort.
Therefore, if we add a term z: s to a predicate interpreted as event, the term will
denote an object within sort s; if we add a term s to a predicate interpreted as
property, it will denote all objects in sort s.

For example, the supplementation of arguments can be distinguished as follows.

Predicate as event:
hit(agt = z: John)
| addition of an argument
hit(agt = x: John, coagt = y: person)
(John hit a person.)

Predicate as property:
hitt(agt = z: John)
|l addition of an argument
hit!(agt = z: John, coagt = person)
ohn has the property of hitting every person.
John has the property of hitting every p

The scope of the argument label coagt can determine the sort person of terms added
to the predicates hit and hitf. In this case, y: person is added to the predicate as
event, and person is added to the predicate as property.

5. An Order-Sorted Logic with Event, Property and Hierarchy

In this section, we formalize an order-sorted logic which adopts a hierarchy of pred-
icates and a distinction between event and property.

5.1. Signature

We now revise the order-sorted logics and the ¥-term in [7, 4, 1].

Definition 5.1 (Signature). A signature for logic with order-sorts is ¥ = (.5, P,
LP) if

1) (5,Cg) is a partially ordered set of sort symbols with the greatest sort T and
) p Y Y g
the least L.

(2) (P,Cp) is a partially ordered set of predicate symbols.
(3) LP is a set of argument labels of predicates.
(4) SCP is a function from LP to S.

(5) ARG is a function from P to 2L%.



SCP(I) denotes a sort as the scope of an argument label I. ARG(p) indicates a
set of argument labels as the unique argument structure of a predicate p. We use §
to indicate that the predicate is read as a property, where the predicate p? is called
a property predicate and the predicate p without it is called an event predicate. The
set P of predicates can be extended as follows: P+ = P U {p*|p € P}. In the latter
sections, all our signatures will be the extended signature ¥ = (S, P+, LP).

5.2. Syntax

A language L of signature & contains the following: the family V' = {V,|s € S} of
variables where Vy(= {v1: s, va:s,...}) is all the variables of sort s, the set LS of
attribute labels and the propositional operations(V, —).

We define the expressions of L: terms and formulas.

Definition 5.2 (Terms). Given a language L of signature ¥, the set TERM of
terms is defined by:

(l) A sort s and a sorted variable x: s are atomic terms of sort s.

(2) If to is an atomic term of sort s, ti,...,t, are terms without variable and
l1,..., 1, are attribute labels, then to[ly — t1,...,1, — t,] is a term of sort s.

We say that a term ¢ of sort s is a term of argument label [ if s and SCP(!) are
in the subsort relation, namely, (s, SCP(l)) €Cg.

Definition 5.3 (Formulas). Given a language L of a signature X, the set FORM
of formulas is defined by:

(1) Ifty,...,t, are terms of ly, ..., l,, and p is a predicate where ARG (p) = {l, ..., 1.},
then p(ly = t1,..., 1, = ty,) is the atomic formula for an event predicate.

If ty,...,t, are terms of ly,...,l, and p* is a predicate where ARG(p) =
{t, .., 1}, then p*(ly = t1,...,l,, = t,) is the atomic formula for a prop-
erty predicate.

(2) If A and B are formulas, then ~A and AV B are formulas.

5.3. Semantics

For a language L of signature X, a structure is a pair ' = (U, [ ]) (a universe U and
an interpretation [ J.) For each attribute label I; in LS, [};] is a function from U
to U. An interpretation of sorts is defined by [ ]: (S,Cs) — (U, C) where [T =U
and [1] = ¢.

Definition 5.4 (Interpretation). Given a family a = {a; : Vs — [s]|s € S} of
variable assignments, an interpretation [ | of terms and atomic formulas is defined
by:

(1) [sla = [s], [2: sl = {as(@:5)}-

(2) [tollh = t1y sl — )1, = {z € [to] |31 € [t:],, - Fyn € [ta],, [L](2) =
Y1y o0 ] () = yn }-

[o(lh = t1,esln = ta)] =1 i {f € Xp|Vls € ARG(p), f(l:) € [t:] o} <[]



where ¢ is an event predicate p or a property predicate p! and X, = {f €
(ARG(p) — UM € ARG(p), (1) € [SCP()]}.

By this definition, the ordering of arguments in a predicate does not alter the
interpretation of the atomic formula. For example, formulas

P(ll = tl,lg = t2) cmd p(lQ = tQ,Z]_ = tl)

are regarded as semantically identical. As an argument is a term of a sort, that is,
interpreted as a subset of U, a predicate has to be interpreted as the relation of the
subsets.

I° or I°% is an interpretation of the supplementation of predicate arguments
distinguished between event and property.

Definition 5.5 (Interpretation of supplementation of arguments). For p,
p¥,q € P, let be l; € ARG(p) N ARG(q) and v, € ARG(q) — ARG(p). An

interpretation (I;/p or I;/ﬁp) of supplementation of arguments is defined by:

o 17, ([p) = {g € (ARG(q) — U)|Vf € Fi,g(l;) = f(;),9(r) = ar(zr: se)}

o 178 ([P]) = {g € (ARG(q) — U)Vf € Fs, (L) = f(1;),9(rs) € [si]}
where s, = SCP(r},) and ay: — [s&]-

The subscript ¢/p of I¢ o/p and ];/np means a translation from an interpretation of

the predicate p into the predicate q. Accordingly, we can say Iz ([[p]]) C X, where
= {f € (ARG(q) — U)|Vl € ARG(q), f(I) € [SCP(I)]}.

Next we will give an interpretation of hierarchy of predicates.

Definition 5.6 (Hierarchy of predicates). Given the set P of predicates and
a subpredicate relation Cp , a hierarchy of predicates is a pair (P,Cp), which is
interpreted by:

[1:(P,Cp)— (2%7,1°,1°, C)

where X, = {f € (ARG(p) — U)|Vl € ARG(p), f(I) € [SCP(I)]} and Xp =
UpGP XP'

We define the one-step subordinate relation CL= {(pi, p;) €Cp |i # j, (pi, ), (,
p;) ¢Ep}. For any predicates p; in the hierarchy of predicates, the interpretation
[ ] of subpredicate relation Cp satisfies the following conditions.

(1) Ifp1 Cp p2, then 15, ([p1]) € [p2] and 17}, ([pi]) € [#5]

(2) pr(] I:P P1,---,P0 EP pn(n > 1)7

then (Vi_y (15, /. (IiD)] € [po] and iy [752 , (IPHD)] € [}
where p1, ..., pn, are all predicates such that py C} p;.

Definition 5.7 (Satisfaction relation). Let T be a structure and F a formula.
The satisfaction relation T |= F is defined by:

(1) T = o(li = t1,...,1n = t,) & for some family o of variable assignments,
[e(h = t1, s ln = ¢ )]] =1



(2) TEAVB<eTgEAorTEEB
(3)T'=—|A<$T|7$A

For every formula F € T, we write T |=T (T is a model of ') if T = F. We say
that I' is satisfiable if it has a model. Otherwise, we say that I' is unsatisfiable if it
has no models.

6. Logic Programming

We define a logic programming that includes a definition of our extended order-
sorted language.

Definition 6.1 (Program). Let =Ly,...,—L, be negative literals and L be a pos-
itive literal. A program clause is LV =Ly V...V —L,. The general form of program
clause is written as: R; : L «— L, ..., L,.

Let p,p' € P and s,s’ € S. HS; is the declaration of a subsort relation and HP;
the declaration of a subpredicate relation as follows.

HS;:sCg s,
HP; :pCpp'.

A program P is a finite set of program clauses, declarations of a subsort relation
and declarations of a subpredicate relation.

P ={Ry,..,R,, HS,, ..., HS,, HP,, ..., HP,,}

A goal clause is =Ly V ... V = L,. The form of goal clause is written as: «—
L4, ..., L,. The substitution of sorted terms depends on whether the literals with
the terms are positive or negative in the clause. Atis(called attributes) is a finite
sequence of pairs of attribute labels and terms Iy — ¢1,...,1x — ¢x(k > 0).

Definition 6.2 (Substitution). Given a program P and a goal clause G, for
zis; € Vs, yis; € Vs, s5,8; € S, a substitution 0 is a function from TERM to
TERM defined as one of the following by the rules:

1) @: s;[Atts] N s;[Atts],
2) s;[Atts] N s;[Atts] where (s; Cgs s;) € P,
3) @: s;[Atts] =2 s;j|Atts] where (s; Cs s;) € P,

4) z: 5;[Atts] - s;[Atts, ljr1 — try1] where ljy1 — tr1 does not occur in
the Atts.

o~ m~ m—~ =

Let o(I; = t1,..e,lm = tm), L1, ..., L, be atomic formulas and 6 a substitution.
0o(ly = t1,...,lm = tm) and 0(L4, ..., L,) are defined by:

e 0p(ly = t1, ey lm = tm) = @(l1 = Ot1, ...,y = Oty,) where 6t; is a term of
e O(Ly,...,L,) =6Ly,...,0L,.

Let A and B be expressions. A substitution  is a unifier of A and B if A = B.
Args(called arguments) is a finite sequence of pairs of argument labels and terms
li = t1, .0y by = tim(m > 0). FORMo(C FORM) is the set of atomic formulas, and

FORMG = {p(l1 = t1,.,ln = to)|{l1, .o 1} € 287 0 € PT t; € TERM}



is the set of atomic formulas that is expanded by all argument structures including

illegal ones (e.g. p(l1 = t1,l1 = ta) is illegal when ARG(p) # {l1,12}).

Definition 6.3 (Supplementation of arguments). Given an atomic formula A,
a supplementation o of predicate arguments, that is a function from FORM{ to

FORM,, is defined by:
o(A) = ADD™(DEL"(A))

where ADD™ is a composition of m-functions of ADD and DEL™ a composition
of n-functions of DEL and therefore m is the least number such that ADD™ =
ADD™*(m > 0) and n the least number such that DEL™ = DEL"*'(n > 0). For
le LP,pe P* sec S,xz:5 €V, and t € TERM, an addition ADD of arguments is

p(Args,l=>z:s) if p=pand I € A,
ADD(p(Args)) =< @(Args, 1= s) if o =p*and Al € A,
p(Args) otherwise,

where A = {l € ARG(p)|l = t ¢ Args} and SCP(l) = s. And a deletion DEL of

arguments is

p(Args) if 1¢ ARG(p) and
= (poghime

where B = {l;|l; = t; € (Args U {l = t})} and SCP(l) = s.

We define the inference rules in the logic programming that are applied to deriva-
tions. LS and LS’ are finite sequences of positive literals, L is a positive literal.

Definition 6.4 (Inference rules). Let § be a substitution and o a supplementa-
tion of arguments. Inference rules are written as follows:

—~ LS L L+ LS

(RP)  —=L5 (sup)

~— LS, LS — QLS
C — LS, pa(A
p1 Cp po ,p2(Args) (Specl)
— LS,0(p1(Args))
C LS,ph(A
p1 Cpps — LS, p3(Args) (Spec2)
— LS,U(pg(Args))
poCpp1 .. poCppn — LS po(Args)
(Genl)
— LS, 0(p1(Args)), ..., (pn(Args))
C Cp pn LS, pl(4
pobpm PoEppn ph(Args) (Gen2)

— LS, U(p”l (Args)), ..., U(pi‘z(Args))

if o is properly applied in each of (Specl), (Spec2), (Genl) and (Gen2), where
D1,y Pn(n > 1) are all predicates such that pg C} p; in (Genl) and (Gen2).

We write I' | F (F is a consequence of T') if every model of I' is a model of a
formula F.



P; = {rob_with_violence Cp hit, rob_with_violence Cp steal,
hit Cp illegalact, steal Cp illegalact, wallet Cg thing,
John Cg person,  Mary Cg person,
hit(agt = x:John, coagt = y:Mary),

steal(agt = x:John, obj = w:wallet) }
P2 = {fly Cp move, walk Cp move,

bird Cg animal, penguin Cg bird, crow Cg bird,

fly(shj = x: bird),

fly*(sbj = bird) }

Figure 3: The programs for examples

Theorem 6.1. The conclusion C' of each inference rule of definition 6.4 is a con-

sequence of its premise {Cy,C2} or {C'}. That is, {C1,C2} E C' or {C} = C'.

Definition 6.5 (Derivation). From a program P and a goal G (PU{G} ), a goal
@ is obtained from G using one of the inference rules. We write P U {G} Frp G’
to indicate the derivation.

Given P U{G}, we can construct a signature Ypugey where s, ses, pyp eP,
(s,s') €Cs and (p,p') €Cp forevery sCs s',pCpp' € P.
Let T be a structure of EPU{G},

T e PU{G}iff T |= C; for every clause C; € P U{G}.

We say that T is a model of program P U {G}. We write PU{G} Erp C (C is a
consequence of program P U {G}) if every model of program P U {G} is a model of
a clause C.

A refutation is to derive the empty clause O from P U {G}.

Theorem 6.2 (Soundness of refutation). PU{G}trp 0= PU{G} Erp O

Let us look at the refutation processes from the examples we have seen in Section
3. The programs P; for the example 1 and P for the example 2 are shown in Fig. 3.
From a goal

?-rob_with_violence(agt = z: John)

and P;, the refutation process is described in Fig. 4.
In the same way, from a goal

?-move(sbj = y: animal)

and P, the refutation succeeds as in Fig. 5.
On the other hand, another goal

7-move* (sbj = y: animal)

and P, cannot derive the empty clause and the refutation fails.



<-rob_with_violence(agt=X:John).

rob_with_violence < hit,
rob_with_violence < stead

<-hit(agt=X:John, coagt=Z:person), steal (agt=X:John, obj=V:thing).
hit(agt=X:John, coagt=Y :Mary).

Subl={Y:Mary / Z:person}
<-steal (agt=X:John, obj=V:thing).

steal (agt=X:John, obj=W:wallet).

Sub2={ W:wallet / V:thing}

U
Figure 4: A refutation process 1
<-move(shj=X:animal). <-move#(shj=animal).
fly <move fly <move
<-fly(shj=X:animal). <-fly#(sbj=animal).
fly(shj=Y:bird). fly#(sbj=bird).
Sub1={Y:bird / X:animal}
(] fail.

Figure 5: Refutation processes 2

7. Conclusions and Future Work

We have presented an order-sorted logic for knowledge representation, which enables
us to describe the hierarchies of both predicates and terms inherent in natural
language. We have developed the new logic programming language using SICStus
Prolog”™ ver.3.0, and have shown that the language properly solves the examples
shown in Section 3.

In this language, we can write database statements, disregarding the argument
structures of other predicates. The most advantageous point of our system is the
mechanism of argument supplementation to unify predicates with different argu-
ment structures. It allows us to write hierarchical relations between predicates
flexibly and concisely. Also, we can precisely distinguish event from property as
two different aspects of a predicate. In addition, our logic programming language
provides unification/ resolution mechanisms that fit human reasoning.

Thus far, we have considered making order-sorted logic closer to the semantics
of natural language. In addition to the event/property distinction, we are now
tackling the inclusion of the proper treatment of negation in the predicate/sort
hierarchy. Although this work seems to be difficult, we contend that such notions
are significant in representing knowledge naturally and precisely.



References

[1]

2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

H. Ait-Kaci and R. Nasr. Login: A logic programming language with built-in
inheritance. Journal of Logic Programming, pages 185-215, 1986.

H. Ait-Kaci and A. Podelski. Towards a meaning of life. Journal of Logic
Programming, pages 195234, 1993.

J. F. Allen. Towards a general theory of action and time. Artificial Intelligence,

23:123-154, 1984.

C. Beiercle, U. Hedtsuck, U. Pletat, P.H. Schmit, and J. Siekmann. An
order-sorted logic for knowledge representation systems. Artificial Intelligence,

55:149-191, 1992.

P. M. Hill and R. W. Topor. A semantics for typed logic programs. In F. Pfen-
ning, editor, Types in Logic Programming. MIT Press, 1992.

M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and
frame-based languages. J. ACM, 42(4):741-843, 1995.

M. Manzano. Introduction to many-sorted logic. In Many-sorted Logic and its
Applications, pages 3—-86. John Wiley and Sons, 1993.

D. V. McDermott. A temporal logic for reasoning about processes and plans.

Cognitive Science, 6:101-155, 1982.

K. Nitta, S. Tojo, and et al. Knowledge representation of new helic II. In
Workshop on Legal Application of Logic Programming,ICLP 94, 1994.

K. Nitta, S. Wong, and Y. Ohtake. A computational model for trial reasoning.
In Proc. 4th Int. Conf. on AI and Law, Amsterdam, 1993.

M. Schmidt-Schauss. Computational Aspects of an Order-Sorted Logic with
Term Declarations. Springer-Verlag, 1989.

Y. Shoham. Reasoning about Change. The MIT Press, 1988.

C. Walter. A mechanical solution of schuber’s steamroller by many-sorted
resolution. Artificial Intelligence, 26(2):217-224, 1985.

C. Walter. Many-sorted unification. Journal of the Association for Computing
Machinery, 35:1, 1988.

H. Yasukawa, H. Tsuda, and K. Yokota. Objects properies and modules in
Quzxote. In Proc. FGCS’92, pages 257268, 1992.

K. Yokota. Quizote:A Constraint Based Approach to a Deductive Object-
Oriented Database. PhD thesis, 1994.



