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Abstract. Sequential pattern mining is a crucial but challenging task in
many applications, e.g., analyzing the behaviors of data in transactions
and discovering frequent patterns in time series data. This task becomes
difficult when valuable patterns are locally or implicitly involved in noisy
data. In this paper, we propose a method for mining such local patterns
from sequences. Using rough set theory, we describe an algorithm for
generating decision rules that take into account local patterns for arriv-
ing at a particular decision. To apply sequential data to rough set theory,
the size of local patterns is specified, allowing a set of sequences to be
transformed into a sequential information system. We use the discerni-
bility of decision classes to establish evaluation criteria for the decision
rules in the sequential information system.

1 Introduction

Data mining algorithms have been developed as tools to discover valuable pat-
terns and rules from large amounts of data. In the traditional algorithms, as-
sociation rules are discovered from attributes found frequently in datasets. By
using a more complex approach, sequential pattern mining algorithms [1, 33, 2]
enable us to find frequent patterns in sequential datasets. Sequential pattern
mining requires the analysis of an ordered list of itemsets (e.g., a list of actions
or orders) that can be modeled by a sequence. In order to effectively carry out
the task, we have to extract only valuable patterns included in sequences by
skipping noisy and meaningless patterns. However, frequent data mining algo-
rithms are not feasible when it comes to extracting local (or implicit) patterns
from noisy data. This is because the algorithms may not work when valuable
patterns do not appear frequently or when waste patterns appear frequently. In
fact, the frequencies of such valuable patterns may be less than a user-specified
threshold, but setting a lower threshold leads to the recovery of a number of
meaningless patterns.

� This paper is an extended version of [13].



In order to solve the problem, we have to logically and combinationally an-
alyze patterns in sequences by checking the occurrences of local patterns that
consistently result in a decision. For such an analysis, rule generation in rough
set theory [10, 17, 16, 4, 14, 11, 12] provides a data mining algorithm based on the
notions of attribute reduction and reduced decision rules. One of the advantages
of rough set data mining is that it can generate reduced and consistent decision
rules by logically checking all combinations of condition and decision attributes
in an information system. Thus, rough set theory can be used to generate es-
sential attributes through attribute reduction of logical combinations. However,
sequential pattern mining algorithms have not been well studied in the context
of rough set theory. Extending this approach to sequential pattern mining entails
a logical analysis of local patterns in granular computing, which differs from the
frequency analysis of sequential patterns.

In this paper, we propose a sequential pattern mining algorithm using the
rule generation from discernibility in rough set theory. This algorithm computes
subsequences of a fixed size that are regarded as local patterns hidden inside
sequences. A sequential information system consists of the subsequences obtained
from a set of sequences so that we can apply sequential data to the rough set data
mining. The decision rules generated from a sequential information system are
said to be sequential decision rules. In each of the rules, the condition attributes
represent the occurrences of local patterns in a sequence. In order to estimate
the local patterns in the rules, we establish the evaluation of occurrence-based
accuracy and coverage for sequential decision rules. This is because the accuracy
and coverage measures in rough set theory [18, 19, 26, 27, 20] do not evaluate the
occurring sequence patterns in each sequence.

Our algorithm for mining local sequence patterns has the following interesting
features.

– Occurrences of Local Patterns: Given a set of sequences, a sequential
information system is constructed from the attributes that denote the sub-
sequences of a fixed size, where each attribute value represents the number
of occurrences of a local pattern in a sequence.

– Granularities of Sequences: The different sizes of local sequence patterns
determine the diversity of granularities in a sequential information system. In
other words, longer subsequences correspond to smaller granularities because
they contain more information.

– Reduced and Consistent Decision Rules: In rough set theory, attribute
reduction generates reduced decision rules. In addition, the decision rules
are consistent, and hence, they are significantly different from the frequent
association rules in traditional data mining, because logically inconsistent
rules are excluded due to the discernibility of decision classes.

In relation to statistical data mining algorithms, these features are important
in that they allow us to obtain implicitly local patterns, particularly when the
patterns do not appear frequently. This is because each of the minimal subsets
of the condition attributes calculated in rough set theory essentially discerns the
decision classes among sequences without evaluating their frequencies.



This paper is arranged as follows. Section 2 briefly recalls the basic notions of
rough sets. In Section 3, we describe the extension of rough set data mining to se-
quential pattern mining. We formalize a transformation from a set of sequences
into a sequential information system. We then establish the occurrence-based
accuracy and coverage of the sequential decision rules generated from the se-
quential information system. In Section 4, we present our algorithm for mining
local sequence patterns from a set of sequences. The experimental results are
reported in Section 5. Finally, we discuss related work in Section 6 and conclude
this paper in Section 7.

2 Rough Sets

An attribute a is a mapping a : U → Va where U is a non-empty finite set
of objects (called the universe) and Va is the value set of a. An information
system is a pair T = (U,A) of the universe U and a non-empty finite set A of
attributes. Let B be a subset of A. The B-indiscernibility relation is defined by an
equivalence relation IB on U such that IB = {(x, y) ∈ U2 | ∀a ∈ B.a(x) = a(y)}.
The equivalence class of IB for each object x (∈ U) is denoted by [x]B . Let
X be a subset of U . We define the lower and upper approximations of X by
B(X) = {x ∈ U | [x]B ⊆ X} and B(X) = {x ∈ U | [x]B ∩X �= ∅}. A subset B of
A is a reduct of T if IB = IA and there is no subset B′ of B with IB′ = IA (i.e.,
B is a minimal subset of the condition attributes without losing discernibility).

A decision table is an information system T ′ = (U,A ∪ {d}) such that each
a ∈ A is a condition attribute and d �∈ A is a decision attribute. Let Vd be the
value set {d1, . . . , du} of the decision attribute d. For each value di ∈ Vd, we
obtain a decision class Ui = {x ∈ U | d(x) = di} where U = U1 ∪ · · · ∪ U|Vd| and
for every x, y ∈ Ui, d(x) = d(y). The B-positive region of d is defined by PB(d)
= B(U1) ∪ · · · ∪B(U|Vd|). A subset B of A is a relative reduct of T ′ if PB(d) =
PA(d) and there is no subset B′ of B with PB′(d) = PA(d).

We define a formula (a1 = v1)∧ · · ·∧ (an = vn) in T ′ (denoting the condition
of a rule) where aj ∈ A and vj ∈ Vaj (1 ≤ j ≤ n). The semantics of the formula in
T ′ is defined by [[(a1 = v1)∧· · ·∧(an = vn)]]T ′ = {x ∈ U | a1(x) = v1, . . . , an(x) =
vn}. Let ϕ be a formula (a1 = v1) ∧ · · · ∧ (an = vn) in T ′. A decision rule for
T ′ is of the form ϕ → (d = di), and it is true if [[ϕ]]T ′ ⊆ [[(d = di)]]T ′(= Ui).
The accuracy and coverage of a decision rule r of the form ϕ → (d = di) are
respectively defined as follows.

accuracy(T ′, r, Ui) =
|Ui ∩ [[ϕ]]T ′ |

|[[ϕ]]T ′ |
coverage(T ′, r, Ui) =

|Ui ∩ [[ϕ]]T ′ |
|Ui|

In the evaluations, |Ui| is the number of objects in a decision class Ui and |[[ϕ]]T ′ |
is the number of objects in the universe U = U1∪· · ·∪U|Vd| that satisfy condition
ϕ of rule r. Therefore, |Ui∩[[ϕ]]T ′ | is the number of objects satisfying the condition
ϕ restricted to a decision class Ui.



3 Sequential Data in Rough Sets

In this section, using rough set theory, we present a new method for expressing
the local features of sequences in an information system.

3.1 Sequential Information Systems

An itemset ai is a non-empty set of items, and the size of ai is the cardinality of
ai, i.e., |ai|. A sequence s is an ordered list of itemsets 〈a1, a2, . . . , an〉, simply
denoted by a1a2 · · · an. The size of s (denoted ||s||) is the number of elements
of the list a1a2 · · · an, and the length of s is the total number of the sizes |a1|,
|a2|, . . . , |an|. A sequence s1 = a1a2 · · · an is a subsequence of another sequence
s2 = b1b2 · · · bm (denoted s1 � s2), if there are integers i1 < i2 < · · · < in such
that a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin . The empty sequence ε is a subsequence
of any sequence. A sequence s1 is a strict subsequence of another sequence s2
(denoted s1 �st s2) if there exists an integer i such that a1 ⊆ bi, a2 ⊆ bi+1, . . . ,
an ⊆ bi+n−1.

As a practical example, an ordered list of itemsets can be used to represent a
list of sequential actions of an agent where each itemset corresponds to an action,
which consists of a set of operations corresponding to items. Let us consider the
following four sequences:

s1 = aabcac

s2 = bcca

s3 = cba

s4 = aabca

where a = {i1, i2}, b = {i2, i3, i4}, and c = {i2, i3} are itemsets and i1, i2, i3,
and i4 are items. The sequence s1 is the series aabcac of actions of an agent and
the sequence s2 is the series bcca of actions of another agent. In addition, the
sequences s3 and s4 are the series cba and aabca of actions, respectively, of two
other agents.

In order to apply this sequential data to rough set theory, we characterize
the local patterns of sequences in an information system that can be used to
discern the sequences. In our representation of knowledge, the occurrences of
subsequences in each sequence are calculated to express the local features of a
set of sequences by using an information system.

Definition 1 (Sequential Information System). Let Usq = {s1, . . . , sn} be
a set of sequences and Asq be a set of subsequences of sequences s1, . . . , sn in Usq.
A sequential information system is an information system T = (Usq, Asq) where
for each attribute a ∈ Asq (named by a subsequence), a(x) maps the number of
occurrences of the subsequence a in each sequence x ∈ Usq.

We denote the concatenation

n︷ ︸︸ ︷
s · · · s of sequence s by sn (in particular, s0 de-

notes the empty sequence ε). We can precisely define the number n of occurrences



of subsequence s1 in sequence s2 as follows:

Ωs1(s2) = n

if the concatenation sn1 is a subsequence of s2 but the concatenation sn+1
1 is not

a subsequence of s2. For example, Ωac(caac) = 1 and Ωac(abcbacc) = 2, i.e., ac
appears once in the sequence caac and twice in the sequence abcbacc.

Definition 2 (Sequential Decision Table). A sequential decision table is a
decision table T ′ = (Usq, Asq ∪ {d}) such that T = (Usq, Asq) is a sequential
information system and d �∈ Asq is a decision attribute.

In rough set theory, the decision attribute d classifies the objects of Usq (i.e.,
sequences) in the decision table. In other words, we can identify the decision
classes U1, . . . , U|Vd| that divide the sequences of Usq = U1 ∪ · · · ∪ U|Vd| by the
decision attribute.

3.2 Granularities of Sequences

The local size of valuable patterns varies depending on the property of sequential
data in many application domains. To deal with the diversity of sequential data,
we consider the different sizes of subsequences in a sequential information system
that set granularities for the features of sequences in rough set theory. As a result
of this method, the size k subsequences of a sequence have a smaller granularity
than the size k − 1 subsequences of that.

In order to capture local patterns from a sequence s, we define the set of
subsequences of a size occurring in the sequence s as follows.

Definition 3 (Size k Subsequences). The set of size k subsequences of s is
defined by

Subk(s) = {s′ | s′ � s & ||s′|| = k}.
For sequences s1, s2, s3, and s4 shown in Section 3.1, we obtain the following

sets of size 2 subsequences:

Sub2(s1) = {aa, ab, ac, ba, bc, ca, cc}
Sub2(s2) = {ba, bc, ca, cc}
Sub2(s3) = {ba, ca, cb, cc}
Sub2(s4) = {aa, ab, ac, ba, bc, ca, cc}

In Sub2(s1) with s1 = aabcac, subsequence aa consists of the first and second
itemsets in s1; subsequence ab consists of the second and third itemsets in s1. In
a non-trivial case, subsequence cc occurs in all the sequences s1, s2, s3, and s4.
The subsequence cc obviously occurs in s1 and s2 and it is subsumed by cb in s3
and bc in s4, respectively, because c ⊆ b with b = {i2, i3, i4} and c = {i2, i3}. In
this example, we can intuitively interpret the size 2 subsequences as changes from
one action to another when the sequences describe agents’ actions. Therefore,



the size 2 subsequence sets Sub2(s1), . . . , Sub2(s4) indicate the local changes in
actions of the four agents.

Furthermore, local patterns in a sequential information system are analyzed
more strictly as follows. By limiting the definition of subsequences, we obtain
the set of strict subsequences occurring in the sequence s.

Definition 4 (Size k Strict Subsequences). The set of strict size k subse-
quences of s is defined by

Substk (s) = {s′ | s′ �st s & ||s′|| = k}.
For example, we have the following sets of strict size 2 subsequences in the

sequences s1, s2, s3, and s4 (shown in Section 3.1):

Subst2 (s1) = {aa, ab, ac, bc, ca, cc}
Subst2 (s2) = {bc, ca, cc}
Subst2 (s3) = {ba, cb, ca, cc}
Subst2 (s4) = {aa, ab, ac, bc, ca, cc}

In Subst2 (s1) with s1 = aabcac, the local pattern ba in Sub2(s1) is not a strict
subsequence of s1, but it is nevertheless a subsequence of s1. This is because
there is an itemset c between b and a (i.e., bca) in the sequence s1. That is, we
can use Subk to generate lazy local patterns by skipping itemset c in sequence
bca. Similar to the case of size 2 subsequences, strict size 2 subsequence cc occurs
in all the sequences s1, s2, s3, and s4, i.e., cc is a strict subsequence of both s1
and s2 and it is subsumed by cb in s3 and bc in s4.

Another granularity can be analyzed by extracting size 3 subsequences from
the sequences s1, s2, s3, and s4. Intuitively, in the analysis of actions, the size 3
subsequences imply more complex combinations of action changes than the size
2 subsequences. Similar to the above example, the sets of size 3 subsequences
are captured from the sequences s1, s2, s3, and s4 as follows.

Sub3(s1) = {aaa, aab, aac, aba, abc, aca, acc, bac, bca,
bcc, cac, cca, ccc}

Sub3(s2) = {bca, bcc, cca, ccc}
Sub3(s3) = {cba, cca}
Sub3(s4) = {aaa, aab, aac, aba, abc, aca, acc, bca, cca}

The combinations of itemsets occurring in the size 3 subsequences are more
complex (e.g., Sub3(s1) contains 12 local patterns) but those in the strict size 3
subsequences are not very complex, as can be seen in the following:

Subst3 (s1) = {aab, aac, abc, acc, bca, cac, cca}
Subst3 (s2) = {bcc, cca, ccc}
Subst3 (s3) = {cba, cca}
Subst3 (s4) = {aab, aac, abc, acc, bca, cca}



aa ab ac ba bc ca cb cc d

s1 1 1 2 1 1 1 0 1 1

s2 0 0 0 1 1 1 0 1 0

s3 0 0 0 1 0 1 1 1 0

s4 1 1 1 1 1 1 0 1 1

Table 1. Size 2 sequential decision table T ′
1

Let S be a set of sequences. We denote Subk(S) =
⋃

s∈S Subk(s) (resp.
Substk (S) =

⋃
s∈S Substk (s)).

3.3 Transformation from Sequences into an Information System

We define a transformation from a finite set of sequences into a sequential infor-
mation system with respect to size k subsequences as follows.

Definition 5 (Transformation). Let k > 0 be a non-negative integer, and let
S = {s1, . . . , sj} be a finite set of sequences. The size k sequential information
system is defined as a sequential information system T = (Usq, Asq) such that

Usq = S and Asq = Subk(S).

In addition, if Asq is defined by Substk (S), then T is the strict size k sequential
information system.

After a finite set of sequences is transformed into a size k sequential infor-
mation system T = (Usq, Asq), the information system is extended to a size k
sequential decision table T ′ = (Usq, Asq ∪ {d}) by adding decision attribute d.
For each sequential decision table, a decision attribute for sequences has to be
designed on the basis of domain knowledge, i.e., knowledge of human experts.
For example, a domain expert can set a decision attribute for some sequences
of actions or operations in computers, applications, and networks. In a specific
domain, the sequences s1 and s4 result in a success (denoted value 1), but the
sequences s2 and s3 cause a failure (denoted value 0). This setting is modeled by
supplementing the decision attribute d to the information system T = (Usq, Asq)
with d(s1) = d(s4) = 1 and d(s2) = d(s3) = 0. In Table 1, we show a sequential
decision table that is obtained from the transformation from the sequences s1,
s2, s3, and s4 into the size 2 sequential information system T1, and the decision
attribute d. In the table, the attributes are labeled by the size 2 subsequences

aa, ab, ac, ba, bc, ca, cb, and cc

in Sub2(s1) ∪ Sub2(s2) ∪ Sub2(s3) ∪ Sub2(s4). For example, Ωaa(s1) = 1 and
Ωac(s1) = 2 indicate that the local patterns aa and ac occur in s1 once and
twice, respectively, and Ωcb(s1) = 0 indicates that the pattern cb does not occur
in s1.



aa ab ac ba bc ca cb cc d

s1 1 1 1 0 1 1 0 1 1

s2 0 0 0 0 1 1 0 1 0

s3 0 0 0 1 0 1 1 1 0

s4 1 1 1 0 1 1 0 1 1

Table 2. Strict size 2 sequential decision table T ′
2

aaa aab aac aba abc aca acc bac bca bcc cac cba cca ccc d

s1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

s2 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0

s3 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

s4 1 1 1 1 1 1 1 0 1 0 0 0 1 0 1

Table 3. Size 3 sequential decision table T ′
3

Moreover, Table 2 shows a sequential decision table of a strict size 2 sequential
information system transformed from the sequences s1, s2, s3, and s4 along with
the decision attribute d. Notice that the size 2 subsequences in Table 1 contain
some discontinuous ordered patterns but the strict size 2 subsequences in Table 2
do not include them. For example, Ωba(s1) = 0 means that the strict pattern
ba does not occur in sequence s1, but the lazy pattern ba does occur in the
sequence.

From the sets of subsequences in Sub3(s1), Sub3(s2), Sub3(s3), and Sub3(s4),
the size 3 sequential and strict size 3 sequential information systems T1 and T2

in Tables 3 and 4, respectively, are transformed from the sequences s1, s2, s3,
and s4. Consequently, the number of subsequences increases in comparison with
the size 2 sequential information systems.

3.4 Accuracy and Coverage

Using the transformation discussed in Section 3.3, we can obtain a size k sequen-
tial information system Tk = (Usq, Asq) from a set of sequences. The sequential
decision table T ′

k = (Usq, Asq∪{d}) is constructed by adding a decision attribute
d for the sequences in Usq to the information system Tk. This decision table is
used to generate decision rules for T ′

k of the form:

(a1 = n1) ∧ · · · ∧ (an = nn) ⇒ (d = v)

where each ai denotes a subsequence and each ni expresses the number of oc-
currences of subsequence ai by a non-negative integer. Let T ′ be a sequential
decision table. A decision rule for T ′ can be called a sequential decision rule if
there is an attribute condition ai = ni in the rule such that ni �= 0.

Here, we discuss the interpretation of such a sequential decision rule. From
the sequential decision table T ′ = (Usq, Asq ∪ {d}), we can generate sequential



aab aac abc acc bca bcc cac cba cca ccc d

s1 1 1 1 1 1 0 1 0 1 0 1

s2 0 0 0 0 0 1 0 0 1 1 0

s3 0 0 0 0 0 0 0 1 1 0 0

s4 1 1 1 1 1 0 0 0 1 0 1

Table 4. Strict size 3 sequential decision table T ′
4

decision rules as follows:

(cca = 1) ∧ (acc = 1) ⇒ (d = 1)

This rule implies that if a sequence contains the local patterns cca and acc, then
it results in d = 1. However, the following decision rule is not valuable for our
purpose.

(cba = 0) ∧ (bcc = 0) ⇒ (d = 1)

This is because the condition attributes indicate that no occurrence of the local
patterns cba and bcc in a sequence results in the derivation of the decision at-
tribute d = 1. In order to analyze agents’ behaviors, some patterns that actually
occur have to be mined from the sequential data. However, we do not exclude de-
cision rules if they indicate the occurrence and non-occurrence of local patterns,
as shown below:

(bca = 1) ∧ (ccc = 0) ⇒ (d = 1)

This rule means that the occurrence of local pattern bca results in the decision
attribute d = 1 as long as the local pattern ccc does not appear.

We define an evaluation function for sequential decision rules that determines
whether each size k sequential information system is well represented when it
comes to classifying the decision class. To measure varieties of local sequence
patterns for each sequence, we calculate the sum of numbers of the occurring
patterns as follows.

Definition 6 (Sum of Occurring Local Patterns). Let S be a set of se-
quences and let A′ ⊆ Asq. The sum of numbers of occurring local patterns o(s,A′)
in each sequence s ∈ S is defined by

o(s,A′) =
∑
a∈A′

sign(a(s))

where the sign function sign(n) is defined by sign(n) = 1 if n > 0 and sign(n) =
0 if n = 0.

We extend the function o(s,A′) to a set of sequences S by defining o(S,A′) =∑
s∈S o(s,A′).

Definition 7 (Occurrence-Based Accuracy and Coverage). Let Si be a
decision class in S, let s ∈ Si, and let r be a sequential decision rule for



a sequential decision table T ′. The occurrence-based accuracy o accuracy and
occurrence-based coverage o coverage of sequential decision rule r of the form
ϕ → (d = d(s)) with d(s) ∈ Vd are defined as follows.

o accuracy(T ′, r, Si) =
o(Si ∩ [[ϕ]]T ′ , Aϕ)

o([[ϕ]]T ′ , Aϕ)

o coverage(T ′, r, Si) =
o(Si ∩ [[ϕ]]T ′ , Aϕ)

o(Si, Aϕ)

where Aϕ = {a ∈ A | a = v occurs in ϕ}.
The occurrence-based accuracy and coverage are measured by using the func-
tion o(s,A′) in order to delete meaningless decision rules for sequential pattern
mining.

We can define another measurement of the occurrence-based coverage by
replacing o(Si, Aϕ) with |Si| · |Aϕ|.
Definition 8 (Variant of Occurrence-Based Coverage). Let Si be a deci-
sion class in S, let s ∈ Si, and let r be a sequential decision rule for a sequential
decision table T ′. A variant vo coverage of the occurrence-based coverage of se-
quential decision rule r of the form ϕ → (d = d(s)) with d(s) ∈ Vd is defined as
follows.

vo coverage(T ′, r, Si) =
o(Si ∩ [[ϕ]]T ′ , Aϕ)

|Si| · |Aϕ|
where Aϕ = {a ∈ A | a = v occurs in ϕ}.
The occurrence-based coverage o coverage(T ′, r, Si) implies the coverage of rule
r in o(Si, Aϕ) where o(Si, Aϕ) is the number of occurred subsequences (i.e., the
number of condition attributes with positive values) in all objects in decision
class Si. In contrast, the variant vo coverage(T ′, r, Si) implies the occurrence-
based coverage of rule r in the product of |Si| and |Aϕ| where |Si| is the number
of all objects in decision class Si and |Aϕ| is the number of occurred and non-
occurred subsequences (i.e., the number of condition attributes) in ϕ.

4 Sequential Pattern Mining Algorithm

This section describes a sequential pattern mining algorithm sq mining(S,m, d, b)
for a set of sequences S, a maximum subsequence size m, a decision attribute d,
and a bool value b. The maximum subsequence size m is given by a user-specified
maximum-size of local patterns. The decision attribute d is defined as a function
d : S → Vd where for every sequence s ∈ S, a decision value is set from d(s) ∈ Vd.
The decision attribute can be obtained from several knowledge representations,
e.g., the identities of agents, positive and negative values for sequences, etc.

In Fig.1, we show a sequential data mining algorithm that returns a list
of sets of (sequential) decision rules R2, . . . , Rm (from size 2 to m), such that



Algorithm sq mining

input: set of sequences S = {s1, . . . , sn},
maximum subsequence size m,
decision attribute d, bool b

output: list of sets of decision rules (R2, . . . , Rm)
1: begin
2: for k = 2 to m do
3: Rk = ∅;
4: Ak = subsq(s1, k, b) ∪ · · · ∪ subsq(sn, k, b);
5: for s ∈ S and a ∈ Ak do
6: a(s) = subsq count(s, a, b)
7: rof
8: T ′

k = (S,Ak ∪ {d});
9: R = reducts(T ′

k);
10: for B ∈ R do
11: for i = 1 to |Vd| do
12: for s ∈ Si do
13: Rk = Rk ∪ {rule(s,B, T ′

k)};
14: rof
15: rof
16: rof
17: rof
18: return (R2, . . . , Rm);
19: end;

Fig. 1. Sequential pattern mining algorithm.

the condition attributes in each rule indicate the occurrences of subsequences.
Our algorithm can generate basic decision rules for all the reducts in a decision
table as described in [4]. That is, the condition attributes in each rule are given
by a minimal subset of the condition attributes without losing discernibility in
the decision table. From the rules, consistent decision rules can be selected by
deciding whether the occurrence-based accuracy is 1.0 or not. This algorithm is
outlined as follows.

1. Transformation: For each size k from 2 to m, a set of sequences is trans-
formed into size k (resp. strict size k) sequential information systems if b = 0
(resp. b = 1) by calling the following subroutines.
(a) Subsequence generation: The set of size k subsequences Sub(S) or

strict subsequences Subst(S) is generated by checking all the partial
patterns of given sequences. These subsequences are used to represent
attribute names in the sequential information system.

(b) Subsequence counting: The occurrences of subsequences are exhaus-
tively counted to set the values of attributes in the sequential information
system.

2. Rule generation: By using a rough set rule generation method, reduced
decision rules are generated from the sequential decision table where con-



dition attributes are represented by the occurrences of subsequences of size
k.

4.1 Transformation

In lines 2 - 17 of the mining algorithm sq mining, for each size k from 2 to m,
the set of size k subsequences Sub(S) or strict size k subsequences Subst(S) is
extracted from sequences in order to construct the size k or the strict size k
sequential information system. In line 4, all the subsequences of size k in S are
generated as attribute names, which are stored in variable Ak = subsq(s1, k, b)∪
· · · ∪ subsq(sn, k, b).

As shown in Fig.2, the subsequence generation algorithm subsq(s, k, b) for se-
quence s, subsequence size k, and bool value b. This algorithm computes Subk(s)
if b = 0 and Substk (s) if b = 1. In subsq(s, k, b), we use some operations for se-
quences. Let s = a1a2 · · · an be a sequence. Then, start(s) and other(s) return
the first itemset a1 and the sequence of the other itemsets a2 · · · an. Let s1 and
s2 be two sequences. Then, concat(s1, s2) is the concatenation of s1 and s2, i.e.,
concat(s1, s2) = s1s2. In lines 11 - 13 of algorithm subsq(s, k, b), for every subset
x of the first itemset start(s), this algorithm is recursively called in order to
generate the set of subsequences subsq(concat(x, other(s)). This is because the
subsequences of s contain subsets x of the itemsets of s, i.e., the sequence ab is
a subsequence of the sequence ac if b ⊆ c where a, b, and c are itemsets.

After generating the subsequences, in lines 5 - 7 of the mining algorithm,
it calculates the numbers of occurrences a(s) of local patterns denoted by the
attributes a in Ak and the sequences s in S, which become their attribute values
in a sequential decision table T ′

k = (S,Ak ∪ {d}) (in line 8). As a subroutine,
the subsequence counting algorithm subsq count(s1, s2, b) shown in Fig.3 counts
the number of occurrences of subsequence pattern s2 in sequence s1 when two
sequences s1 and s2 and a bool value b are used as input.

4.2 Rule Generation

In line 9, the set R = reducts(T ′
k) [16] of all the relative reducts of size k

sequential decision table T ′
k = (Usq, Asq ∪ {d}) is computed by the standard

reduct set computation in [4]. Each B ∈ R is a minimal subset of the condition
attributes that are the attributes a1, . . . , al expressed by subsequences. This
means that the subsequences denoted by a1, . . . , al are essential to discern the
decision classes S1, . . . , S|Vd|. In lines 10 - 16, the reduced decision rules generated
by rule(s,B, T ′

k) are added to the set Rk of decision rules for size k for each
relative reduct B ∈ R where i is a natural number from 1 to |Vd| and Si is a
decision class of S. That is, the relative reduct B supplies a minimal subset of
the condition attributes of sequential decision table T ′

k.

4.3 Computation

The complexity of the sequential pattern mining algorithm with rules generation
is exponential time in the worst case. This computational property is caused



Algorithm subsq

input: sequence s, subsequence size k, bool b
output: a set of sequences S
1: begin
2: Δ = ∅;
3: if size(s) < k then return ∅
4: else if k = 0 then return {ε}
5: else if b = 0 then
6: Δ = {concat(start(s), s′) | s′ ∈ subsq(other(s), k − 1, 0)}
7: ∪subsq(other(s), k, 0);
8: else if b = 1 then
9: Δ = {concat(start(s), s′) | s′ ∈ subsq(other(s) ↑ k − 1, k − 1, 1)}
10: ∪subsq(other(s), k, 1)
11: for x ⊆ start(s) do
12: Δ = Δ ∪ subsq(concat(x, other(s)), k, b);
13: rof
14: return Δ;
15: end;

Fig. 2. Subsequence generation algorithm.

from the standard reduct set computation reducts(T ′
k) and the subsequence

generation subsq(s, k, b) (in addition, the complexity of subsq count depends
on subsq). In the following, we show that the complexity of the subsequence
generation subsq(s, k, b) is reduced if every itemset is independent from each
other. 3

Proposition 1. Let s be a sequence, n be the size of s, and k be a subsequence
size. If every itemset is independent from each other itemset in s, the following
time complexity holds:

1. The algorithm subsq(s, k, 0) computes the set of size k subsequences of s in
2n+1 − 1 steps.

2. The algorithm subsq(s, k, 1) computes the set of strict size k subsequences of
s in n2 steps.

To compute the set of size k subsequences of a sequence s, the algorithm
subsq(s, k, 0) recursively calls subsq(other(s), k − 1, 0) and subsq(other(s), k, 0)
(in Lines 6 and 7) but does not subsq(concat(x, other(s)), k, 0) (in Line 12).
We can construct a binary tree of s such that the root node is labeled with
subsq(s, k, 0) and each non-leaf node labeled with subsq(si, k, 0) has two children
labeled with two recursive calls subsq(other(si), k−1, 0) and subsq(other(si), k, 0).
So, the height of a binary tree of s is limited to the size n of s because other(si)
in both recursive calls makes the sizes of inputed sequences decrease in each call.
In the worst case, the number of all the nodes of a binary tree of s is bounded by

3 An itemset a is independent from another itemset b if a �⊆ b and b �⊆ a.



Algorithm subsq count

input: sequence s1, sequence s2, bool b
output: number of subsequences ct
1: begin
2: π = s2; ct = 0;
3: while π ∈ subsq(s1, |π|, b) do
4: π = concat(π, s2);
5: ct = ct + 1;
6: elihw
7: return ct;
8: end;

Fig. 3. Subsequence counting algorithm.

2n+1−1. Moreover, the complexity of the the algorithm subsq(s, k, 1) is reduced
into polynomial time if the set of strict size k subsequences of s is computed.
It recursively calls subsq(other(s) ↑ k − 1, k − 1, 1) and subsq(other(s), k, 0) (in
Lines 9 and 10) but does not subsq(concat(x, other(s)), k, 1) (in Line 12) where
other(s) ↑ k−1 is the sequence of the first k−1 itemsets of other(s). As a result,
the number of recursive calls is limited to n × k. So, we have n · k ≤ n2 since
k ≤ n.

The complexity of the subsequence generation can be reduced to polynomial
time if every itemset is independent from each other and the set of strict size k
subsequences is generated. Unfortunately, our reduct set computation is still not
optimized. In order to reduce the total complexity of the sequential pattern min-
ing algorithm, we will have to combine the above restriction with an optimized
algorithm for the reduct set computation in a future work.

5 Experimental Results

We implemented the sequential pattern mining algorithm sq mining in Java. In
order to evaluate this mining algorithm, we discuss the sequential decision rules
that were generated from the four sequences s1, s2, s3, and s4 in Section 3.1.
Consider the set of sequences S = {s1, s2, s3, s4}, the maximum subsequence size
m = 3, and the decision attributes d(s1) = d(s4) = 1 and d(s2) = d(s3) = 0.
First, the sequential pattern mining algorithm sq mining(S, k, d) constructs the
sequential decision tables T ′

1, T
′
2, T

′
3, and T ′

4 in Tables 1, 2, 3, and 4 from the
sequences s1, s2, s3, and s4 in S. Second, it generates the sequential decision rules
from the sequential information systems. All the computations are performed in
3.572 s on two Intel CPUs of 2.66 GHz, 4G memory, running Windows Vista.

Tables 5 and 6 show the sequential decision rules for size 2 and strict size 2
subsequences and the occurrence-based coverage of the rules, respectively. From
the outcomes of applying the algorithm, we obtain the four and three sequential
decision rules with the decision d = 1 for size 2 and strict size 2 subsequences,
respectively, but do not find any sequential decision rule with decision d = 0.



Table 5. Occurrence-based coverage of sequential decision rules for size 2

decision rules for size 2 o coverage vo coverage

1: (aa = 1) ⇒ (d = 1) 1.0 1.0
2: (ab = 1) ⇒ (d = 1) 1.0 1.0
3: (ac = 2) ⇒ (d = 1) 0.5 0.5
4: (ac = 1) ⇒ (d = 1) 0.5 0.5

Table 6. Occurrence-based coverage of sequential decision rules for strict size 2

decision rules for strict size 2 o coverage vo coverage

1: (ac = 1) ⇒ (d = 1) 1.0 1.0
2: (aa = 1) ⇒ (d = 1) 1.0 1.0
3: (ab = 1) ⇒ (d = 1) 1.0 1.0

We notice that the two rules (aa = 1) ⇒ (d = 1) and (ab = 1) ⇒ (d = 1)
with the occurrence-based coverage o coverage = 1.0 (and vo coverage = 1.0)
are valuable because they are common rules for both size 2 and strict size 2
subsequences. Hence, the two rules can be combined as having the local patterns
to characterize the decision d = 1 as follows:

(aa = 1) ∨ (ab = 1) ⇒ (d = 1)

where aa and ab are size 2 or strict size 2 subsequences. This combined rule
enables us to predict whether a newly input sequence leads to the decision d = 0
or d = 1. If the rule does not hold for the new sequence, then we can further use
the sequential decision rule for strict size 2 subsequences with o coverage = 1.0
(and vo coverage = 1.0) (in Table 6):

(ac = 1) ⇒ (d = 1)

where ac is a strict size 2 subsequence.
Tables 7 and 8 list the sequential decision rules for size 3 and strict size 3

subsequences and the occurrence-based coverages of the rules, respectively. Our
mining algorithm generates 31 and 9 sequential decision rules with the decision
d = 1 or d = 0 for size 2 and strict size 2 subsequences, respectively. It should be
said that the six and four sequential decision rules (Nos.1 - 5, 7 in Table 7 and
Nos.1 - 3, 5 in Table 8) are specific cases of the two rules (aa = 1) ⇒ (d = 1)
and (ab = 1) ⇒ (d = 1) for size 2 and strict size 2 subsequences when selecting
the rules with o coverage = 1.0 (and vo coverage = 1.0). This means that these
10 rules can be represented by the combined rule (aa = 1) ∨ (ab = 1) ⇒ (d = 1)
where aa and ab are size 2 or strict size 2 subsequences. As another decision rule
for size 3 and strict size 3 subsequences, the following rule has o coverage = 1.0
(and vo coverage = 1.0):

(acc = 1) ⇒ (d = 1)

where acc is a size 3 or strict size 3 subsequence. In addition, we obtain the
following decision rule with o coverage = 1.0 (and vo coverage = 1.0), but this



Table 7. Occurrence-based coverage of sequential decision rules for size 3

decision rules for size 3 o coverage vo coverage

1: (aba = 1) ⇒ (d = 1) 1.0 1.0
2: (aab = 1) ⇒ (d = 1) 1.0 1.0
3: (aac = 1) ⇒ (d = 1) 1.0 1.0
4: (abc = 1) ⇒ (d = 1) 1.0 1.0
5: (aaa = 1) ⇒ (d = 1) 1.0 1.0
6: (acc = 1) ⇒ (d = 1) 1.0 1.0
7: (aca = 1) ⇒ (d = 1) 1.0 1.0
8: (cba = 0) ∧ (ccc = 1) ∧ (bac = 1) ⇒ (d = 1) 1.0 0.333
9: (cac = 1) ∧ (cba = 0) ∧ (bcc = 1) ⇒ (d = 1) 1.0 0.333
10: (bcc = 1) ∧ (bac = 1) ∧ (bca = 1) ⇒ (d = 1) 0.75 0.5
11: (cac = 1) ∧ (cba = 0) ∧ (ccc = 1) ⇒ (d = 1) 1.0 0.333
12: (cac = 1) ∧ (bcc = 1) ∧ (bca = 1) ⇒ (d = 1) 0.75 0.5
13: (ccc = 1) ∧ (bac = 1) ∧ (bca = 1) ⇒ (d = 1) 0.75 0.5
14: (cac = 1) ∧ (ccc = 1) ∧ (bca = 1) ⇒ (d = 1) 0.75 0.5
15: (cba = 0) ∧ (bcc = 1) ∧ (bac = 1) ⇒ (d = 1) 1.0 0.333
16: (bcc = 0) ∧ (bac = 0) ∧ (bca = 1) ⇒ (d = 1) 0.25 0.166
17: (cac = 0) ∧ (bcc = 0) ∧ (bca = 1) ⇒ (d = 1) 0.25 0.166
18: (cac = 0) ∧ (ccc = 0) ∧ (bca = 1) ⇒ (d = 1) 0.25 0.166
19: (ccc = 0) ∧ (bac = 0) ∧ (bca = 1) ⇒ (d = 1) 0.25 0.166
20: (cba = 0) ∧ (ccc = 1) ∧ (bac = 0) ⇒ (d = 0) 0.5 0.166
21: (cac = 0) ∧ (cba = 0) ∧ (bcc = 1) ⇒ (d = 0) 0.5 0.166
22: (bcc = 1) ∧ (bac = 0) ∧ (bca = 1) ⇒ (d = 0) 1.0 0.333
23: (cac = 0) ∧ (cba = 0) ∧ (ccc = 1) ⇒ (d = 0) 0.5 0.166
24: (cac = 0) ∧ (bcc = 1) ∧ (bca = 1) ⇒ (d = 0) 1.0 0.333
25: (ccc = 1) ∧ (bac = 0) ∧ (bca = 1) ⇒ (d = 0) 1.0 0.333
26: (cac = 0) ∧ (ccc = 1) ∧ (bca = 1) ⇒ (d = 0) 1.0 0.333
27: (cba = 0) ∧ (bcc = 1) ∧ (bac = 0) ⇒ (d = 0) 0.5 0.166
28: (cba = 1) ∧ (ccc = 0) ∧ (bac = 0) ⇒ (d = 0) 0.5 0.166
29: (cac = 0) ∧ (cba = 1) ∧ (bcc = 0) ⇒ (d = 0) 0.5 0.166
30: (cac = 0) ∧ (cba = 1) ∧ (ccc = 0) ⇒ (d = 0) 0.5 0.166
31: (cba = 1) ∧ (bcc = 0) ∧ (bac = 0) ⇒ (d = 0) 0.5 0.166

Table 8. Occurrence-based coverage of sequential decision rules for strict size 3

decision rules for strict size 3 o coverage vo coverage

1: (aab = 1) ⇒ (d = 1) 1.0 1.0
2: (aac = 1) ⇒ (d = 1) 1.0 1.0
3: (abc = 1) ⇒ (d = 1) 1.0 1.0
4: (bca = 1) ⇒ (d = 1) 1.0 1.0
5: (acc = 1) ⇒ (d = 1) 1.0 1.0
6: (cba = 0) ∧ (bcc = 1) ⇒ (d = 0) 0.25 0.5
7: (cba = 0) ∧ (ccc = 1) ⇒ (d = 0) 0.25 0.5
8: (cba = 1) ∧ (bcc = 0) ⇒ (d = 0) 0.25 0.5
9: (cba = 1) ∧ (ccc = 0) ⇒ (d = 0) 0.25 0.5



is only for strict size 3 subsequences:

(bca = 1) ⇒ (d = 1)

where acc is a strict size 3 subsequence.
In decision rules Nos.8 - 31 of Tables 7, we can see that o coverage and

vo coverage have different values, i.e., vo coverage returns lower values than
o coverage. For example, decision rule No.7 has o coverage = 1.0 and vo coverage =
1.0 but decision rule No.8 has o coverage = 0.333 and vo coverage = 1.0. The
variant of occurrence-based coverage vo coverage derives some different evalua-
tion results for the rules. In other words, decision rule No.8 cover all the occurred
subsequences but does not cover all the occurred and non-occurred subsequences
in the two inputed sequences.

6 Related Work

Many algorithms have been developed for sequential pattern mining in the area
of database and knowledge discovery. As the first approach to the sequential pat-
tern, Agrawal and Srikant [1] proposed apriori-based algorithms such as Aprio-
riAll, AprioriSome, DynamicSome, and GSP (Generalized Sequential Pattern).

Following a similar approach, Pei et al. [22] provided a more efficient algo-
rithm by using projections based on growing frequent prefixes, which is called
PrefixSpan (Prefix-projected Sequential Pattern Mining). Similar to PrefixSpan,
Ayres et al. [2] developed SPAM (Sequential Pattern Mining) with a pruning
method using a bitmap representation to store each sequence. Zaki [32] pre-
sented the algorithm SPADE (Sequential Pattern Discovery using Equivalence
classes) using a vertical id-list format method such that frequent sequences are
expressed by a list of pairs of itemsets and item identifiers. Garofalakis et al. [6]
proposed a sequential pattern mining method of user-specified regular expres-
sion constraints, whose algorithm is called SPIRIT (Sequential Pattern mIning
with Regular expressIon consTraints). Furthermore, in order to generate more
compact frequent patterns, the mining of closed sequential patterns has been
studied with the algorithms CloSpan [30], BIDE [28], and IMCS [5].

Standard sequential pattern mining does not address partial patterns in
sequence databases. To our knowledge, periodic pattern mining in temporal
databases is most closely related to our proposed local pattern mining prob-
lem in rough set theory. In studying sequential pattern mining from temporal
databases, the goal of looking at periodic pattern mining problems is to find
frequent partial patterns in the period segments of a sequence. Han et al. [7] de-
signed an Apriori-like algorithm to efficiently mine partial periodic patterns in
time series databases; however, the patterns identified are synchronous in time
series data. To enable more flexible periodic pattern mining, Yang at al. [31]
addressed the problem of asynchronous periodic pattern mining by searching for
all of the periodic patterns whose positions may be shifted in time series data.
In this approach, the number of occurrences of each pattern is counted within a



user-specified maximum number of disturbances between segments of the time
series data.

Our proposed method of pattern mining as well as periodic pattern mining
can discover partial patterns; however, we do not set segments of a sequence
because the distance between itemsets is not important when action sequences
are analyzed. For example, the partial pattern ab of the two actions a and b
is discovered from the two action sequences accb and abcd, which the periodic
pattern mining algorithm cannot find. In addition, our problem focuses on the
discernibility of local patterns between sequences, while the periodic pattern
mining discovers patterns that repeat themselves in sequences.

There are many discussions about accuracy and coverage measures of deci-
sion rules. Pawlak [18, 19] discussed these measures from the viewpoint of Bayes’
theorem. Tsumoto [26, 27] also discussed theoretical characteristics of the accu-
racy and coverage measures in rough set theory. From the viewpoint of attribute
dependency, Pawlak [20] and Pawlak and Skowron [21] discussed the degree
of attribute dependency between condition and decision attributes using posi-
tive regions of decision classes. Yamaguchi [29] pointed out technical problems
in Pawlak’s attribute dependency model and proposed a new attribute depen-
dency measure using the discernibility matrix [23] of decision table proposed by
Skowron and Rauszer. Moreover, Holeňa [9] discussed generalization of evalua-
tion criteria of individual rules to whole sets of rules extracted from data. These
accuracy and coverage measures of decision rules in rough set theory are based on
semantics of decision rules. However, our proposed accuracy and coverage mea-
sures for sequential decision rules are based on the occurrence of subsequences
in sequential decision rules. That is, varieties of local sequence patterns occur-
ring in each sequence are measured by calculating the sum of numbers of the
occurring patterns. Importantly, if every pattern in a sequential decision rule
indicates no occurrence (e.g., (cba = 0) ∧ (bcc = 0) ⇒ (d = 1)), it is excluded in
our accuracy and coverage measures for sequential decision rules.

In the area of rough set theory, there are a few studies that concern with
sequential pattern mining. Skowron and Synak [24, 25] and Synak et al. [15]
proposed spatio-temporal approximate reasoning and production rules based
on hierarchical information maps. In particular, Bazan [3] introduced ideas of
temporal concepts defined on time windows and temporal patterns. Tempo-
ral concepts are granules of time points with some meanings that are specified
by human experts. He proposed temporal information systems that describe se-
quences of time points using time windows, while sequential information systems
we proposed in this paper describe sequences of items. Hirano and Tsumoto [8]
presented a method for finding patterns from spatio-temporal data using rough
set-based clustering. This approach can group sequences from a single spatio-
temporal information system wherein data are associated with time and spatial
positions.



7 Conclusion and Future Work

We have proposed an alternative method for mining sequential patterns for se-
quential data using rough set theory. In our method, we represent the local
features of sequences by using a sequential information system where attributes
correspond to the occurrence of size k subsequences as local patterns. The pro-
posed mining algorithm computes sequential decision rules according to the size
of subsequences by changing the size from 2 to a maximal number in order to
check different granulates for sequential data. We evaluate the occurrence-based
accuracy and coverage of the sequential decision rules so that we can discover
local patterns of sequences that result in a decision.

We plan to develop a sequential pattern mining algorithm for sequential data
with time stamps. Such sequential data is more complicated to mine because we
have to analyze the timing of data in addition to the order of data. For example,
with the same two sequences ab and ab, the temporal gaps between a and b may
be different in the time stamps of a and b.
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