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Abstract

Integrating ontologies and rules on the Semantic Web enables software agents to in-
teroperate between them; however, this leads to two problems. First, reasoning services
in SWRL (a combination of OWL and RuleML) are not decidable. Second, no studies
have focused on distributed reasoning services for integrating ontologies and rules in
multiple knowledge bases. In order to address these problems, we consider distributed
reasoning services for ontologies and rules with decidable and effective computation.
In this paper, we describe multiple order-sorted logic programming that transfers rigid
properties from knowledge bases. Our order-sorted logic contains types (rigid sorts),
non-rigid sorts, and unary predicates that distinctly express essential sorts, non-essential
sorts, and non-sortal properties. We formalize the order-sorted Horn-clause calculus for
such expressions in a single knowledge base. This calculus is extended by embedding
rigid-property derivation for multiple knowledge bases, each of which can transfer rigid-
property information from other knowledge bases. In order to enable the reasoning to be
effective and decidable, we design a query-answering system that combines order-sorted
linear resolution and rigid-property resolution as top-down algorithms.

keywords: distributed reasoning, ontologies and rules, order-sorted logic, rigidity, linear
resolution system

1 Introduction

Ontologies and rules play an important role in the Semantic Web; they ensure that infor-
mation available on the World Wide Web is machine-readable. Markup languages such as
RDF (Resource Description Framework [33]), OWL (Web Ontology Language [41]), and
RuleML (Rule Markup Language [1]) have been developed to model ontologies and rules on
the Semantic Web. Description Logics [5] and DATALOG provide formal semantics and de-
cidable reasoning services for OWL and RuleML. In particular, SWRL (Semantic Web Rule

1This paper is a significantly extended version of [29].
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Figure 1: Ontological property classification

Language [26]), a combination of OWL and RuleML has been proposed to enable software
agents to interoperate between ontologies and rules. However, because of the expressive
power of SWRL, its reasoning services tend to become undecidable, as shown by Horrocks
and Patel-Schneider [25].

In the Semantic Web context, knowledge bases consisting of ontologies and rules are
widely distributed across multiple sites, contexts, and domains. To address distributed
ontologies, C-OWL (Context OWL [8]) is used; C-OWL localizes ontologies and allows ex-
plicit mappings between two ontologies. However, to the best of our knowledge, distributed
reasoning services for integrating ontologies and rules have not been developed, although
software agents have their own facts and rules in knowledge bases. To address these prob-
lems, it is necessary to study distributed reasoning services for ontologies and rules to achieve
decidable reasoning through effective computation. In other words, decidability must be re-
tained even if reasoning for integrated ontologies and rules is further extended by distributed
reasoning services. This is because a combination of different reasoning services often gives
rise to undecidability or difficulties similar to those observed when using SWRL.

As an alternative, order-sorted logic [39, 12, 53, 54, 3, 31, 46], which is an extension of
first-order predicate logic, involves many sorts and their hierarchy (called sort hierarchy).
Order-sorted logic has three advantages: (i) reduction in search space through restriction
on the domains and ranges of functions, predicates, and variables [51, 52, 53], (ii) structural
knowledge representation by means of partially ordered sorts [13], and (iii) detection of sort
errors in well-sorted formulas [40]. General logical languages represent all formulas, even if
some of them contain expressions not relevant to ontology and knowledge representation.
We believe that well-sorted formulas based on formal ontology ensure that knowledge bases
are reliable similar to type-checked programs.

In formal ontology, entities are essentially classified into properties, events, processes,
objects, and parts; entity relationships are also formally defined (parthood, dependence,
connection, etc.) [7, 45, 44]. Upper ontologies that classify properties on the basis of sortal-
ity, rigidity, and identity have been developed by Guarino and Welty [22]. In Figure 1 [20],
properties are subdivided into two categories: sortal and non-sortal [48, 37]. Sortal proper-
ties are further subdivided into essential and non-essential properties2. Essential properties
are sortal and rigid. Rigidity implies that if an entity has an essential property, it must
have that property in any possible world. For example, if John has the essential property

2Guarino and Welty called them substantial properties and non-substantial properties [21]; we use essential
instead of substantial in order to avoid evoking the property possessed by substances.
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Table 1: An overview of our algorithms

bottom-up algorithm top-down algorithm
single knowledge base sorted Horn clause calculus linear resolution
multiple knowledge bases rigid-property derivation rigid-property resolution
decidable strategy for query-answering of
multiple knowledge bases rigid-property resolution

person, he is always a person. Therefore, every individual with the property person contin-
ues to have the essential property. On the other hand, non-essential properties are sortal
and non-rigid. Thus, if an entity has a non-essential property, it may not have the property
at certain times or in certain situations. For example, if John has the non-essential property
student, he may cease to be a student at any time in the future even if he is a student at
present; i.e., the non-essential property can be regarded as the role of an individual. Such
property classifications [10, 30, 18] take into account the differences between sorts and unary
predicates in logic. The rigidity of essential and non-essential properties can be interpreted
in terms of possible worlds, i.e., a property is characterized by whether or not it holds in
a possible world. In this context, we can model properties for different knowledge bases.
If a knowledge base is updated, another property model can exist at that given point of
time. Moreover, if two software agents possess different knowledge bases through their in-
teroperation between ontologies and rules, there can be two property models for different
beliefs.

In this study, we propose a framework for multiple order-sorted logic programming where
a sort hierarchy corresponds to an ontology, and we use property classification (as in formal
ontology) to distinguish rigid properties among knowledge bases. We refine the syntax and
semantics of order-sorted logic by combining it with the notions of essential sorts, non-
essential sorts, and non-sortal properties [21]. We describe the order-sorted Horn-clause
calculus and a linear resolution system for such properties in a single knowledge base. For
multiple knowledge bases, each knowledge base can extract rigid-property information from
other knowledge bases; this phenomenon is called rigid property derivation.

Table 1 lists two reasons for the development of the Horn-clause calculus and the lin-
ear resolution system. First, we need to design both bottom-up and top-down algorithms
because each has a distinct advantage. The Horn-clause calculus follows the bottom-up
algorithm, which is easy to design and implement because it uses intuitive inference rules
without unification. However, it is not efficient because the truth of a goal is verified by de-
riving all the ground formulas for the worst case. Second, we prove the completeness of the
linear resolution system on the basis of the completeness of the bottom-up algorithm. The
Horn-clause calculus easily generates a canonical model that proves its completeness; that
is, all derivable formulas correspond to the model. However, the linear resolution system
does not easily generate a canonical model because the resolution steps skip some reasoning
redundancies through unification of terms, i.e., all the ground formulas are not necessary as
long as a goal is derived. As a result, the linear resolution system is more effective than the
Horn-clause calculus.

For the same reasons, a rigid-property resolution system is designed as an effective top-

3



animal

birdperson

womanfather
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down algorithm; this algorithm enables rigid-property derivation for multiple knowledge
bases. To implement the algorithm on a computer, we design a query-answering algorithm
that uses a decidable strategy. This algorithm terminates under SLD-resolution (selection-
rule driven linear resolution for definite clauses) when the Horn clauses are function-free
(although they can be recursive3).

This paper is organized as follows. In Section 2, we list the examples that motivated
us to present the syntax and semantics of refined order-sorted logic and reasoning services
among multiple knowledge bases. In Section 3, we formalize order-sorted logic with types,
non-rigid sorts, and sort predicates. In Section 4, we describe the development of the Horn-
clause calculus, which we extend using sorted and unsorted substitutions and inference
rules for sort predicates. We then present a system for the derivation of rigid properties for
multiple knowledge bases. In Section 5, we describe a decidable query-answering system that
incorporates the resolution systems of order-sorted reasoning and rigid-property derivation
in multiple knowledge bases. In Section 6, we discuss related research and the contributions
of our study to the Semantic Web. Finally, we conclude with a short summary and our
future prospects in Section 7.

2 Motivating Examples

2.1 Rigidity of Types, Sorts, and Unary Predicates

In a sorted first-order language, each sort hierarchy is constructed as a pair (S,≤) of a
set S of sorts and a subsort relation ≤ over S. For example, we can define the subsort
declarations person ≤ animal, bird ≤ animal, father ≤ person, and woman ≤ person,
which describe the sort hierarchy in Figure 2. By using sorts in a hierarchy, each variable
can be restricted by sort s as a subset of the universe. For example, the domain of the sorted
variable x : person is the set of persons. In sort theory [6, 17] and constraint logic [9], the
sorted constant c : s is equivalent to the sort predicate formula s(c), and the subsort relation
s ≤ s′ in a sort hierarchy is represented by its equivalent implication form ∀x(s(x)⇒ s′(x))
in first-order logic. This translation motivated us to consider whether sorts and unary
predicates are logically and semantically identical.

Table 2 shows that essential sorts, non-essential sorts, and non-sortal properties corre-
spond to types τ [21], non-rigid sorts σ, and unary predicates p, respectively. This distinc-
tion between properties changes the meaning of instantiation of properties (i.e., term t is

3As defined in [35], a predicate p is said to depend on a predicate q if q appears in the body of a clause
whose head is p. A set of clauses is recursive if there is a cycle in the dependency relation among predicates.

4



Table 2: Rigidity of types, sorts, and unary predicates

property expression instance of subsumption
essential sort type τ τ(t) rigid τ1 < τ2

non-essential sort sort s non-rigid sort σ σ(t) σ1 < τ2

non-rigid σ1 < σ2

non-sortal property unary predicate p p(t) ∀x(p1(x)⇒ p2(x))

an instance of a property if p(t) is true where p denotes the property). From the semantic
viewpoint, the instantiation of type τ(t) implies that t forever belongs to τ since all types
are rigid. In contrast, the instantiation of a non-rigid sort σ(t) and unary predicate p(t)
is not always true since non-rigid sorts and unary predicates are not rigid. For example,
let person be a type, student be a non-rigid sort, and happy be a unary predicate. Then,
person(john) can be true at all times, but the truth of student(john) and happy(john) is
variable and depends on the situation. By using our logic, subsumption between properties
(i.e., a property subsumes another property) can be expressed using either of two forms:
subsort and implication. The subsort relations τ1 < τ2, σ1 < τ2, and σ1 < σ2

4 are declared
to be true in all situations, while some of the implication forms ∀x(p1(x)⇒ p2(x)) hold only
in some situations. For example, student < person is true in any situation, but the truth
of ∀x(rich(x) ⇒ happy(x)) depends on the situation. Hence, we should select a subsort
relation s1 < s2 if a sort s1 always subsumes another sort s2. In addition, any relation of
the form τ1 < σ2 (i.e., a type is a subsort of a non-rigid sort) is not allowed as a subsumption
due to the consideration of rigid and non-rigid properties [22].

To appropriately formalize these notions in logic, we use order-sorted logic with sort
predicates [6, 28] as a basic language. The sorted logic contains sort predicates in addition
to sorted terms and formulas, which are useful for expressing the unary predicates pτ and
pσ of types τ and non-rigid sorts σ5. In standard order-sorted logic, a variable x of sort s
is denoted by x : s and a constant c of sort s is denoted by c : s. Furthermore, we carefully
address the rigidity of types, non-rigid sorts, and unary predicates in sorted expressions of
the logic. In particular, the sorted expressions x : τ , x : σ, and c : τ are allowed, while the
sorted expression c : σ is not. For example, x1 : person and x2 : customer are variables of the
type (rigid sort) person and the non-rigid sort customer, and john : person is a constant
of the type person. However, constants of non-rigid sorts c : σ, such as john : customer
and john : US-citizen are meaningless since customer and US-citizen are not rigid for some
humans. In other words, since the elements of non-rigid sorts are not fixed, an element may
not belong to a non-rigid sort in a particular situation. Thus, we are required to use such a
non-rigid sort as a sort of variables x : σ and a sort predicate σ(t) (or pσ(t)). For example,
we can describe the formulas as

(∀x : customer)(excellent(x : customer)⇒ obtaining a discount(x : customer))

and customer(john).

4Let s1, s2 be sorts. s1 < s2 holds if s1 �= s2 and s1 is a subsort of s2.
5A sort predicate ps is simply denoted by s when this will not cause confusion.
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2.2 Reasoning among Multiple Knowledge Bases

Let us consider multi-agent reasoning [16] where multiple knowledge bases can be assigned
to agents. For example, in Figure 3, each agent has its own knowledge base as a set of sorted
formulas; all agents also possess and access common taxonomic knowledge as a conceptual
hierarchy of sorts and types. In other words, facts and rules in each knowledge base represent
assertional knowledge in an agent, context, or application domain; on the other hand, a sort
hierarchy expresses taxonomic knowledge commonly used in different situations.

In multi-agent reasoning, each agent may be able to transfer rigid-property information
from other agents. As an illustrative example, we consider the following knowledge bases
with the sort and type hierarchies shown in Figure 4:

Knowledge base 1:
(1a) male customer(john : person),
(1b) excellent(john : person),
(1c) (∀x : customer)(excellent(x : customer)⇒ obtaining a discount(x : customer))

Knowledge base 2:
(2a) pet seller(mary : person),
(2b) (∀x : customer)(cares about(mary : person, x : customer)),
(2c) (∀x : bird)(cares about(mary : person, x : bird))

Knowledge base 3:
(3a) canary(peter : animal),
(3b) (∀x : animal)(bird(x : animal)⇒ canfly(x : animal))

Knowledge base 4:
(4a) father(tony : animal, peter : animal),
(4b) (∀y : animal)(∀x : animal)(father(y : animal, x : animal) ∧ bird(x : animal)⇒

bird(y : animal))

Fact (3a) is true in knowledge base 3, and if the subsumption canary < bird holds in
the sort and type hierarchies, then bird(peter : animal) can be derived in knowledge base
3. This is also true in any other knowledge base since the evaluation of the type bird
does not depend on a particular situation, i.e., it is rigid. In other words, the elements
of the type bird can be propagated (Peter is forever a bird), unlike the elements of the
non-rigid sort customer. Hence, since instantiation as rigid-property information must
be true in all situations, we conclude that the fact bird(peter : animal) is true in knowl-
edge bases 1, 2, and 4. On the basis of this additional information, knowledge base
2 derives the new fact cares about(mary : person, peter : animal) from (2c), which can-
not be derived without importing the rigid-property information. Moreover, from the
fact father(tony : animal, peter : animal) in knowledge base 4, we cannot normally derive
whether Tony is a bird. By transferring the fact bird(peter : animal), we can use knowledge
base 4 to derive bird(tony : animal) (Tony is a bird) from fact (4a) and rule (4b).6 Therefore,

6In order to guarantee safe reasoning, we assume that rules whose conclusion is a rigid assertion only
contain rigid assertions in their conditions. This holds for unary and n-ary predicates.
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Figure 3: Multiple knowledge bases with sort and type hierarchies

the rigid fact bird(tony : animal) recursively results in canfly(tony : animal) in knowledge
base 3 and cares about(mary : person, tony : animal) in knowledge base 27. However, when
fact (1a) and the subsumption male customer < customer hold, customer(john : person)
is true only in knowledge base 1 because customer is not rigid. Hence, (2b) does not lead
to cares about(mary : person, john : customer) in knowledge base 3.

3 Order-Sorted Logic with Rigidity and Sort Predicates

First, we introduce three classified property expressions: types, non-rigid sorts, and unary
predicates in the syntax and semantics of order-sorted logic with sort predicates based on
[47, 43, 38].

3.1 Syntax

Definition 1 The alphabet of a sorted first-order language L with rigidity and sort predi-
cates contains the following symbols:

1. T : a countable set of type symbols τ1, τ2, . . . including the greatest type �

2. N : a countable set of non-rigid sort symbols σ1, σ2, . . . with T ∩N = ∅

3. C: a countable set of constant symbols

4. Fn: a countable set of n-ary function symbols

5. Pn: a countable set of n-ary predicate symbols

6. →,←, (, ): the connective and auxiliary symbols

7. Vs: an infinite set of variables x : s, y : s, z : s, . . . of sort s.

7First, knowledge base 3 exports rigid-property information to knowledge base 4. A new fact can then
be derived in knowledge base 4; knowledge base 3 then imports the new fact as rigid-property information
from knowledge base 4.
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We generally call type symbols (denoted τ, τ1, τ2, . . .) or non-rigid sort symbols (denoted
σ, σ1, σ2, . . .) sort symbols (denoted s, s1, s2, . . .). Namely, T ∪N is the set of sort symbols.
The set of variables of all sorts is denoted by V =

⋃
s∈T∪N Vs. For all sorts s ∈ T ∪ N ,

the unary predicates ps ∈ P1 indexed by the sorts s (called sort predicates) are introduced,
and the set of sort predicates is denoted by PT∪N = {ps | s ∈ T ∪ N}. In particular, the
predicate pτ indexed by a type τ is called a type predicate, and the predicate pσ indexed by
a non-rigid sort σ is called an non-rigid sort predicate. In what follows, we assume that the
language L contains all the sort predicates in PT∪N .

Definition 2 (Sorted Signatures with Rigidity) A signature of a sorted first-order lan-
guage L with rigidity and sort predicates (called sorted signature) is a tuple Σ = (T, N, Ω,≤)
such that:

1. (T ∪N,≤) is a partially ordered set of sorts (called a sort hierarchy) where

(a) T ∪N is the union of the set of type symbols and the set of non-rigid sort symbols
in L, and

(b) each ordered pair is not of the form τ ≤ σ (i.e., it is of the form σi ≤ σj, σ ≤ τ ,
or τk ≤ τl);

2. Ω is a finite set of constant, function, and predicate declarations such that

(a) if c ∈ C, then there is a unique constant declaration of the form c : → τ ∈ Ω
(which means c : ∅ → τ ∈ Ω);

(b) if f ∈ Fn, then there is a unique function declaration of the form f : τ1×· · ·×τn →
τ ∈ Ω;

(c) if p ∈ Pn, then there is a unique predicate declaration of the form p : s1×· · ·×sn ∈
Ω (in particular, for all sort predicates ps ∈ PT∪N , ps : � ∈ Ω).

The declarations in Ω determine the domains and ranges of constants, functions, and predi-
cates. The domains and ranges of constants and functions are required to be rigidly sorted.
Specifically, constant and function declarations are defined by types τi in order to avoid the
non-rigid domains and ranges of constants and functions. In contrast, predicate declarations
are defined by any sorts si (types or non-rigid sorts) since the domains of predicates can be
non-rigid. In the following example, we will show constant and function declarations that
are defined by types and non-rigid sorts.

Example 1 (Rigidity of Constants and Functions) Consider a sorted signature that
contains the subsort relation student ≤ person, the constant and function declarations:

john : → person ∈ Ω
father : person → person ∈ Ω

for john ∈ C, father ∈ F1, and person ∈ T , and the predicate declaration:

getting a scholarship : student ∈ Ω

8



for getting a scholarship ∈ P1 and student ∈ N . The sorted signatures exclude the follow-
ing declarations of unrigidly sorted constants and functions as sort errors:

john : → student ∈ Ω
father : person → teacher ∈ Ω

for student, teacher ∈ N give rise to the sorted terms:

john : student

father(john : student) : teacher.8

The first expresses the constant john of the non-rigid sort student, and the second repre-
sents the function father with the argument john : student the range of which is the non-
rigid sort teacher. These expressions contain ill-sorted errors because the sorts student and
teacher are not rigid for some humans.

The restriction of a sort hierarchy to types is a partially ordered set of types and called
a type hierarchy. The type hierarchy in a sorted signature corresponds to the backbone
taxonomy consisting only of rigid properties [55]. Based on the definition of subsumption
relation in [22], any relation of the form τ ≤ σ is not allowed in the sort hierarchy, since al-
though types τ are rigid, non-rigid sorts σ are not rigid. It should be noted that Kaplan [30]
pointed out that Guarino and Welty’s formulation of subsumption was incorrect or incon-
sistent. More precisely, he proved that ‘it is possible for a non-rigid property to subsume
a rigid one, given Guarino and Welty’s definitions of rigid, non-rigid, and subsumption.’ If
‘p subsumes q’ is formalized by ∀x(q(x) ⇒ p(x)), this undesired analysis is derived. How-
ever, as mentioned by Kaplan, if the subsumption is formalized by �(∀x)(q(x) ⇒ p(x)),
the condition that an non-rigid property cannot subsume a rigid one necessarily is correct.
Therefore, we support the necessary subsumption in the semantics that will be defined latter
(in Definition 9).

Next, we define terms, atoms (atomic formulas), goals, and clauses of a sorted first-order
language with rigidity and sort predicates.

Definition 3 (Sorted Terms) Let Σ = (T, N, Ω,≤) be a sorted signature. The set Ts of
terms of sort s is defined by the following:

1. If x : s′ ∈ Vs′ and s′ ≤ s, then x : s ∈ Ts.

2. If c ∈ C, c : → τ ∈ Ω, and τ ≤ s, then c : τ ∈ Ts.

3. If t1 ∈ Tτ1 , . . . , tn ∈ Tτn , f ∈ Fn, f : τ1 × · · · × τn → τ ∈ Ω, and τ ≤ s, then
f(t1, . . . , tn) : τ ∈ Ts.

Note that Ts contains not only terms of sort s but also terms of subsorts s′ of sort s
if s′ ≤ s. For example, let person, animal be types and let person ≤ animal ∈ Ω. Then,
john : person belongs to the set Tanimal of terms of the sort animal and its subsorts. The
set of terms of all sorts is denoted by T =

⋃
s∈T∪N Ts. The function sort is a mapping

from sorted terms to their sorts, defined by (i) sort(x : s) = s, (ii) sort(c : τ) = τ , and (iii)
sort(f(t1, . . . , tn) : τ) = τ .

8Note that if john : → student is declared in Ω, john : student is a term of the sort person because
student is a subsort of person (i.e., student ≤ person).
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Definition 4 The function Var : T → 2V is defined by the following:

1. Var(x : s) = {x : s},

2. Var(c : τ) = ∅ for c ∈ C,

3. Var(f(t1, . . . , tn) : τ) = Var(t1) ∪ · · · ∪Var(tn) for f ∈ Fn.

A sorted term is called ground if its set of variables is empty. T0 = {t ∈ T |Var(t) = ∅}
is the set of sorted ground terms. The set of ground terms of sort s is denoted by T0,s =
T0 ∩ Ts. In order to provide a rule language, we restrict the set of possible formulas to
Horn-clauses [36, 14] but it can be extended by full formulas.

Definition 5 (Sorted Formulas) Let Σ = (T, N, Ω,≤) be a sorted signature. The set A
of atoms, the set G of goals, and the set C of clauses are defined by the following:

1. If t1 ∈ Ts1 , . . . , tn ∈ Tsn, p ∈ Pn, and p : s1 × · · · × sn ∈ Ω, then p(t1, . . . , tn) ∈ A.

2. If L1, . . . , Ln ∈ A (n ≥ 0), then {L1, . . . , Ln} ∈ G.

3. If G ∈ G and L ∈ A, then L← G ∈ C.

An atom ps(t) with a sort predicate is simply denoted by s(t) when this will not cause
confusion. A clause L ← G is denoted by L ← if G = ∅. The function Var is extended to
atoms, goals, and clauses, i.e., for each e ∈ A ∪ G ∪ C, Var(e) denotes the set of variables
occurring in e.

Example 2 Let us consider the sorted signature Σ = (T, N, Ω,≤∗) such that

T = { male, person, canary, bird, animal, � },
N = { pet seller, customer, male customer },
Ω = { john : → person, mary : → person,

peter : → animal, tony : → animal,

excellent : person, cares about : animal ×�,

obtaining a discount : customer,

father : �×�, canfly : � } ∪
{ ps : � | s ∈ T ∪N },

< = { (canary, bird), (bird, animal), (animal,�),
(person, animal), (male, animal), (male customer, male),
(pet seller, person), (customer, person),
(male customer, customer) },

and ≤∗ is the reflexive and transitive closure of <. This sorted signature declares the sort
and type hierarchies in Figure 4. The expressions:

customer(john : person)←,

canfly(x : animal)← {bird(x : animal)}

are clauses in the sorted first-order language.

10
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Figure 4: Sort and type hierarchies in a sorted signature

We define a sorted substitution such that each sorted variable x : s is replaced with a
well-sorted term in Ts.

Definition 6 (Sorted Substitution) A sorted substitution is a partial function θ : V → T
such that θ(x : s) ∈ Ts − {x : s} and Dom(θ) is finite.

Moreover, an unsorted substitution is defined as a substitution that operationally ignores
the sort of each variable, which may lead to ill-sorted terms.

Definition 7 (Unsorted Substitution) An unsorted substitution is a partial function
θu : V → T such that if θu(x : s) is defined then it belongs to Ts − {x : s}, and Dom(θ)
is finite.

For example, for customer ≤ person, θu(x : customer) = john : person is an unsorted
substitution, but not a sorted substitution. Each of the sorted and unsorted substitutions
can be represented by {x1 : s1/t1, . . . , xn : sn/tn}. Let θ be a sorted substitution. θ is said
to be a sorted ground substitution if for every variable x : s ∈ Dom(θ), θ(x : s) is a sorted
ground term. Similarly, these notions are defined for unsorted substitutions θu.

Definition 8 Let γ be a sorted substitution θ or an unsorted substitution θu. The term tγ
is defined by the following:

1. x : sγ = γ(x : s) if x : s ∈ Dom(γ),

2. x : sγ = x : s if x : s �∈ Dom(γ),

3. c : τγ = c : τ ,

4. (f(t1, . . . , tn) : τ)γ = f(t1γ, . . . , tnγ) : τ ,

Note that the substitution γ in statements 2 and 3 does not anything for the term t because
the sorted variable x : s does not belong to the domain Dom(γ) or the term t is a sorted
constant. Moreover, the substitution γ in statement 4 is inductively defined for the sorted
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variables occurring in the functional term f(t1, . . . , tn) : τ . For instance, let γ be a sorted
substitution with γ(x : s) = c2 : s1 and s1 ≤ s. The functional term (f(x : s, c2 : s2) : τ1)γ
can be substituted with f(c1 : s1, c2 : s2) : τ1 if x : s ∈ Dom(γ) (but there is no condition for
τ1). In the usual manner of first-order logic, sorted and unsorted substitutions are extended
to atoms, goals, and clauses. Let E be an expression, θ be a sorted substitution, and θu

be an unsorted substitution. The application of a sorted (unsorted) substitution to E is
denoted by Eθ (Eθu).

Let t be a sorted term. The substituted term tθu is an ill-sorted term if tθu �∈ T . If t′ is
an ill-sorted term and t′θu �∈ T , then t′θu is also an ill-sorted term. The ill-sorted expressions
are more generally defined as follows. Let E ∈ T ∪ A ∪ G ∪ C. The substituted expression
Eθu is an ill-sorted expression if Eθu �∈ T ∪ A ∪ G ∪ C. If E′ is an ill-sorted expression and
E′θu �∈ T ∪A∪ G ∪ C, then E′θu is an ill-sorted expression. The set of sorted and ill-sorted
terms, the set of sorted and ill-sorted atoms, the set of sorted and ill-sorted goals, and the
set of sorted and ill-sorted clauses are denoted by T +, A+, G+, and C+, respectively.

Let E be a sorted or ill-sorted expression. The substitution θ (resp. θu) is a sorted ground
substitution (resp. unsorted ground substitution) for E if Eθ (resp. Eθu) is ground and
dom(θ) = Var(E) (resp. dom(θu) = Var(E)). The composition θ1θ2 of sorted substitutions
θ1 and θ2 (resp. unsorted substitutions θu

1 and θu
2 ) is defined by (x : s)θ1θ2 = ((x : s)θ1)θ2

(resp. (x : s)θu
1θu

2 = ((x : s)θu
1 )θu

2 ).

3.2 Semantics

The semantics of order-sorted logic with rigidity and sort predicates is defined over possible
worlds. This characterizes the rigidity of types and non-rigid sorts by interpreting them in
each world.

Definition 9 (Σ-Model) Let Σ be a sorted signature. A Σ-model M is a tuple (W, U, I)
such that

1. W is a non-empty set of worlds,

2. U is a non-empty set of individuals,

3. I = {Iw | w ∈ W} is the set of functions Iw for all worlds w ∈ W with the following
conditions:

(a) if s ∈ T ∪N , then Iw(s) ⊆ U (in particular, Iw(�) = U),

(b) if si ≤ sj for si, sj ∈ T ∪N , then Iw(si) ⊆ Iw(sj),

(c) if c ∈ C and c : → τ ∈ Ω, then Iw(c) ∈ Iw(τ),

(d) if f ∈ Fn and f : τ1×· · ·×τn → τ ∈ Ω, then Iw(f) : Iw(τ1)×· · ·×Iw(τn)→ Iw(τ),

(e) if p ∈ Pn and p : s1 × · · · × sn ∈ Ω, then Iw(p) ⊆ Iw(s1)× · · · × Iw(sn).

In the semantics, statement 3-(b) (i.e., Iw(si) ⊆ Iw(sj) holds for all worlds w ∈ W ) cor-
responds to the necessary subsumption �(∀x)(q(x) ⇒ p(x)), whose validity was proven by
Kaplan [30].

Moreover, by restricting Σ-models, we give the class of rigid Σ-models as follows.
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Definition 10 (Rigid Σ-Model) Let Σ be a sorted signature. A rigid Σ-model is a Σ-
model M = (W, U, I) such that for all wi, wj ∈ W , τ ∈ T , c ∈ C, and f ∈ F , Iwi(τ) =
Iwj (τ), Iwi(c) = Iwj (c), and Iwi(f) = Iwj (f).

In what follows, we will deal with rigid Σ-models M = (W, U, I) that satisfy the following
condition:

• If s ∈ T ∪N , then Iw(s) = Iw(ps).

This condition drives that if si ≤ sj , then Iw(psi) ⊆ Iw(psj ). In the Σ-models, the interpre-
tation of sorts s is equivalent to the interpretation of the sort predicates ps.

Definition 11 (Variable Assignment) Let Σ be a sorted signature. A variable assign-
ment on a rigid Σ-model M = (W, U, I) is a function αw : V → U where αw(x : s) ∈ Iw(s).

We define αw[x : s/d] by (αw −{(x : s, αw(x : s))})∪{(x : s, d)}. In other words, if v = x : s,
then αw[x : s/d](v) = d, and otherwise αw[x : s/d](v) = αw(v). A rigid Σ-interpretation I
is a pair (M, α) of a rigid Σ-model M and a set of variable assignments α = {αw | w ∈W}
on M . Let I = (M, α). The rigid Σ-interpretation (M, α−{αw}∪{αw[x : s/d]}) is denoted
by Iαw[x : s/d].

We define an interpretation of sorted and ill-sorted terms (in T +) as follows.

Definition 12 Let I = (M, α) be a rigid Σ-interpretation. The denotation function [[ ]]w,α : T + →
U is defined by the following:

1. [[x : s]]w,α = αw(x : s),

2. [[c : τ ]]w,α = Iw(c),

3. [[f(t1, . . . , tn) : τ ]]w,α =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Iw(f)([[t1]]w,α, . . . , [[tn]]w,α) if [[t1]]w,α ∈ Iw(τ1), . . . , [[tn]]w,α

∈ Iw(τn) and f : τ1 × · · · × τn

→ τ ∈ Ω
⊥ otherwise.

The satisfiability of sorted and ill-sorted atoms, goals, and clauses are defined for a rigid
Σ-interpretation I and a world w ∈W .

Definition 13 (Rigid Σ-Satisfaction Relation) Let I = (M, α) with M = (W, U, I) be
a rigid Σ-interpretation, let F ∈ A+ ∪ G+ ∪ C+, and let w ∈ W . The rigid Σ-satisfaction
relation I, w |= F is defined inductively as follows:

1. I, w |= p(t1, . . . , tn) iff ([[t1]]w,α, . . . , [[tn]]w,α) ∈ Iw(p).

2. I, w |= {L1, . . . , Ln} iff I, w |= L1, . . . , I, w |= Ln.

3. I, w |= L← G iff for all d1 ∈ Iw(s1),. . . ,dn ∈ Iw(sn), Iαw[x1 : s1/d1, . . . , xn : sn/dn],
w |= G implies Iαw[x1 : s1/d1, . . . , xn : sn/dn], w |= L where Var (L← G) = {x1 : s1,
. . . , xn : sn}.
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Let Γ be a set of formulas in A+∪G+∪C+. We write I, w |= Γ if, for every formula F ∈ Γ,
I, w |= F . A formula F is said to be rigid Σ-satisfiable if for some rigid Σ-interpretation I
and world w, I, w |= F . Otherwise, it is rigid Σ-unsatisfiable. F is a consequence of Γ in
the class of rigid Σ-interpretations (denoted Γ |= F ) if for each rigid Σ-interpretation I and
w ∈W , I, w |= Γ implies I, w |= F .

Lemma 1 Let I = (M, α) with M = (W, U, I) be a rigid Σ-interpretation, L ← G be
a clause in C+, θ be a sorted substitution, and let w ∈ W . If I, w |= L ← G, then
I, w |= (L← G)θ.

Proof. Let Var(L← G) = {x1 : s1, . . . , xn : sn}. By Definition 13, for all d1 ∈ Iw(s1),. . . ,dn ∈
Iw(sn), Iαw[x1 : s1/d1, . . . , xn : sn/dn], w |= G implies Iαw[x1 : s1/d1, . . . , xn : sn/dn],
w |= L. Let d′1 ∈ Iw(s′1),. . . ,d′m ∈ Iw(s′m) where Var((L ← G)θ) = {y1 : s′1, . . . , ym : s′m}.
Then, we have [[θ(x1 : s1)]]w,α′ ∈ Iw(s1), . . ., [[θ(xn : sn)]]w,α′ ∈ Iw(sn) for α′ = α − {αw} ∪
{αw[y1 : s′1/d′1, . . . , ym : s′m/d′m]} because θ(x1 : s1), . . ., θ(xn : sn) are well-sorted terms of
sorts s1, . . . , sn. This derives I, w |= (L← G)θ.

Example 3 Given the sorted signature Σ = (T, N, Ω,≤∗) of Example 2, we consider a rigid
Σ-model M = (W, U, I) such that

W = { w1, w2, w3, w4 },
U = { j, m, t, p },
I = { Iw1 , Iw2 , Iw3 , Iw4 }

where for i ≤ i ≤ 4, Iwi(john) = j, Iwi(mary) = m, Iwi(tony) = t, Iwi(peter) = j,
Iwi(person) = {j, m}, Iwi(animal) = {j, m, t, p}, for each sj ≤ sk, Iwi(sj) ⊆ Iwi(sk), and
Iw1(male customer) = Iw1(excellent) = Iw1(customer) = Iw1(obtaining a discount) =
{j}.

Then, we have the following rigid Σ-satisfaction relation.

I, w1 |= obtaining a discount(x : customer)← {excellent(x : customer)}
I, w1 |= obtaining a discount(john : person)
I, w2 |= animal(john : person)

4 Knowledge Base Reasoning with Rigid Properties

This section develops two knowledge base reasoning systems for our order-sorted logic. We
first extend the Horn-clause calculus [23] for a single knowledge base by incorporating sorted
and unsorted substitutions and inference rules of type predicates. Second, using the calculus,
we develop a rigid-property derivation system for many separated knowledge bases.

4.1 Extended Horn-Clause Calculus

Each knowledge base is constructed by a finite set of sorted clauses (i.e., ill-sorted expressions
are excluded) as follows.

Definition 14 (Knowledge Base) Let Σ = (T, N, Ω,≤) be a sorted signature. A knowl-
edge base K is a finite set of sorted clauses in Σ.
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Let θu be an unsorted substitution. We define the function ι(θu) = {x : s/t ∈ θu | t �∈ Ts}
in order to obtain the ill-sorted operations from θu.

In the following, we define inference rules for the Horn-clause calculus with sorted and
unsorted substitutions. This extended calculus can derive syntactically ill-sorted expressions
by applying unsorted substitutions, but the derived ill-sorted expressions are semantically
well-sorted in the rigid Σ-models.

Definition 15 (Sorted Horn-Clause Calculus) Let C be a sorted or ill-sorted ground
clause and K be a knowledge base. A derivation of C from K (denoted K � C) in the sorted
Horn-clause calculus is defined as follows:

• Sorted substitution rule: Let L← G ∈ K and θ be a sorted ground substitution for
L← G. Then, K � (L← G)θ.

• Cut rule: Let L ← G and L′ ← G′ ∪ {L} be ground clauses. If K � L ← G and
K � L′ ← G′ ∪ {L}, then K � L′ ← G ∪G′.

• Subsort rule: Let ps(t) ← G and ps′(t) ← G be ground clauses. If K � ps(t) ← G
and s ≤ s′, then K � ps′(t)← G.

• Type predicate rule: Let t be a sorted ground term in T . If sort(t) ≤ τ , then
K � pτ (t)←.

• Unsorted type predicate rule: Let t be a sorted term in T , let θu be an unsorted
ground substitution for t where ι(θu) = {x1 : s1/t1, . . . , xn : sn/tn}, and let psi(ti)← Gi

be a ground clause. If sort(t) ≤ τ and K � ps1(t1)← G1, . . . , K � psn(tn)← Gn, then
K � pτ (tθu)← G1 ∪ · · · ∪Gn.

• Unsorted substitution rule: Let L ← G ∈ K, let θu be an unsorted ground sub-
stitution for L ← G where ι(θu) = {x1 : s1/t1, . . . , xn : sn/tn}, and let psi(ti) ← Gi

be a ground clause. If K � ps1(t1) ← G1, . . . , K � psn(tn) ← Gn, then K � (L ←
G ∪G1 ∪ · · · ∪Gn)θu.

We write K � L if K � L ←. The sorted substitution rule and the cut rule serve as
sorted inference rules in ordinary order-sorted logic. The subsort rule actualizes an infer-
ence of the implication form ps(t)⇒ ps′(t) with respect to the subsort relation s < s′. The
type predicate rule derives axioms pτ (t) of type predicates with sort(t) ≤ τ . For example,
animal(john : person) is valid if person ≤ animal. Furthermore, the unsorted type predi-
cate and unsorted substitution rules are unsorted variants of the type predicate and sorted
substitution rules, respectively. These inference rules are based on the sorted resolution
system with sort predicates in [6]. In order to deal with the rigidity of sorts, we distinguish
types and non-rigid sorts in the calculus. In particular, the unsorted type predicate and
unsorted substitution rules are necessary for reasoning over non-rigid sorted terms. For a
non-rigid sort customer ∈ N , if customer(john : person) is true, then x : customer can be
unsortedly substituted with a sorted term john : person, while the sort of john : person is
not a subsort of customer.
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K1 � obtaining a discount(john : person):

excellent(john : person)←

male customer(john : person)←
customer(john : person)← (subsort)

obtaining a discount(john : person)← {excellent(john : person)} (unsorted substitution)

obtaining a discount(john : person)← (cut)

K3 � canfly(peter : animal):

canfly(peter : animal)← {bird(peter : animal)}
canary(peter : animal)←
bird(peter : animal)← (subsort)

canfly(peter : animal)← (cut)

Figure 5: An example of derivations

Example 4 Suppose we have the sorted signature Σ = (T, N, Ω,≤∗) of Example 2. Con-
sider the following knowledge bases K1, K2, K3, and K4:

K1 = { male customer(john : person)←,

excellent(john : person)←,

obtaining a discount(x : customer)← {excellent(x : customer)} }
K2 = { pet seller(mary : person)←,

cares about(mary : person, x : customer)←,

cares about(mary : person, x : bird)← }
K3 = { canary(peter : animal)←,

canfly(x : animal)← {bird(x : animal)} }
K4 = { father(tony : animal, peter : animal)←,

bird(y : animal)← {bird(x : animal),
father(y : animal, x : animal)} }

Figure 5 shows derivations from K1 and K3 in the sorted Horn-clause calculus. In the first,
we can derive the ill-sorted expression

obtaining a discount(john : person)

where for person ∈ T , customer ∈ N , person �≤ customer, and obtaining a discount : customer
∈ Ω. This conclusion is obtained by an application of the unsorted substitution rule to the
clauses

customer(john : person)←,

obtaining a discount(x : customer)← {excellent(x : customer)}

with the unsorted substitution

θu = {x : customer/john : person}.
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We show the soundness and completeness of the Horn-clause calculus as follows.

Theorem 1 (Soundness of Horn-Clause Calculus) Let K be a knowledge base and L
be a sorted or ill-sorted ground atom. If K � L, then K |= L.

Proof. This is proven by induction on the height n of a derivation tree of K � L. Let
I = (M, α) with M = (W, U, I) be a rigid Σ-interpretation and let w be a world in W .

Base case: n = 0. We have K � L if L←∈ K. So, I, w |= K implies I, w |= L.
Induction step: n > 0. The ground atom L is derived by some applications of inference

rules.

• Sorted substitution rule. We have L← G ∈ K and θ be a sorted ground substitution
for L← G. So, I, w |= L← G. By Lemma 1, I, w |= (L← G)θ.

• Type predicate rule. We have sort(t) ≤ τ where t is a sorted ground term. So,
[[t]]w,α ⊆ Iw(τ) because t is a well-sorted term in Tτ . So, I, w |= pτ (t).

• Cut rule. Because K � L ← G and K � L′ ← G′ ∪ {L}, by induction hypothesis,
I, w |= L← G and I, w |= L′ ← G′ ∪ {L}. Hence, I, w |= L← G ∪G′.

• Subsort rule. Because K � ps(t) ← G and s < s′, by induction hypothesis, I, w |=
ps(t)← G where Iw(s) ⊆ Iw(s′). Thus, I, w |= ps′(t)← G.

• Unsorted type predicate rule. Since sort(t) ≤ τ and K � ps1(t1) ← G1, . . . , K �
psn(tn) ← Gn, by induction hypothesis, I, w |= ps1(t1) ← G1, . . . , I, w |= psn(tn) ←
Gn. If I, w |= G1 ∪ · · · ∪ Gn, then I, w |= ps1(t1), . . . , I, w |= psn(tn). Now we
want to show I, w |= pτ (tθu) where θu is an unsorted ground substitution for t and
ι(θu) = {x1 : s1/t1, . . . , xn : sn/tn}. If t = c : s, then [[t]]w,α ∈ Iw(τ). This is because
sort(t) ≤ τ . If t = x : s and x : s �∈ {x1 : s1, . . . , xn : sn}, then [[tθu]]w,α ∈ Iw(τ). If
t = xi : si, then sort(t) = s ≤ τ and so Iw(s) ⊆ Iw(τ). Then, [[θu(xi : si)]]w,α =
[[ti]]w,α ∈ Iw(s) ⊆ Iw(τ) ⊆ Iw(pτ ). If t = f(a1, . . . , ar) : τ ′ where f : τ1 × · · · × τr →
τ ′, by Definition 12, [[a1]]w,α ∈ Iw(τ1), . . . , [[ar]]w,α ∈ Iw(τr). By Definition 9-3-(d),
[[f(a1, . . . , ar) : τ ′]]w,α ∈ Iw(τ ′) ⊆ Iw(τ) ⊆ Iw(pτ ). Hence, I, w |= pτ (tθu). Therefore,
I, w |= pτ (tθu)← G1 ∪ · · · ∪Gn.

• Unsorted substitution rule. We have K � ps1(t1) ← G1, . . . , K � psn(tn) ← Gn. By
induction hypothesis, I, w |= ps1(t1) ← G1, . . . , I, w |= psn(tn) ← Gn. If I, w |=
(G ∪ G1 ∪ · · · ∪ Gn)θu, then I, w |= ps1(t1), . . . , I, w |= psn(tn). L ← G ∈ K implies
I, w |= L← G. So, for all d1 ∈ Iw(s′1),. . . ,dk ∈ Iw(s′k), Iαw[y1 : s′1/d1, . . . , yk : s′k/dk],
w |= G implies Iαw[y1 : s′1/d1, . . . , yk : s′k/dk], w |= L where Var (L ← G) = {y1 : s′1,
. . . , yk : s′k}. Similar to the proof of the unsorted type predicate rule, I, w |= (L ←
G ∪G1 ∪ · · · ∪Gn)θu.

Let θ be a sorted substitution and C be a sorted clause. Cθ is called a sorted instance
of C. The set of all sorted ground instances of C is denoted by ground(C). We write
ground(K) for

⋃
C∈K ground(C). The set of derivable sorted and ill-sorted terms for sort s

in K is defined as {t | K � ps(t)}. We define the set of derivable terms for all sorts in K
by

⋃
s∈T∪N{t | K � ps(t)}. The set of rigid derivable sorted and ill-sorted terms for sort s
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in K is defined as {t | K �S ps(t)}. We define the set of rigid derivable terms for all sorts
in K by

⋃
s∈T∪N{t | K �S ps(t)}. To prove the completeness of the Horn-clause calculus

and the rigid-property derivation system, we construct a Herbrand model for a finite set of
knowledge bases.

Definition 16 (Herbrand Model) Let S = {K1, . . . ,Km} be a finite set of knowledge
bases. A Herbrand model (resp. rigid Herbrand model) MH for S is a tuple (WS , UH , IH)
such that

1. WS = {wK1
, . . . , wKm

},

2. UH = {t | Ki � ps(t) for Ki ∈ S, s ∈ T ∪ N} (resp. UH = {t | Ki �S ps(t) for Ki ∈
S, s ∈ T ∪N}),

3. IH = {IwKi
| wKi

∈ WS} is the set of functions for all wKi
∈ WS with the following

conditions:

(a) IwKi
(s) = {t | Ki � ps(t)} (resp. IwKi

(s) = {t | K �S ps(t)}),

(b) if c ∈ C and c : → τ ∈ Ω, then IwKi
(c) = c : τ ,

(c) if f ∈ Fn and f : τ1×· · ·×τn → τ ∈ Ω, then IwKi
(f)(t1, . . . , tn) = f(t1, . . . , tn) : τ

where tk ∈ IwKi
(τk) for 1 ≤ k ≤ n,

(d) if p ∈ Pn and p : s1 × · · · × sn ∈ Ω, then IwKi
(p) = {(t1, . . . , tn) ∈ IwKi

(s1)× · · · ×
IwKi

(sn) | Ki � p(t1, . . . , tn) (resp. Ki �S p(t1, . . . , tn))}.

A (rigid) Herbrand interpretation IH for S is a pair (MH , α) such that MH is a (rigid)
Herbrand model for S and α is a set of variable assignments on MH . Let L ← G be a
clause with Var(L← G) = {x1 : s1, . . . , xn : sn}. We define ground+

Ki
(L← G) as the set of

sorted and ill-sorted ground clauses (L← G)θu with θu = {x1 : s1/t1, . . . , xn : sn/tn} where
Ki � psk

(tk) for 1 ≤ k ≤ n.
Note that many worlds wK1

, . . . , wKm
in the Herbrand model are not necessary to show

the completeness of the Horn-clause calculus for a single knowledge base K, but they are
used to prove the completeness of rigid-property derivation for a finite set S = {K1, . . . ,Kn}
of knowledge bases. To avoid introducing additional semantics, the Herbrand model with
many worlds is employed as a unified model in the proofs of completeness for both. We show
that a rigid Herbrand interpretation is a rigid Σ-interpretation for each knowledge base Ki

in S.

Lemma 2 Let S = {K1, . . . ,Kn} be a finite set of knowledge bases. Let IS be a Herbrand
interpretation for S and L← G be a clause. Then, IS has the following properties:

1. IS , wKi
|= L← G if and only if IS , wKi

|= ground+
Ki

(L← G).

2. IS is a rigid Σ-interpretation such that IS , wKi
|= Ki.

Proof. 1. (⇒) Let L ← G be a clause with Var(L ← G) = {x1 : s1, . . . , xn : sn}. Let
θu = {x1 : s1/t1, . . . , xn : sn/tn} be a sorted or ill-sorted substitution such that (L← G)θu ∈
ground+

Ki
(L ← G). By Definition 16, we have t1 ∈ IwKi

(s1), . . . , tn ∈ IwKi
(sn). Hence,
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IS , wKi
|= (L ← G)θu. (⇐) Let θ be a sorted ground substitution for Var(L → G). So,

(L→ G)θ ∈ ground(L← G). By the assumption and ground(L→ G) ⊆ ground+
Ki

(L← G),
IS , wKi

|= (L← G)θ. By Definition 16, IS , wKi
|= L← G.

2. We show that IS is a rigid Σ-interpretation. By Definition 16, the conditions 1,2,3-
(a) and 3-(e) of rigid Σ-models (Definition 9) hold. The condition 3-(c) is shown by the
following. If c ∈ C and c : → τ ∈ Ω, then we have IwKi

(c) = c : τ (by Definition 16 3-(b)).
By the type predicate rule in the Horn-clause calculus, Ki � pτ (c : τ). So, by Definition 16
3-(a), c : τ ∈ IwKi

(τ). Thus, IwKi
(c) ∈ IwKi

(τ). The conditions 3-(b) and 3-(d) can be shown
by the subsort rule and unsorted type predicate rule. Furthermore, by the definition of T0,s

and Definition 16, we can derive that IS is a rigid Σ-interpretation.
Next, we prove that IS , wKi

|= Ki. Let L ← G ∈ Ki where Var(L ← G) = {x1 : s1, . . . ,

xn : sn}. So we want to show IS , wKi
|= ground+

Ki
(L ← G). Let L′ ← G′ ∈ ground+

Ki
(L ←

G). So, there is an unsorted ground substitution θu = {x1 : s1/t1, . . . , xn : sn/tn} such that
(L ← G)θu = L′ ← G′. By definition of ground+

Ki
(L ← G), Ki � psk

(tk) for 1 ≤ k ≤ n.
Suppose IS , wKi

|= {L1, . . . , Ln}θu where G = {L1, . . . , Ln}. By definition 16, Ki � L1θ
u,

. . . , Ki � Lnθu. Then, Ki � (L ← {L1, . . . , Ln})θu (by the unsorted substitution rule
and Ki � psk

(tk) for 1 ≤ k ≤ n). By the cut rule, Ki � Lθu. Hence, by Definition 16,
IS , wKi

|= Lθu. Therefore, IS , wKi
|= (L ← G)θu. By the first statement in Lemma 2, we

obtain IS , wKi
|= L← G.

The Herbrand model and the above lemma will be used to show the completeness of the
Horn-clause calculus as follows.

Theorem 2 (Completeness of Horn-Clause Calculus) Let K be a knowledge base and
L be a sorted or ill-sorted ground atom. If K |= L, then K � L.

Proof. Assume that K is a particular knowledge base in a finite set S = {K1, . . . , Kn}
of knowledge bases. So, by Definition 16, a Herbrand Model can be constructed for S in
order to obtain a rigid Σ-interpretation such that IS , wK |= K. By Lemma 2, IS , wK |= K.
Hence, we have IS , wK |= L. If L = p(t1, . . . , tn), then (t1, . . . , tn) ∈ IwKi

(p). Therefore,
K � p(t1, . . . , tn) by the condition 3-(a) of Definition 16.

4.2 Rigid-Property Derivation in Knowledge Bases

In general, the conclusions in each knowledge base are not derivable from another knowledge
base since knowledge bases are separately constructed for their respective situations. Nev-
ertheless, each knowledge base can derive something from the rigid-property information in
other knowledge bases. In order to elaborate on this idea, we present a derivation system of
rigid properties in a finite set of knowledge bases called a rigid-property derivation system.

Let S = {K1, . . . ,Kn} be a finite set of knowledge bases, where K1, . . . ,Kn have the same
sorted signature Σ. A rigid Σ-model M = (WS , U, I) is said to be a rigid Σ-model for S if
WS = {wK1

, . . . , wKn
} is the set of knowledge base worlds of K1, . . . ,Kn. When we determine

the consequence Ki |= L, we will consider only rigid Σ-models having one world for each
Ki in S. We denote Ki |=S F if for every rigid Σ-interpretation I for S, I, wK1

|= K1, . . . ,
I, wKn

|= Kn imply I, wKi
|= F . Let us denote the set of sorted and ill-sorted ground atoms

by A+
0 . We define the theory of K as Th(K) = {L ∈ A+

0 | K � L}.
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In order to define rigid-property derivation, an expansion of knowledge bases is intro-
duced. The expansion of each knowledge base is obtained from other knowledge bases by
propagating rigid-property information.

Definition 17 (Expansion of Knowledge Bases) Let S = {K1, . . . ,Kn} be a finite set
of knowledge bases. The expanded knowledge bases Km

i of Ki in S are defined by the follow-
ing:

K0
i = Ki

Km+1
i = Km

i ∪Δ(Th(Km
1 ) ∪ · · · ∪ Th(Km

n ))

where Δ(X) = {pτ (t) ∈ A+
0 | τ ∈ T and pτ (t) ∈ X}

Each knowledge base Ki is expanded to K0
i ,K1

i , . . . by adding rigid atomic formulas pτ (t)
derivable in one of the knowledge bases K1, . . . ,Kn ∈ S. Using this expansion, we define
rigid-property derivation in a finite set of knowledge bases.

Definition 18 (Rigid-Property Derivation in S) Let S = {K1, . . . , Kn} be a finite set
of knowledge bases. A ground clause L← G is derivable from Ki in S (denoted Ki �S L← G
) if there exists an expanded knowledge base Km

i of Ki such that Km
i � L← G.

We will show the soundness and completeness of the rigid-property derivation system as
follows.

Lemma 3 Let S = {K1, . . . , Kn} be a finite set of knowledge bases and I be a rigid Σ-
interpretation for S. If I, wK1

|= Km
1 ,. . . , I, wKn

|= Km
n , then I, wK1

|= Km+1
1 , . . . , I, wKn

|=
Km+1

n .

Proof. Let I = (M, α) be a rigid Σ-interpretation for S. Let x ∈ {1, . . . , n}. By Defini-
tion 17, Km+1

x = Km
x ∪ Δ(Th(Km

1 ) ∪ · · · ∪ Th(Km
n )). By Theorem 1 and Th(Km

x ) = {L |
Km

x � L}, I, wK1
|= Th(Km

1 ),. . . ,I, wKn
|= Th(Km

n ). Let pτ (t) ∈ Δ(Th(Km
1 ) ∪ · · · ∪ Th(Km

n )).
Then, there exists Km

l such that pτ (t) ∈ Th(Km
l ). By assumption and the soundness of

the Horn-clause calculus, I, wKl
|= pτ (t). So, [[t]]wKl

,α ∈ IwKl
(τ) because I is a rigid Σ-

interpretation. Then, by Definition 10 (saying that for all wi, wj ∈ W , Iwi(τ) = Iwj (τ),
Iwi(c) = Iwj (c), and Iwi(f) = Iwj (f)), [[t]]wKx

,α ∈ IwKx
(τ). Hence, I, wKx

|= pτ (t). Therefore,

we have I, wKx
|= Km+1

x .

The soundness of the rigid-property derivation system can be derived by Lemma 3.

Theorem 3 (Soundness of Rigid-Property Derivation) Let S = {K1, . . . , Kn} be a
finite set of knowledge bases and L be a sorted or ill-sorted ground atom. If Ki �S L, then
Ki |=S L.

Proof. By Definition 18, there exists an expanded knowledge base Km
i of Ki such that

Km
i � L. So we have Km

i |= L (by Theorem 1). Let I be a rigid Σ-interpretation for S.
Assume I, wK1

|= K1(= K0
1),. . . , I, wKn

|= Kn(= K0
n). By Lemma 3, I, wK1

|= Km
1 , . . . ,

I, wKn
|= Km

n . Hence, I, wKi
|= L. Therefore, we obtain the conclusion.
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Let L ← G be a clause with Var(L ← G) = {x1 : s1, . . . , xn : sn}. We now define
rigid-ground+

Ki
(L ← G) as the set of sorted and ill-sorted ground clauses (L ← G)θu with

θu = {x1 : s1/t1, . . . , xn : sn/tn} where Ki �S psk
(tk) for 1 ≤ k ≤ n.

Lemma 4 Let S = {K1, . . . ,Kn} be a finite set of knowledge bases. Let IS be a rigid
Herbrand interpretation for S and L← G be a clause. Then, the following statements hold:

1. IS , wKi
|= L← G if and only if IS , wKi

|= rigid-ground+
Ki

(L← G).

2. IS is a rigid Σ-interpretation of Ki such that IS , wKi
|= Ki.

Proof. 1. By Definition 16 and the definition of rigid-ground+
Ki

(L← G), this can be shown
in the similar way to the proof of Lemma 2.

2. First of all, we have to show that the derivation � in the Horn-clause calculus can
be applied to the rigid-property derivation �S . Namely, if Ki � A1, . . . , Ki � An derives
Ki � B in an inference rule, then Ki �S A1, . . . , Ki �S An derives Ki �S B. Suppose
Ki �S A1, . . . , Ki �S An. For each Al, there exists an expanded knowledge base Kml

i of Ki

such that Kml
i � Al (by Definition 18). Thus, if mk ≥ mj for 1 ≤ j ≤ n, then Kmk

i � A1,
. . . , Kmk

i � An. Hence, Kmk
i � B. Therefore, Ki �S B.

By the above claim and the same way of the proof of Lemma 2, we can show that IS
is a rigid Σ-interpretation such that IS , wKi

|= Ki. Furthermore, we have to prove that IS
is a rigid rigid Σ-interpretation, i.e., for each two worlds wKi

, wKj
, (1) IwKi

(τ) = IwKj
(τ), (2)

IwKi
(c) = IwKj

(c) and (3) IwKi
(f) = IwKj

(f). (1) let t ∈ IwKi
(τ). By definition, Ki �S pτ (t).

So, by Definition 18, Km
i � pτ (t) where Km

i is an expanded knowledge base of Ki. This
derives pτ (t) ∈ Th(Km

i ). By Definition 17, pτ (t) ∈ Km+1
j . Then, Km+1

j � pτ (t). Therefore,
t ∈ IwKj

(τ)(= {t | Ki �S pτ (t)}). (2) let c : → τ ∈ Ω. Then, Iwi(c) = c : τ = IwKj
(c) (by

Definition 16). (3) let f : τ1 × · · · × τn → τ ∈ Ω. Because Iwi(τ) = IwKj
(τ) for each τ ∈ T ,

we have IwKi
(f)(t1, . . . , tn) = f(t1, . . . , tn) : τ = IwKj

(f)(t1, . . . , tn) where tk ∈ IwKi
(τk) for

1 ≤ k ≤ n (by Definition 16).

Finally, we prove the completeness of the rigid-property derivation system as follows.

Theorem 4 (Completeness of Rigid-Property Derivation) Let S = {K1, . . . , Kn}
be a finite set of knowledge bases and L be a sorted or ill-sorted ground atom. If Ki |=S L,
then Ki �S L.

Proof. By Lemma 4, IS , wK1
|= K1,. . . , IS , wKn

|= Kn. Hence, by assumption, IS , wKi
|= L.

Therefore, Ki �S L (by Definition 16).

5 Query-Answering System with Rigid Properties

In this section, we provide a query-answering system equipped with rigid property derivation.
If a user inputs a query (denoted by goal G) into a knowledge base, the system returns the
instances Gθ of the goal. In other words, the instances Gθ, which are regarded as the
answers of the query, are true in the knowledge base. In order to embody a top-down
reasoning mechanism, the query answering system is implemented using a linear resolution
system.
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5.1 Linear Resolution

Here, we develop a linear resolution system for our proposed order-sorted logic that in-
cludes sort predicates and rigidity. We extend the standard linear resolution system by
incorporating additional resolution rules corresponding to the inference rules of the pro-
posed Horn-clause calculus.

The extended linear resolution system consists of the following inference rules.

Definition 19 (Linear Resolution System)

• Sorted resolution rule: Let L′ ← G′ ∈ K and L ∈ G. If θ is a unifier of L and L′,
then (G− {L})θ ∪G′θ is a goal derived from L and L′ ← G′, written by

G
θ−→R1 (G− {L})θ ∪G′θ

• Subsort resolution rule: Let ps(t) ∈ G and ps′(t′) ← G′ ∈ K. If s′ ≤ s and θ
is a unifier of t and t′, then (G − {ps(t)})θ ∪ G′θ is a goal derived from ps(t) and
ps′(t′)← G′, written by

G
θ−→R2 (G− {ps(t)})θ ∪G′θ

• Type-predicate resolution rule: Let pτ (t) ∈ G and let θ be a sorted substitution.
If sort(tθ) ≤ τ , then (G− {pτ (t)})θ is a goal derived from pτ (t), written by

G
θ−→R3 (G− {pτ (t)})θ

• Unsorted type-predicate resolution rule: Let pτ (t) ∈ G and let θu be an unsorted
substitution. If ι(θu) = {x1 : s1/t1, . . . , xn : sn/tn}, sort(t) ≤ τ , and K : {ps1(t1)} −→
G1, . . . , K : {psn(tn)} −→ Gn, then (G−{pτ (t))θu∪ (G1∪ · · ·∪Gn)θu is a goal derived
from pτ (t), written by

G
θu

−→R4 (G− {pτ (t)})θu ∪ (G1 ∪ · · · ∪Gn)θu

• Unsorted resolution rule: Let L′ ← G′ ∈ K and L ∈ G, let θu
0 be an un-

sorted substitution, and let θ be a sorted substitution. If K : {ps1(t1)} −→ G1, . . . ,
K : {psn(tn)} −→ Gn, θu

0 = {x1 : s1/t1, . . . , xn : sn/tn}, and there is a unifier θ of Lθu
0

and L′θu
0 , then (G−{L})θu∪G′θu∪ (G1∪· · ·∪Gn)θu with θu = θu

0 ◦θ is a goal derived
from L and L′ ← G′, written by

G
θu

−→R5 (G− {L})θu ∪G′θu ∪ (G1 ∪ · · · ∪Gn)θu

For ensuring soundness of rules, they are applied up to variable renaming (like in classical
resolution), so a clause and the goal in which it is resolved do not share free variables.

We generally write Θ for a sorted substitution θ or unsorted substitution θu. We use the
abbreviation G

Θ−→ G′ for each of G
Θ−→R1 G′, . . . , G

Θ−→R5 G′. An unrestricted resolvent
is a resolvent if the unifier Θ is most general. Let K be a knowledge base. A finite sequence

K : G0
Θ1−→ G1

Θ2−→ G2
Θ3−→ · · · Θn−→ Gn
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is an unrestricted resolution of G0 with respect to K (n ≥ 0). We denote it by K : G0
Θ−→→ Gn

with Θ = Θ1 · · ·Θn. K : G0
Θ−→→ Gn is called successful if Gn = ∅. We write G0 −→→ fail if

there exists no successful resolution of G0. We write G0 −→→ Gn when we do not need to
emphasize the substitution Θ in G0

Θ−→→ Gn. An unrestricted resolution is called a resolution
if the unrestricted resolvents are resolvents. The composition (Θ1 · · ·Θn)↑Var(G0) of the
substitutions to the variables in the initial goal G0 is called a computed answer substitution.
For 1 ≤ i ≤ n, the restriction of Θi to the goal Gi−1 (i.e. Θi↑Var(Gi−1)) is denoted by Θi

↑.
Moreover, we write Θ ↑for Θ1

↑· · ·Θn
↑. The following theorem guarantees the soundness of the

linear resolution system.

Theorem 5 (Soundness of Linear Resolution) Let K be a knowledge base and G be a
goal. If there exists a successful resolution K : G

Θ−→→ ∅, then K |= GΘ.

Proof. This theorem is proven by induction on the length n of a successful resolution of G.
Let K be a knowledge base and let

K : G
Θ1−→ G1

Θ2−→ G2
Θ3−→ · · · Θn−→ ∅

with Θ = Θ1 · · ·Θn be a successful resolution of G. Suppose that I, w |= K.
Base case: n = 1.

1. If G
θ1−→R1 ∅, then θ1 is a unifier of L′ ∈ K and L(= G), i.e., L′θ1 = Lθ1. Then

I, w |= L′θ1. Therefore K |= Gθ1 since L′θ1 = Lθ1(= Gθ1).

2. If G
θ1−→R2 ∅, then θ1 is a unifier of t and t′, i.e., tθ1 = t′θ1 where ps(t)(= G) and

ps′(t′)←∈ K. So, we can get I, w |= ps′(t′θ1) since Iw(s′) ⊆ Iw(s) (by Definition 9).

3. If G
θ1−→R3 ∅, then G = pτ (t). The substitution θ1 is well-sorted. So, [[tθ1]]w,α ⊆ Iw(τ).

This follows K |= pτ (tθ1).

4. If G
θu
1−→R4 ∅, then G = pτ (t) and K : {ps1(t1)} −→ ∅, . . . , K : {psr(tr)} −→ ∅.

By induction hypothesis, we have I, w |= ps1(t1), . . . , I, w |= psr(tr). These imply
K |= pτ (tθu

1 ) by the proof of Theorem 1.

5. If G
θu
1−→R5 ∅, then θu

1 is a unifier of L′ ∈ K and L(= G), i.e., L′θu
1 = Lθu

1 , and
G = pτ (t) and K : {ps1(t1)} −→ ∅, . . . , K : {psr(tr)} −→ ∅. By induction hypothesis,
I, w |= ps1(t1), . . . , I, w |= psr(tr). Hence, I, w |= L′θu

1 by the proof of Theorem 1.
Therefore, K |= Gθu

1 since L′θu
1 = Lθu

1 (= Gθu
1 ).

Induction step: n > 1.

1. If G
θ1−→R1 G1, then

G′θ1 ∪ (G− {L})θ1
Θ2−→ G2

Θ3−→ · · · Θn−→ ∅

is a resolution of G1(= G′θ1∪(G−{L})θ1) where L ∈ G, L′ ← G′ ∈ K, and L′θ1 = Lθ1.
By induction hypothesis, K |= (G′θ1 ∪ (G − {L})θ1)Θ with Θ = Θ2 · · ·Θn. Then,
K |= L′θ1Θ(= Lθ1Θ) since K |= (L′ ← G′)θ1Θ. Therefore K |= Gθ1Θ.
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2. If G
θ1−→R2 G1, then

G′θ1 ∪ (G− {ps(t)})θ1
Θ2−→ G2

Θ3−→ · · · Θn−→ ∅

is a resolution of G1(= G′θ1 ∪ (G − {ps(t)})θ1) where θ1 is a unifier of t and t′, i.e.,
tθ1 = t′θ1, ps(t) ∈ G, and ps′(t′) ← G′ ∈ K. By induction hypothesis, I, w |=
G′θ1Θ∪ (G−{ps(t)})θ1Θ with Θ = Θ2 · · ·Θn. By Definition 9, I, w |= ps(tθ1Θ) since
I, w |= ps′(t′)← G′ and Iw(s′) ⊆ Iw(s). Hence, K |= Gθ1Θ.

3. If G
θ1−→R3 G1, then

(G− {pτ (t)})θ1
Θ2−→ G2

Θ3−→ · · · Θn−→ ∅

is a resolution of G1(= (G − {pτ (t)})θ1) where pτ (t) ∈ G and θ1 is an unsorted
substitution. By induction hypothesis, I, w |= (G− {pτ (t)})θ1Θ with Θ = Θ2 · · ·Θn.
By the proof of Theorem 1, [[tθ1Θ]]w,α ⊆ Iw(τ). It follows K |= pτ (tθ1Θ), and so
K |= Gθ1Θ.

4. If G
θ1−→R4 G1, then

(G− {pτ (t)})θu
1 ∪ (G′

1 ∪ · · · ∪G′
r)θ

u
1

Θ2−→ G2
Θ3−→ · · · Θn−→ ∅

is a resolution of G1(= (G − {pτ (t)})θu
1 ∪ (G′

1 ∪ · · · ∪ G′
r)θ

u
1 ) where pτ (t) ∈ G and

θu is an unsorted substitution. By induction hypothesis, I, w |= (G − {pτ (t)})θu
1Θ ∪

(G′
1 ∪ · · · ∪ G′

r)θ
u
1Θ with Θ = Θ2 · · ·Θn. By definition, K : {ps1(t1)} −→ G′

1, . . . ,
K : {psr(tr)} −→ G′

r. By induction hypothesis, I, w |= ps1(t1), . . . , I, w |= psr(tr).
Therefore, by the proof of Theorem 1, K |= pτ (tθΘ). So, K |= Gθ1Θ.

5. If G
θ1−→R5 G1, then

(G− {L})θu ∪G′θu
1 ∪ (G′

1 ∪ · · · ∪G′
r)θ

u
1

Θ2−→ G2
Θ3−→ · · · Θn−→ ∅

is a resolution of G1(= (G− {L})θu
1 ∪G′θu

1 ∪ (G′
1 ∪ · · · ∪G′

r)θ
u
1 ) where L′ ← G′ ∈ K,

L ∈ G, and θu
1 is an unsorted substitution. By induction hypothesis, I, w |= (G −

{L})θu
1Θ∪G′θu

1Θ∪(G′
1∪· · ·∪G′

r)θ
u
1Θ with Θ = Θ2 · · ·Θn. By definition, θu

1 is a unifier
of L′ and L, i.e., L′θu

1 = Lθu
1 , and K : {ps1(t1)} −→ G′

1, . . . , K : {psr(tr)} −→ G′
r.

By induction hypothesis, I, w |= ps1(t1), . . . , I, w |= psr(tr). Then, by the proof of
Theorem 1, I, w |= L′θu

1Θ. Therefore, K |= Gθu
1Θ since L′θu

1 = Lθu
1 .

Lemma 5 Let K be a knowledge base and L← G be a ground clause. If K � L← G, then
K : G −→→ ∅ implies K : L −→→ ∅.

Proof. We show the lemma by induction on the length n of a derivation tree of L ← G
from K.

n = 1: If L ← G is derived by the sorted substitution rule in the Horn-clause calculus,
then L′ ← G′ ∈ K where L← G is a ground instance of L′ ← G′, i.e., (L′ ← G′)θ = L← G.
Suppose K : G −→→ ∅. By the sorted resolution rule, it is easy to derive K : L

θ−→R1 G −→→ ∅.
If pτ (t)← is derived by the type predicate rule, then sort(t) ≤ τ , and so K : pτ (t)

ε−→R3 ∅
(by the type-predicate resolution rule).
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If pτ (t) ← G is derived by the unsorted type predicate rule, then there exists an
unsorted substitution θu such that for some term t′, t′θu = t, and sort(t′) ≤ τ . Let
ι(θu) = {x1 : s1/t1, . . . , xn : sn/tn}. Then, we have K � ps1(t1)← G1, . . . , K � psn(tn)← Gn

and G = G1 ∪ · · · ∪Gn. Hence, K : {ps1(t1)} −→ G1, . . . , K : {psn(tn)} −→ Gn. Therefore,
if K : G −→→ ∅, then K : pτ (t)

θu

−→R4 G −→→ ∅.
If L ← G is derived by the unsorted substitution rule, then L′ ← G′ ∈ K where

L ← G is a ground instance of L′ ← G′ ∪ G1 ∪ · · · ∪ Gn. That is, there exists an un-
sorted substitution θu such that (L′ ← G′ ∪ G1 ∪ · · · ∪ Gn)θu = L ← G. Let ι(θu) =
{x1 : s1/t1, . . . , xn : sn/tn}. So, we have K � ps1(t1)← G1, . . . , K � psn(tn)← Gn. By induc-
tion hypothesis, K : {ps1(t1)} −→ G1, . . . , K : {psn(tn)} −→ Gn. Therefore, if K : G −→→ ∅,
then K : L

θu

−→R5 G −→→ ∅ (by the unsorted type-predicate resolution).
n > 1: If L ← G is derived by the cut rule, by induction hypothesis, there are subsets

G′ and G′′ of G such that G = G′ ∪ G′′. So, K : G′ ∪ {L′} −→→ ∅ implies K : L −→→ ∅, and
K : G′′ −→→ ∅ implies K : L′ −→→ ∅. Hence if K : G −→→ ∅, then K : L −→→ ∅.

If ps′(t)← G is derived by the subsort rule, then K � ps(t)← G and s′ ≤ s. By induction
hypothesis, if K : G −→→ ∅, then K : ps(t) −→→ ∅. Therefore, K : ps(t)

ε−→R2 ps′(t) −→→ ∅.
In the case n > 1, the other rules cannot derive L← G because they have no antecedent.

So, the proof has been done.

Theorem 6 (Ground Completeness of Linear Resolution) Let K be a knowledge base
and G be a ground goal. If K |= G, then there exists a resolution K : G

Θ−→→ ∅.

Proof. Let I, w |= K. By assumption, I, w |= G. Let S be a finite set of knowledge bases
including K. Then IS , wK |= G by Lemma 2. By Definition 16, K � L in K for all L ∈ G.

Hence, K : L −→→ ∅ by Lemma 5. Therefore, we can obtain K : G
Θ−→→ ∅.

Lemma 6 (Lifting) Let K be a knowledge base. If K has an unrestricted resolution

K : G0Θ0
Θ1−→ G1

Θ2−→ · · · Θn−→ Gn,

then K has a resolution
K : G0

Θ′
1−→ G′

1

Θ′
2−→ · · · Θ′

n−→ G′
n

and the following holds.

(i) γ0 = Θ0, and for 1 ≤ i ≤ n, (γi−1↑Var(Gi−1))Θi = Θ′
iγi and Gi = G′

iγi, and

(ii) there exists a substitution γ′
n with G0Θ0Θ1

↑· · ·Θn
↑= G0Θ′

1
↑· · ·Θ′

n
↑γ′

n.

Proof. We show the lemma by induction on the length n of a resolution. The proof is
based on Lemmas 5.33 and Theorem 5.37 in [14].

We will show the completeness of the linear resolution system corresponding to the
extended Horn-clause calculus.

Theorem 7 (Completeness of Linear Resolution) Let K be a knowledge base, G be a
goal, and Θ be a sorted or unsorted substitution. If K |= GΘ, then there exists a successful

resolution K : G
Θ′
−→→ ∅ such that GΘ = GΘ′↑γ.
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Proof. We first introduce a new constant ci : si for every xi : si ∈ Var(GΘ). Let β be a
sorted substitution defined by Dom(β) = Var(GΘ) and β(xi : si) = ci : si. By definition,
K |= GΘ leads to K |= GΘβ. By Theorem 6, there exists a resolution K : GΘβ

δ−→→ ∅. By
Lemma 6, we have a resolution K : G

Θ0−→→ ∅ with GΘβδ ↑= GΘ′↑γ. Due to Var(GΘβ) = ∅,
GΘβ = GΘ′↑γ. So, GΘ′↑does not include the new constants ci : si. Thus, γ(yi : si) = ci : si

holds for a variable yi : si (the sort of which is the same as of xi : si). If (yi : si)γ0 = xi : si

and γ′ = {(a, b) ∈ γ|a �= yi : si} ∪ γ0, then GΘ = GΘ′↑γ′.

5.2 Rigid-Property Resolution for Multiple Knowledge Bases

We develop an extended linear resolution system (called a rigid-property resolution system)
that is more effective than the rigid-property derivation system. To be precise, the three
linear resolution rules (sorted resolution, unsorted type-predicate resolution, and unsorted
resolution rules) are extended to deal with the extraction of rigid property information in
multiple knowledge bases.

The rigid-property resolution system contains the following resolution rules.

Definition 20 (Rigid-Property Resolution System) Let S be a finite set of knowledge
bases and let K ∈ S.

• Sorted resolution rule with rigidity: Let pτ (t′)← G′ ∈ K′ with K′ ∈ S/{K} and
pτ (t) ∈ G. If θ is a unifier of t and t′, then (G− {pτ (t)})θ and G′θ are goals derived
from pτ (t) and pτ (t′)← G′, written by

K : G
θ−→R1+ (G− {pτ (t)})θ and K′ : G′θ

• Unsorted type-predicate resolution rule with rigidity: Let pτ (t) ∈ G and let
θu be an unsorted substitution. If ι(θu) = {x1 : s1/t1, . . . , xn : sn/tn}, sort(t) ≤ τ , and
K : {ps1(t1)} −→ G1, . . . , K : {psm(tm)} −→ Gm, then (G − {pτ (t)})θu ∪ (G1 ∪ · · · ∪
Gm)θu, and Gm+1θ

u,. . . ,Gnθu are goals derived from pτ (t), written by

K : G
θu

−→R4+ (G− {pτ (t)})θu ∪ (G1 ∪ · · · ∪Gm)θu

K′
m+1 : {psm+1(tm+1)} −→ Gm+1θ

u, . . . ,K′
n : {psn(tn)} −→ Gnθu

where K′
m+1, . . . ,K′

n ∈ S/{K}.

• Unsorted resolution rule with rigidity: Let L′ ← G′ ∈ K and L ∈ G and let θu

be an unsorted substitution. If ι(θu) = {x1 : s1/t1, . . . , xn : sn/tn}, θu is a unifier of
L and L′ and K : {ps1(t1)} −→ G1, . . . , K : {psm(tm)} −→ Gm, then (G − {L})θu ∪
G′θu∪(G1∪· · ·∪Gm)θu, and Gm+1θ

u,. . . ,Gnθu are goals derived from L and L′ ← G′,
written by

K : G
θu

−→R5+ (G− {L})θu ∪G′θu ∪ (G1 ∪ · · · ∪Gm)θu

K′
m+1 : {psm+1(tm+1)} −→ Gm+1θ

u, . . . ,K′
n : {psn(tn)} −→ Gnθu

where K′
m+1, . . . ,K′

n ∈ S/{K}.
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With respect to the resolution rules with rigidity, we use the abbreviation G
Θ−→+ G′

for each of G
Θ−→ G′, G

Θ−→R1+ G′, G
Θ−→R4+ G′, and G

Θ−→R5+ G′. We denote a
rigid-property resolution by K : G0

Θ−→→+ Gn. We can say that there exists a successful
rigid-property resolution of G in K if one of the following conditions holds:

1. There exists a successful resolution K : G
Θ′
−→→ ∅ of G.

2. There exists a rigid-property resolution K : G
Θ′
−→→+ G′ of G such that G′ = ∅ and,

whenever a resolution rule with rigidity (R1+, R4+, or R5+) is applied, there exist
successful rigid-property resolutions of its newly created goals in the other knowledge
bases (K′ or K′

m+1, . . . ,K′
n).

Example 5 Suppose we have the sorted signature Σ = (T, N, Ω,≤∗) of Example 2 and the
knowledge bases K1, K2, K3, and K4 of Example 4. Consider a rigid-property resolution
K3 : {canfly(z : animal)} Θ−→→+ ∅ of the goal {canfly(z : animal)}.

First, the sorted resolution rule is applied to the goal in the knowledge base K3.

K3 : {canfly(z : animal)} θ1−→R1 {bird(z1 : animal)}

where θ1 = {z : animal/z1 : animal, x : animal/z1 : animal}.
Second, the subgoal {bird(z1 : animal)} derives the empty clause if the sorted resolution

rule with rigidity is successfully applied to another knowledge base K4.

K3 : {bird(z1 : animal)} θ2−→R1+ ∅
K4 : {bird(tony : animal)} θ3−→R1 {bird(peter : animal), father(peter : animal, tony : animal)}

where θ2 = {z1 : animal/tony : animal} and θ3 = ∅. To obtain the rigid property infor-
mation “tony is a bird” from the knowledge base K4, the new goal {bird(tony : animal)} is
resolved by deriving the subgoal {bird(peter : animal), father(peter : animal, tony : animal)}
by applying the sorted resolution rule.

Moreover, the subgoal is resolved by applying the sorted resolution rule with rigidity if
there is a successful resolution of the goal {bird(peter : animal)} in another knowledge base
K3.

K4 : {bird(peter : animal)} θ4−→R1+ ∅
K3 : {bird(peter : animal)} θ5−→R2 ∅

where θ4 = ∅ and θ5 = ∅.
Therefore, there is a successful rigid-property resolution of the goal {canfly(z : animal)}

in K3.

We show the soundness of the rigid-property resolution system as follows.

Theorem 8 (Soundness of Rigid-Property Resolution) Let S = {K1, . . . , Kn} be a
finite set of knowledge bases and G be a goal. If there exists a successful rigid-property
resolution Ki : G

Θ−→→+ ∅ of G, then Ki |=S GΘ.
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Proof. This theorem is proven by induction on the length n of a successful rigid-property
resolution of G. Let K be a knowledge base and let

Ki : G
Θ1−→ G1

Θ2−→ G2
Θ3−→ · · · Θn−→ ∅

with Θ = Θ1 · · ·Θn be a successful rigid-property resolution of G.
Base case: n = 1. The resolution rules with rigidity (R1+, R4+, and R5+) are the same as
the corresponding linear resolution rules (R1, R4, and R5).

Induction step: n > 1. We show only the cases where resolution rules with rigidity
(R1+, R4+, and R5+) are applied as follows.

1. If G
θ1−→R1+ G1, then

K : G′θ1 ∪ (G− {pτ (t)})θ1
Θ2−→ G2

Θ3−→ · · · Θn−→ ∅

K′ : G′θ1
Θ′

2−→ G′
2

Θ′
3−→ · · · Θ′

r−→ ∅

is a resolution of G1(= G′θ1 ∪ (G−{pτ (t)})θ1) where pτ (t) ∈ G, pτ (t′)← G′ ∈ K, and
t′θ1 = tθ1. By induction hypothesis, K |=S (G− {pτ (t)})θ1Θ′ with Θ = Θ2 · · ·Θn and
K′ |=S G′θ1Θ′ with Θ′ = Θ′

2 · · ·Θ′
r. On the other hand, K′ |=S pτ (t′θ1Θ′)(= pτ (tθ1Θ′))

since K′ |=S (pτ (t′) ← G′)θ1Θ′. Therefore K′ |=S pτ (tθ1Θ′). By Definition 9, K |=S
pτ (tθ1Θ′), and so K |=S Gθ1Θ′.

2. If G
θu

−→R4+ G1, then

K : (G− {pτ (t)})θu ∪ (G′
1 ∪ · · · ∪G′

m)θu Θ2−→ G2
Θ3−→ · · · Θn−→ ∅

K′
m+1 : {psm+1(tm+1)} −→ G′

m+1θ
u

Θ(m+1,2)−→ G(m+1,2)

Θ(m+1,3)−→ · · ·
Θ(m+1,km+1)−→ ∅,

. . . ,

K′
r : {psr(tr)} −→ G′

rθ
u

Θ(r,2)−→ G(r,2)

Θ(r,3)−→ · · ·
Θ(r,kr)−→ ∅

is a resolution of G1(= (G − {pτ (t)})θu ∪ (G′
1 ∪ · · · ∪ G′

m)θu) where pτ (t) ∈ G and
θu is an unsorted substitution. By induction hypothesis, K |=S (G − {pτ (t)})θuΘ ∪
(G′

1 ∪ · · · ∪ G′
m)θuΘ with Θ = Θ2 · · ·Θn, and K′

m+1 |=S G′
m+1θ

uΘ′
m+1 with Θ′

m+1 =
Θ(m+1,2) · · ·Θ(m+1,km+1), . . . , K′

r |=S G′
rθ

uΘ′
r with Θ′

r = Θ(r,2) · · ·Θ(r,kr). By defi-
nition, K : {ps1(t1)} −→ G1, . . . , K : {psm(tm)} −→ G′

m, Then, K |=S ps1(t1), . . . ,
K |=S psm(tm). For m + 1 ≤ j ≤ r, K′

j |=S psj (tjθΘ
′
j), and by Definition 9,

K |=S psj (tjθΘ
′
j). According to the proof of Theorem 1, K |=S pτ (tθΘ). Hence,

K |=S GθuΘ.

3. If G
θu

−→R5+ G1, then

K : (G− {L})θu ∪G′θu ∪ (G′
1 ∪ · · · ∪G′

m)θu Θ2−→ G2
Θ3−→ · · · Θn−→ ∅

K′
m+1 : {psm+1(tm+1)} −→ G′

m+1θ
u

Θ(m+1,2)−→ G(m+1,2)

Θ(m+1,3)−→ · · ·
Θ(m+1,km+1)−→ ∅,

. . . ,

K′
r : {psr(tr)} −→ G′

rθ
u

Θ(r,2)−→ G(r,2)

Θ(r,3)−→ · · ·
Θ(r,kr)−→ ∅
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is a resolution of G1(= (G− {L})θu ∪G′θu ∪ (G′
1 ∪ · · · ∪G′

m)θu) where L′ ← G′ ∈ K,
L ∈ G, and θu is an unsorted substitution. By induction hypothesis, K |=S (G −
{L})θuΘ∪G′θuΘ∪(G′

1∪· · ·∪G′
m)θuΘ with Θ = Θ2 · · ·Θr, and K′

m+1 |=S G′
m+1θ

uΘ′
m+1

with Θ′
m+1 = Θ(m+1,2) · · ·Θ(m+1,km+1), . . . , K′

r |=S G′
rθ

uΘ′
r with Θ′

r = Θ(r,2) · · ·Θ(r,kr).
By definition, θu is a unifier of L′ and L, i.e., L′θu = Lθu, and K : {ps1(t1)} −→ G1, . . . ,
K : {psm(tm)} −→ G′

m. For m + 1 ≤ j ≤ r, K′
j |=S psj (tjθΘ

′
j), and by Definition 9,

K |=S psj (tjθΘ
′
j). Then, by the proof of Theorem 1, K |=S L′θuΘ. Hence, K |=S

GθuΘ. Therefore, K |=S GθuΘ since L′θu = Lθu.

Lemma 7 Let S = {K1, . . . , Kn} be a finite set of knowledge bases and L← G be a ground
clause. If Ki �S L← G, then Ki : G −→→+ ∅ implies Ki : L −→→+ ∅.

Proof. We show the lemma by induction on the length n of a derivation tree of L ← G
from Ki.

• Let K0
i � L← G. By Lemma 5, K0

i : G −→→ ∅ implies K0
i : L −→→ ∅.

• Let Km
i � L← G (m > 0).

n = 1:

1. If L ← G is derived by the sorted substitution rule, then L ← G has the form
ps(t) ← ∅ and by definition Km′

j � ps(t) with 0 ≤ m′ < m and i �= j. By
Theorem 4, Km′

j : ps(t) −→→ ∅. By the sorted resolution rule with rigidity, we can
to derive Ki : ps(t)

ε−→R1+ ∅.
2. If L← G is derived by the unsorted substitution rule, then we have L′ ← G′ ∈ Ki

and there exists an unsorted substitution θu such that (L′ ← G′ ∪ G1 ∪ · · · ∪
Gk)θu = L ← G. Let ι(θu) = {x1 : s1/t1, . . . , xn : sn/tn} with k ≤ n. So, we
have K0

i � ps1(t1) ← G1, . . . , K0
i � psk

(tk) ← Gk, and Kmk+1

ik+1
� psk+1

(tk+1), . . . ,
Kmn

in
� psn(tn) where for k + 1 ≤ j ≤ n, mj > 0 and ij �= i. By induction

hypothesis, Ki : {ps1(t1)} −→ G1, . . . , Ki : {psk
(tk)} −→ Gn, and by Theorem 4,

Kmk+1

ik+1
: psk+1

(tk+1)
Θk+1−→→ ∅, . . . , Kmn

in
: psn(tn) Θn−→→ ∅. If Ki : G −→→+ ∅, then

Ki : L
θu

−→R5+ (G′∪G1∪· · ·∪Gk)θu −→→ ∅ (by the unsorted substitution resolution
rule with rigidity).

3. If pτ (t) ← G is derived by the unsorted type-predicate rule, where G = G1 ∪
· · · ∪ Gk, then there exists an unsorted substitution θu such that for some term
t′, t′θu = t, and sort(t′) ≤ τ . Let ι(θu) = {x1 : s1/t1, . . . , xn : sn/tn} with k ≤
n. So, we have K0

i � ps1(t1) ← G1, . . . , K0
i � psk

(tk) ← Gk, and Kmk+1

ik+1
�

psk+1
(tk+1), . . . , Kmn

in
� psn(tn) where for k + 1 ≤ j ≤ n, mj > 0 and ij �= i. By

induction hypothesis, Ki : {ps1(t1)} −→ G1, . . . , Ki : {psk
(tk)} −→ Gn, and by

Theorem 4, Kmk+1

ik+1
: psk+1

(tk+1)
Θk+1−→→ ∅, . . . , Kmn

in
: psn(tn) Θn−→→ ∅. If Ki : G −→→+ ∅,

then Ki : pτ (t)
θu

−→R4+ (G1 ∪ · · · ∪ Gk)θu −→→ ∅ (by the unsorted type-predicate
resolution rule with rigidity).

n > 1:
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1. If L ← G is derived by the cut rule, then Km
i � L′ ← G′′ and Km

i � L ←
G′ ∪ {L′}. By induction hypothesis, there are subsets G′ and G′′ of G such that
G = G′ ∪G′′, Km

i : G′ ∪ {L′} −→→+ ∅ implies Km
i : L −→→+ ∅, and Km

i : G′′ −→→+ ∅
implies Km

i : L′ −→→+ ∅. Hence Km
i : G −→→+ ∅ implies Km

i : L −→→+ ∅.
2. If ps′(t)← G is derived by the subsort rule, then, Km

i � ps(t)← G and s′ ≤ s. By
the induction hypothesis, if Km

i : G −→→+ ∅, then Km
i : ps(t) −→→+ ∅. Therefore,

Km
i : ps(t)

ε−→R2 ps′(t) −→→+ ∅.

Theorem 9 (Ground Completeness of Rigid-Property Resolution) Let S = {K1,
. . . ,Kn} be a finite set of knowledge bases and G be a ground goal. If Ki |=S G, then there
exists a rigid-property resolution Ki : G

Θ−→→+ ∅.

Proof. Let I, wK1
|= K1, . . . , I, wKn

|= Kn. By assumption, I, wKi
|=S G. Then IS , wKi

|= G
by Lemma 2. By Definition 16, Ki �S L for all L ∈ G. Hence, Ki : L −→→+ ∅ by Lemma 7.
Therefore, we can obtain Ki : G

Θ−→→+ ∅.

Lemma 8 (Lifting) Let S = {K1, . . . , Kn} be a finite set of knowledge bases. If Ki has an
unrestricted rigid-property resolution

Ki : G0Θ0
Θ1−→+ G1

Θ2−→+ · · · Θn−→+ Gn,

then Ki has a rigid-property resolution

Ki : G0
Θ′

1−→+ G′
1

Θ′
2−→+ · · ·

Θ′
n−→+ G′

n

and the following holds.

(i) γ0 = Θ0, and for 1 ≤ i ≤ n, (γi−1↑Var(Gi−1))Θi = Θ′
iγi and Gi = G′

iγi, and

(ii) there exists a substitution γ′
n with G0Θ0Θ1

↑· · ·Θn
↑= G0Θ′

1
↑· · ·Θ′

n
↑γ′

n.

Proof. Similar to Lemma 6.

Using the above theorems and lemmas, the completeness of the rigid-property resolution
system can be proven as follows.

Theorem 10 (Completeness of Rigid-Property Resolution) Let S = {K1, . . . , Kn}
be a finite set of knowledge bases, G be a goal, and Θ be a sorted or unsorted substitution.
If Ki |=S GΘ, then there exists a successful rigid-property resolution Ki : G

Θ′
−→→+ ∅ such that

GΘ = GΘ′↑γ.

Proof. Theorem 9 and Lemma 8 derive the completeness similar to Theorem 7.
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5.3 Query-Answering Algorithm

The purpose of this subsection is to develop a query-answering algorithm of the rigid-
property resolution. We focus on function-free, recursive knowledge bases because the elim-
ination of n-ary functions (n ≥ 1) results in a decidable algorithm by means of the techniques
for deductive databases [50, 11]. The linear resolution and rigid-property resolution systems
do not contain any inference strategy since a detailed procedure on how to select inference
rules and clauses has not been described.

1 Algorithm solve
2 input set of clauses K, set of atoms G, family of sets of clauses S, substitution Θ0

3 output set of substitutions (successful) or ⊥ (fails)
4 global variables ΔK = ∅, ΣK = ∅
5 begin
6 if G = ∅ then return {Θ0};
7 Sub = ∅;
8 L = select(G);
9 if L ∈ instance(ΔK) then
10 for L′ ∈ ΣK do
11 θ = unify(L, L′);
12 if θ �= ⊥ then
13 δ = solve(K, (G− {L})θ,S, Θ0 ◦ θ);
14 if δ �= ⊥ then Sub = Sub ∪ δ;
15 fi;
16 rof;
17 else ΔK = ΔK ∪ {L};
18 for C ∈ K and r ∈ {R1, . . . , R5, R1+, R4+, R5+} do
19 (Ga, Gb, Θ) = apply rule(L, C, G, r);
20 if Θ �= ⊥ then
21 δa = solve(K, Ga,S, Θ0 ◦Θ);
22 if δa �= ⊥ then
23 Sub = Sub ∪ δa;
24 for Θ′ ∈ δa do
25 if LΘ′ �∈ instance(ΣK) then rigid ΣK = ΣK ∪ {LΘ′};
26 δb = solve(K, GbΘ′,S, Θ0 ◦Θ ◦Θ′);
27 if δb �= ⊥ then Sub = Sub ∪ δb;
28 rof;
29 fi;
30 fi;
31 rof;
32 else;
33 if Sub �= ∅ then return Sub else return ⊥;
34 end;

In the query-answering algorithm, the subroutine select(G) as a selection function selects
the leftmost atom in the goal G. The function instance(ΔK) denotes the set of sorted
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instances of clauses in ΔK. Moreover, the subroutine unify(L, L′) returns the most general
unifier for L and L′ if they are unifiable, otherwise, it returns ⊥. The unification can be
implemented by the order-sorted unification algorithm in [27]. When we apply a resolution
rule to a selected atom in a goal, the following subroutine apply rule(L, C, G, r) is called,
where L is an atom, C is a clause, G is a goal, and r is a resolution rule.

1 Algorithm apply rule
2 input atom L, clause C, goal G, resolution rule r
3 output set of atoms Ga, set of atoms Gb, and
4 set of substitutions (successful) or ⊥ (fails)
5 begin
6 if r is applicable to the pair (L, C) or the atom L then
7 switch(r)
8 case R1 or R2:
9 Ga = (G− {L})θ; Gb = G′θ; Θ = θ;
10 (by applying the sorted or subsort resolution rule)
11 case R3:
12 Ga = (G− {L})θ; Gb = ∅; Θ = θ;
13 (by applying the type-predicate resolution rule)
14 case R4:
15 Ga = (G− {L})θu; Gb = (G1 ∪ · · · ∪Gn)θu; Θ = θu;
16 (by applying the unsorted type-predicate resolution rule)
17 case R5:
18 Ga = (G− {L})θu; Gb = G′θu ∪ (G1 ∪ · · · ∪Gn)θu; Θ = θu;
19 (by applying of the unsorted resolution rule)
20 case R1+:
21 Ga = (G− {L})θu; Gb = ∅; Θ = θu;
22 (by applying the sorted resolution rule with rigidity)
23 δK′ = solve(K′, G′θ,S, ∅);
24 if δK′ = ⊥ return (Ga, Gb,⊥);
25 case R4+:
26 Ga = (G− {L})θu; Gb = (G1 ∪ · · · ∪Gm)θu; Θ = θu;
27 (by applying the unsorted resolution rule with rigidity)
28 for K′ ∈ {K′

m+1, . . . ,K′
n} do

29 δK′ = solve(K′, G′θ,S, ∅);
30 if δK′ = ⊥ return (Ga, Gb,⊥);
31 rof;
32 case R5+:
33 Ga = (G− {L})θu; Gb = G′θu ∪ (G1 ∪ · · · ∪Gm)θu; Θ = θu;
34 (by applying the unsorted resolution rule with rigidity)
35 for K′ ∈ {K′

m+1, . . . ,K′
n} do

36 δK′ = solve(K′, G′θ,S, ∅);
37 if δK′ = ⊥ return (Ga, Gb,⊥);
38 rof;
39 return (Ga, Gb, Θ);
40 fi;
41 return (∅, ∅,⊥);
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42 end;

We consider a search strategy of the rigid-property resolution, i.e., a selection function
is fixed in a resolution of a goal G0:

K : G0
Θ1−→ G1

Θ2−→ G2
Θ3−→ · · · Θn−→ Gn

where one of the atoms in each goal Gi is selected when a resolution rule is applied to the
goal. We denote a sequence K1 : G1, . . . ,Kk : Gk (k ≥ 0) of pairs of knowledge bases and
goals by Seq and denote a sequence K1 : ∅, . . . ,Kl : ∅ (l ≥ 0) of pairs of knowledge bases and
the empty set by ESeq .

We define an SLD-tree that is a derivation tree of SLD-resolution (selection-rule driven
linear resolution for definite clauses). If a selection function is added to a linear resolution
system, then we obtain an SLD-resolution system. As one of the techniques of automated
reasoning, the truth of a goal in a set of clauses can be checked to terminate under SLD-
resolution. We make use of this technique in order to develop a decidable goal-oriented
reasoning algorithm for our proposed order-sorted logic (logic programming with tabling [49]
is an alternative decidable technique).

Let S be a finite set of knowledge bases, K be a knowledge base in S, and G0 be a goal.
A leftmost rigid-property SLD-tree for G0 is a tree such that

(i) the root is labeled with (K : G0);

(ii) if a node d is labeled with (ESeq ,K : G,Seq) and a resolution rule (either of R1 to R5)
is applicable to G in K (i.e., K : G

θ−→R∗ G′ for some ∗ ∈ {1, . . . , 5}), the node d has
a child node d′ labeled with (ESeq ,K : G′,Seq) and the edge (d, d′) is labeled with θ;

(iii) if a node d is labeled with (ESeq ,K : G,Seq) and the sorted resolution rule with rigidity
(R1+) is applicable to G in K (i.e., K : G

θ−→R1+ G′ and K′ : G′′), the node d has a
child node d′ labeled with (ESeq ,K′ : G′′,K : G′,Seq) and the edge (d, d′) is labeled
with θ;

(iv) if a node d is labeled with (ESeq ,K : G,Seq) and the unsorted type-predicate resolution
rule with rigidity or unsorted resolution rule with rigidity (R4+ or R5+) is applicable
to G in K (i.e., K : G

θu

−→R∗+ G′ for some ∗ ∈ {4, 5} and K′
1 : G′

1, . . . ,K′
m : G′

m), the
node d has a child node d′ labeled with (ESeq ,K′

1 : G′
1, . . . ,K′

m : G′
m,K : G′,Seq) and

the edge (d, d′) is labeled with θ.

A SLD-tree contains a success if there exists a leaf node labeled with ESeq = K1 : ∅, . . . ,
Kl : ∅ in it.

Lemma 9 Let S = {K1, . . . , Kn} be a finite set of knowledge bases and G0 be a goal. Every
leftmost rigid-property SLD-tree contains a success with a computed answer substitution Θ
if and only if there exists a substitution Θ in {Θ1, . . . , Θm} such that solve(Ki, G0,S, ∅) =
{Θ1, . . . , Θm}.

Proof. (⇐) Let us assume solve(Ki, G0,S, ∅) = {Θ1, . . . , Θm}. In the process of solve(Ki, G0,
S, ∅), we can construct a tree for G in the following operations:

33



• Create the root d0 labeled with (Ki : G0).

• Create a new node d′ and the edge (d, d′) under conditions (ii) - (iv) of leftmost
rigid-property SLD trees if a node d labeled with (ESeq ,K : G,Seq) is created and
apply rule(L, C, G, r) is called where L = select(G), C ∈ K, and r ∈ {R1, . . . , R5, R1+,
R4+, R5+}.

• Add the proof segment of L′ to the node if a node d labeled with (ESeq ,K : G,Seq) is
created, L = select(G), L ∈ instance(ΔK), L′ ∈ ΣK, θ = unify(L, L′), and θ �= ⊥.

The trees constructed by these operations satisfy the conditions of leftmost rigid-property
SLD trees, where for each substitution Θ ∈ {Θ1, . . . , Θm}, there exists a leaf node of the
form ESeq with the computed answer substitution Θ.

(⇒) Let T be a leftmost rigid-property SLD-tree for G0 that contains a success with
a computed answer substitution Θ. By definition, T has a leaf node labeled with ESeq =
K′

1 : ∅, . . . , K′
m : ∅ where {K′

1, . . . ,K′
m} ⊆ S. This implies that we have a path from (Ki : G0)

to ESeq as follows:

(Ki : G0)→ (ESeq1,Seq1)→ · · · → (ESeqk,Seqk)→ (ESeq)

This sequence generates a successful rigid-property resolution of G0. By the definition of
leftmost rigid-property SLD-trees, the leftmost atom of each goal is selected when a resolu-
tion rule is applied to a node, and the goals G′′

1, . . . , G
′′
r in other knowledge bases K′′

1 , . . . ,K′′
r

are added in front of the goal K : G′ containing the selected atom (i.e., (ESeq ,K′′
1 : G′′

1, . . . ,
K′′

r : G′′
r ,K : G′,Seq)) after one of the rigid-property resolution rules is applied to a node.

The applications of resolution rules are performed in the query answering algorithm
solve(Ki, G,S, ∅). Note that if L ∈ instance(ΔK) where L is selected by L = select(G),
then the resolution process of the atom L is skipped. It indicates that the atom L has been
already resolved successfully in the former processes and there is no need to repeat the same
resolution steps because resolution rules are identically applied. Therefore, the algorithm
derives the empty goal ∅ for the knowledge bases K′

1, . . . ,K′
m where {K′

1, . . . ,K′
m} ⊆ S. It

returns a set of substitutions {Θ1, . . . , Θm} that contains the computed answer substitution
Θ in the successful rigid-property resolution of G0.

The completeness of the algorithm solve is given as follows.

Theorem 11 (Completeness of solve) Let S = {K1, . . . , Kn} be a finite set of knowledge
bases, G be a goal, and Θ be a sorted or unsorted substitution. If Ki |=S GΘ, then there
exists a substitution Θ in {Θ1, . . . , Θm} such that GΘ = GΘ′↑γ and solve(Ki, G,S, ∅) =
{Θ1, . . . , Θm}.

Proof. By Theorem 10, we have a successful rigid-property resolution Ki : G
Θ′
−→→+ ∅ such

that GΘ = GΘ′↑γ. Hence, we can construct a leftmost rigid-property SLD-tree containing a
success. Therefore, by Lemma 9, this theorem can be proven.

The decidability of the algorithm solve is guaranteed if the inputted knowledge bases
are function-free as follows.

Theorem 12 (Termination of solve) The query-answering algorithm solve terminates.
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Proof. Each selected atom L in line 8 of the algorithm is added to ΔK if L is not an
instance of each atom in ΔK. So, the number of recursive calls depends on the number of
elements of ΔK because lines 10 - 16 are the only routine to decrease the elements of next
goal each atom of which recursively calls the algorithm. If every knowledge base contains
no functions, the set ΔK is limited to finite. Therefore, it terminates.

6 Discussion

Prominent languages such as RDF [33], OWL [41], and RuleML [1] have been designed
for modeling ontologies and rules for the Semantic Web; sound and complete decidable
reasoning services for these languages are provided by Description Logics [5] and DATALOG.
Moreover, SWRL [26], a combination of OWL and RuleML, corresponds to a combination
of Description Logics and DATALOG. However, SWRL becomes undecidable even when
the rules are function-free [25]. In order to make it decidable, the rules must be non-
recursive [35, 15], DL-safe [24, 42], or Description Logic Programs (DLP) [19]; however,
these restrictions result in the loss of expressive power of rules. Recently, as discussed in [32],
the new OWL 2 [2] has provided us the tractable language profile OWL 2 EL with DL-rules,
which are based on the Description Logic EL++. The rule-based language ELP [32], which
extends EL++ using local reflexivity, concept products, and the conjunctions of simple roles,
preserves tractability. These sophisticated proposals enable low complexities but restrict the
expressive power of rules.

A solution to the problem of undecidability or limited rule expressions is the use of
order-sorted logic programming, which is a combination of sort hierarchy and logic pro-
gramming [36, 4]. Sort hierarchy provides a simple ontology of partially ordered sorts that
does not include negation, disjunction, or quantification. Our approach is an extension of
order-sorted logic programming that preserves decidability in function-free, recursive rules.
In addition to decidability, we present effective reasoning services in an order-sorted linear
resolution system. In previous studies, researchers had proposed many refinements to in-
ference systems for automated reasoning. For example, hyperresolution reduces a sequence
of resolution steps into a single inference step [34]. Hyperresolution is an efficient method
for reducing general clauses since it helps resolve more than two clauses in a single step.
We use linear resolution as a refinement because it is useful for combining Horn clauses and
goal-oriented reasoning (i.e., only inference steps that are related to a goal are generated).

In the Semantic Web context, multiple software agents access distributed ontologies and
rules on the Web. In multi-agent reasoning [16], multiple knowledge bases can be assigned
to agents. In other words, each agent should have its own knowledge base because it updates
knowledge through its experience by communicating with other agents. Researchers have
previously modified the OWL global semantics and proposed C-OWL (Context OWL [8])
for distributed OWL ontologies. In C-OWL, the semantics of a set of distributed ontolo-
gies 〈i, Oi〉 is defined in local domains and valuations; context mappings among different
ontologies are represented by a set of bridge rules.

In comparison, our order-sorted logic programming handles distributed facts and rules
with a common ontology. In particular, logic programming with a sort hierarchy can be
used to propagate rigid properties from multiple knowledge bases. Each knowledge base
indirectly and safely accesses facts and rules available in other knowledge bases. Rigid-
property derivation makes use of the fact that rigid-property assertions are unconditionally
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true for any other agent since they are true even if the situation or time changes. This
derivation is computationally improved by developing a rigid-property resolution system as
a top-down algorithm. The top-down algorithm is important for rigid-property derivation in
multiple knowledge bases. In the bottom-up algorithm, mutualizing all the rigid-property
assertions would lead to a result identical to that obtained when each rigid property is
transferred from other knowledge bases; however, mutualization is ineffective because the
dynamically extended set of rigid assertions becomes very large (unlike ontologies that are
more easily shared than the assertions). The top-down linear resolution system is effective
for multiple knowledge bases because of the goal-oriented reasoning method. In other words,
global accesses are limited to some rigid properties in a limited number of other knowledge
bases, as shown in Example 5.

In addition to the proposed reasoning system, the axiomatic approach, which involves
axioms of ontological considerations, can be used to realize the abovementioned rigid prop-
erty reasoning. Both approaches are closely related; however, the axiomatic approach may
lead to ineffective bottom-up reasoning by instantiating the general axioms because of its
inability to control the reasoning strategy unlike the linear resolution system.

7 Conclusion and Future Work

In this paper, we described an effective framework for order-sorted logic programming for
multiple knowledge bases. In our study, the order-sorted language was extended to contain
three types of property expressions (types, non-rigid sorts, and unary predicates) so that
sorted terms and formulas adhere to the rigidity of properties. We also developed a query-
answering algorithm equipped with rigid-property resolution that is decidable and effective
for function-free, recursive knowledge bases. The algorithm provides new reasoning services
for multiple knowledge bases so that each knowledge base can extract rigid properties from
other knowledge bases. The feasibility of these reasoning services is guaranteed by the fact
that the truth of rigid-property assertions is independent of the situation in which each
knowledge base is built. From a technical perspective, after developing the bottom-up algo-
rithms (the order-sorted Horn-clause calculus and the rigid-property derivation system), the
decidable and effective query-answering algorithm is obtained from the top-down algorithms
(the linear resolution and rigid-property resolution systems).

In future studies, we intend to further refine the rigid-property derivation to establish
structural relationships among multiple knowledge bases. We plan to extend distributed
reasoning services to facts and rules by exploiting inclusion, equation, and disjoint relations
among contexts, similar to the context mapping in C-OWL. Furthermore, we can effectively
obtain reliable results if knowledge bases are authorized to be trustworthy.
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Appendix

A. An Example of Reasoning

Let us consider rigid-property derivation in the knowledge bases K1, K2, K3, and K4 of
Example 4.

Example 6 Suppose that we have the sorted signature Σ = (T, N, Ω,≤∗) of Example 2 and
knowledge bases K1, K2, K3, and K4 of Example 4. By using the expanded knowledge bases
K0

i , K1
i , . . . of each Ki in S = {K1,K2,K3,K4}, the following derivations can be obtained.

At the beginning, for K1, K2, K3, and K4, we have the following theories:

Th(K1) = Γ ∪ { excellent(john : person),
obtaining a discount(john : person),
male customer(john : person),
customer(john : person),
male(john : person) }

Th(K2) = Γ ∪ { pet seller(mary : person) }
Th(K3) = Γ ∪ { canfly(peter : animal),

bird(peter : animal),
canary(peter : animal) }

Th(K4) = Γ ∪
{ father(tony : animal, peter : animal) }

where Γ = { person(john : person), animal(john : person), person(mary : person), animal
(mary : person), animal(peter : animal), animal(tony : animal)}.

It should be noted that theories Th(K1) and Th(K3) contain the rigid atomic formulas
male(john : person) and bird(peter : animal), canary(peter : animal) respectively. In the
following steps, K0

1, K0
2, K0

3, and K0
4 are expanded by adding these rigid atomic formulas:

Step 1: We set the initial values of K0
1, K0

2, K0
3, and K0

4.

K0
i = Ki (1 ≤ i ≤ 4)

Step 2: Each K0
i is expanded to K1

i .
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K1
i = K0

i ∪Δ(T 0) (1 ≤ i ≤ 4) where

T 0 = Th(K0
1) ∪ Th(K0

2) ∪ Th(K0
3) ∪ Th(K0

4) and

Δ(T 0) = Γ ∪ { male(john : person), bird(peter : animal), canary(peter : animal) }

K0
2 :

K0
3 : bird(peter : animal), canary(peter : animal)

K0
4 :

Rigid Atomic Formulas in Step 2

K0
1 : male(john : person)

Step 3: As a result of the expansion, the new conclusions cares about(mary : person, peter : animal)
in Th(K1

2) and bird(tony : animal) in Th(K1
4) can be derived in the Horn-clause calculus.

Th(K1
1) = Th(K0

1) ∪Δ(T 0)

Th(K1
2) = Th(K0

2) ∪Δ(T 0) ∪ { cares about(mary : person, peter : animal) }

Th(K1
3) = Th(K0

3) ∪Δ(T 0)

Th(K1
4) = Th(K0

4) ∪Δ(T 0) ∪ { bird(tony : animal) }

Step 4: The rigid atomic formula bird(tony : animal) expands K1
1, K1

2, K1
3, and K1

4.

K2
i = K1

i ∪Δ(T 1) (1 ≤ i ≤ 4) where

T 1 = Th(K1
1) ∪ Th(K1

2) ∪ Th(K1
3) ∪ Th(K1

4) and

Δ(T 1) = Δ(T 0) ∪ { bird(tony : animal) }

K1
2 :

K1
3 :

K1
4 : bird(tony : animal)

Rigid Atomic Formulas in Step 4

K1
1 :

Step 5: We can obtain additional results cares about(mary : person, tony : animal) in
Th(K2

2) and canfly(tony : animal) in Th(K2
3) that are generated from the expanded knowl-

edge bases K2
1, K2

2, K2
3, and K2

4.

Th(K2
1) = Th(K1

1) ∪Δ(T 1)

Th(K2
2) = Th(K1

2) ∪Δ(T 1) ∪ { cares about(mary : person, tony : animal) }

Th(K2
3) = Th(K1

3) ∪Δ(T 1) ∪ { canfly(tony : animal) }
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Th(K2
4) = Th(K1

4) ∪Δ(T 1)

Step 6: The derivation terminates because K2
1, K2

2, K2
3, and K2

4 can no longer be expanded.

K3
i = K2

i ∪Δ(T 2) (1 ≤ i ≤ 4) where

T 2 = Th(K2
1) ∪ Th(K2

2) ∪ Th(K2
3) ∪ Th(K2

4) and

Δ(T 2) = Δ(T 1).

In this example, the following conclusion holds.

K1 �S customer(john : person)
K2 ��S cares about(mary : person, john : person)

However, K2 cannot extract the fact customer(john : person) from K1 because the sort
customer is not rigid. This means that we cannot determine whether John is a customer
with respect to K2.

K2 �S cares about(mary : person, peter : animal)
(but K2 �� cares about(mary : person, peter : animal))

K2 �S cares about(mary : person, tony : animal)
(but K2 �� cares about(mary : person, tony : animal))

K3 �S canfly(tony : animal)
(but K3 �� canfly(tony : animal))

These were not derivable in the Horn-clause calculus without rigid property derivation (as
denoted by ��). However, by using our method, they can be derived from the knowledge
bases K2

2 and K2
3 expanded by means of extracting the rigid-property information that Tony

and Peter are birds:

K4 �S bird(tony : animal)
K3 �S bird(peter : animal)

42


