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Abstract. This paper presents a decidable order-sorted query system for reasoning
between ontologies and rules. We describe order-sorted logic programming with sort,
predicate, and meta-predicate hierarchies (OSL3h) that derives predicate and meta-
predicate assertions. Meta-level predicates (predicates of predicates) are useful for rep-
resenting relationships between predicate formulas, and further, they conceptually yield
a hierarchy similar to the hierarchies of sorts and predicates. By extending the order-
sorted Horn-clause calculus, we develop a query-answering system in OSL3h that can
answer queries such as atoms and meta-atoms generalized by containing predicate vari-
ables. We show that the expressive query-answering system computes every generalized
query in single exponential time, i.e., the complexity of our query system is equal to
that of DATALOG.
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In the Semantic Web context, conceptual knowledge representation and reason-
ing (Woods and Schmolze, 1992) have been studied for modeling ontologies in
OWL (Web Ontology Language) (Patel-Schneider, Hayes and Horrocks, 2004).
In general, concepts are interpreted by sets of individuals, and concept hierar-
chies are constructed by subsumption (similar to IS-A relations). The formal se-
mantics and reasoning of concept description languages are guaranteed by logical
formalizations. Order-sorted logic (Aı̈t-Kaci and Nasr, 1986; Cohn, 1989; Socher-
Ambrosius and Johann, 1996; Kaneiwa and Mizoguchi, 2005; Kaneiwa and Mi-
zoguchi, 2009) (as first-order logic with partially ordered sorts) provides sorts and
sort hierarchy that represent concepts and their concept hierarchy, respectively.
A predicate hierarchy, which is an extension of the sort hierarchy, consists of n-
ary predicates that are conceptually related to each other. In (Kaneiwa, 2004),
order-sorted logic programming was extended by introducing such a predicate
hierarchy. Furthermore, the conceptual structure theory (Nguyen, Kaneiwa, Cor-
bett and Nguyen, 2007) was extended to include relation types and their type
hierarchy for building complex ontologies.

Meta-level predicates (predicates of predicates) are expressions that can be
employed for representing relationships between facts in knowledge bases. Sim-
ilar to hierarchies of sorts and predicates, these meta-predicates can be used
to conceptually construct a hierarchy, e.g., the meta-predicate causes implies
the super meta-predicate likelyCauses. In the OWL family, meta-concepts are
supported by OWL-Full (the most expressive language of OWL). The seman-
tics of modeling for meta-concepts and the undecidability of meta-modeling in
OWL-Full have been discussed in (Motik, 2007). Further, a concept hierarchy
can be enhanced by concepts named using natural language words because the
words contain higher-order expressions. However, order-sorted (or typed) logic
programming lacks representation and reasoning for such meta-level predicates.

Alternatively, logic programming provides formal semantics and decidable
reasoning services for RuleML (Rule Makeup Language)1 in the Semantic Web.
This language is a restricted fragment of first-order logic, and its complex-
ity (Dantsin, Eiter, Gottlob and Voronkov, 1997) has been studied in the area
of automated deduction. It is known that full logic programming is undecidable,
but function-free logic programming is EXPTIME-complete with respect to the
length of a program. In addition, non-recursive logic programming with functions
is NEXPTIME-complete.

However, SWRL (Semantic Web Rule Language) (Horrocks, Patel-Schneider,
Boley, Tabet, Grosof and Dean, 2004), a combination of OWL and RuleML, leads
to undecidable reasoning between ontologies and rules (as shown in (Horrocks
and Patel-Schneider, 2004)). Several decidable fragments for combining ontolo-
gies and rules, such as DL-safe (Hitzler and Parsia, 2009; Rosati, 2005; Motik,
Sattler and Studer, 2005), DLP (Description Logic Programs) (Grosof, Horrocks,
Volz and Decker, 2003), and the rule-based language ELP (Krötzsch, Rudolph
and Hitzler, 2008) (related to the tractable language profile OWL 2 EL (Motik,
Grau, Horrocks, Wu, Fokoue, Lutz, 2009)), have been proposed by restricting
the expressive power of rules. Similar to the approaches adopted in past studies,
in order to make ontologies and rules in logic programing expressive and at the
same time retain decidability, the logic programming language must be carefully
extended for conceptual knowledge representation and reasoning. HILOG (Chen

1 http://ruleml.org/
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and Kifer, 1995), which involves the second-order expression of meta-level predi-
cates, has been developed as a higher-order language with a first-order semantics
for logic programming, and the complexity of HILOG is harder than the EX-
PTIME complexity of DATALOG. Unfortunately, in most cases, higher-order
logic programming (Jouannaud and Okada, 1991) makes reasoning increasingly
difficult because complex structures of higher-order terms need to be treated.

To overcome the aforementioned difficulties related to expressiveness and
complexity, we introduce meta-predicates and their hierarchy in a restricted and
decidable fragment for combining ontologies and rules. In particular, we formal-
ize an order-sorted logic programming language with a meta-predicate hierarchy
(OSL3h). We define the syntax and semantics of three kinds of hierarchies (sort
hierarchy, predicate hierarchy, and meta-predicate hierarchy) in OSL3h. We de-
velop the order-sorted Horn-clause calculus (Hanus, 1992), which serves as a
sorted deductive system, for reasoning on concept hierarchies where predicate
assertions and relationships among the assertions are derived. This calculus ter-
minates if the knowledge bases are function free (i.e., only constants such as
0-ary functions are allowed). Using this calculus, we develop a query-answering
system that is extended by generalizing queries with predicate variables. Our
result shows that the complexity of the expressive query system (even for meta-
predicates and predicate variables) is single exponential time and equal to the
complexity of DATALOG.

The rest of this paper is organized as follows. In Section 2, we provide some
illustrative examples of hierarchies of sorts, predicates, and meta-predicates. In
Section 3, we formalize the syntax and semantics of predicate and meta-predicate
hierarchies in OSL3h. In Section 4, we define inference rules for the hierarchies
in the Horn-clause calculus, and in Section 5, we use the calculus to develop a
query-answering system that can solve queries containing predicate variables. In
Section 6, we introduce an argument restructuring operation in the Horn-clause
calculus and the query-answering system that helps eliminate and supplement
arguments in predicate derivation. In Section 7, we give a case study example
of reasoning on ontologies and rules in the Semantic Web context, and in Sec-
tion 8, we compare our approach with several studies related to an integration
of ontologies and rules. In Section 9, we provide concluding remarks and discuss
our future research plan.

2. Motivating Examples

We now present some examples of hierarchies in a query-answering system. Given
the sort, predicate, and meta-predicate hierarchies in Figs. 1 and 2, we con-
sider logical reasoning using a knowledge base for the hierarchies. If the fact
hits(tom:minor,john:adult) is valid, then the super predicate illegalAct
can be derived in the predicate hierarchy (shown in Fig. 1).

hits(tom:minor,john:adult)
?-illegalAct(x:human)
yes
x=tom:minor

In this derivation, the second argument john:adult is deleted if the argument
structure of the predicate illegalAct lacks the second argument of the predicate
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Fig. 2. A meta-predicate hierarchy

hits. Conceptually, both the name and argument structure of illegalAct are
more abstract than hits in the predicate hierarchy.

Moreover, we employ meta-predicates (predicates of predicates) to express
relationships among facts in the knowledge base. For example, the meta-predicate
isFollowedBy is used to indicate that a tsunami in Phuket c2 occurred after the
earthquake in Indonesia c1.

isFollowedBy(earthquake(c1:country),tsunami(c2:coastalArea))
?-likelyCauses(earthquake(c1:country),tsunami(c2:coastalArea))
yes

If the relationship between the two facts is valid, the super meta-predicate
likelyCauses can be inferred in the meta-predicate hierarchy (shown in Fig. 2).

Additionally, the fact earthquake(c1:country) is derived from this rela-
tionship because it is the first argument of the meta-predicate isFollowedBy.

?-earthquake(c1:country)
yes

The assumption underlying the abovementioned derivation is that the meta-
predicate points to the occurrence of facts in addition to indicating the existence
of a relationship between them.

An expression with predicate variables X and Y is used to query the validity
of a causal relationship between two natural disasters as follows.

?-likelyCauses(X:naturalDisaster(x:area),
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Y:naturalDisaster(y:area))
yes
X=earthquake, x=c1:country, Y=tsunami, y=c2:coastalArea

Using the meta-predicate hierarchy, the reasoning engine should return the an-
swer yes with a successful substitution of the variables, such as X=earthquake,
x=c1:country, Y=tsunami, and y=c2:coastalArea.

In the Semantic Web context, the argument manipulation shown above is
very useful when software agents derive semantically related terms and assertions
using ontologies. This is because the differences between argument structures in
predicates must facilitate such flexible reasoning for predicate assertions in order-
sorted logic programming.

3. Order-Sorted Logic with Meta-Predicates

First, we define the syntax and semantics of OSL3h with sort, predicate, and
meta-predicate hierarchies (an extension of (Socher-Ambrosius and Johann, 1996;
Schmidt-Schauss, 1989; Manzano, 1993)).

3.1. Syntax

We introduce meta-predicates as new conceptual symbols in a sorted language.
These meta-predicates represent n-ary relations among atomic predicate formu-
las and are used to construct a concept hierarchy.

Definition 1. The alphabet of a sorted first-order language L with sort, predi-
cate, and meta-predicate hierarchies contains the following symbols:

1. S: a countable set of sort symbols

2. Fn: a countable set of n-ary function symbols for each natural number n

3. Pn: a countable set of n-ary predicate symbols for each natural number n

4. Ψn : a countable set of n-ary meta-predicate symbols for each natural number
n

5. ←, {, }: the connective and auxiliary symbols

6. Vs: an infinite set of variables x: s, y: s, z: s, . . . of sort s

The set of all predicates is denoted by P =
⋃
n≥1 Pn, and the set of variables of

all sorts is denoted by V =
⋃
s∈S Vs.

Definition 2 (Sorted Signatures). A signature of a sorted first-order lan-
guage L with sort, predicate, and meta-predicate hierarchies (called a sorted
signature) is a tuple Σ = (S, P,Ψn ,Ω,≤) such that:

1. (S,≤) is a partially ordered set of sorts (called a sort hierarchy);

2. (P,≤) is a partially ordered set of predicates (called a predicate hierarchy);

3. (Ψn ,≤) is a partially ordered set of n-ary meta-predicates (called a meta-
predicate hierarchy);

4. Ω is a set of function and predicate declarations with bounded arity such that
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(a) if f ∈ Fn is an n-ary function symbol, then there is a unique function
declaration of the form f : s1×· · ·× sn → s ∈ Ω where s1, . . . , sn, s are sort
symbols, and

(b) if p ∈ Pn is an n-ary predicate symbol, then there is a unique predicate
declaration of the form p: s1×· · ·×sn ∈ Ω where s1, . . . , sn are sort symbols.

The predicate hierarchy includes predicates with different argument structures,
e.g., a binary predicate can be a subpredicate of a unary predicate. In contrast
to that, the meta-predicate hierarchy only contains meta-predicates with a fixed
arity. The meta-predicates with various arities are useful for describing ontolo-
gies but we do not introduce them in this work in order to avoid to increase
the complexity of reasoning on meta-predicate hierarchies. In the sorted signa-
ture, Ω contains function and predicate declarations that determine the domains
and ranges of functions f and predicates p. In particular, F0 is the set of 0-
ary functions (i.e., constants), and each constant c ∈ F0 has a unique constant
declaration of the form c:→ s.

Example 1. Let us consider the sorted signature Σ = (S, P,Ψ2 ,Ω,≤∗) such
that

S = { child, minor, adult, human, bank, mountain, volcano, river,
area, coastalArea, country, � },

P = { hits, violates, robs, robsWithViolence, illegalAct, eruption,

earthquake, tsunami, naturalDisaster, � },
Ψ2 = { causes, isFollowedBy, likelyCauses, stops,

exclusivelyHappens, likelyStops, temporallyIncludes,

spatiallyIncludes, spatioTemporallyIncludes, includes, � },
Ω = { tom:→ minor, john:→ adult, c1:→ country, c2:→ coastalArea,

hits:human×human, violates:human×human, illegalAct:human,
robsWithViolence:human× bank × human, robs:human× bank,
earthquake: area, tsunami: area, naturalDisaster: area },

≤ = { child ≤ minor, minor ≤ human, adult ≤ human, river ≤ area,
country ≤ area, volcano ≤ mountain, mountain ≤ area,
coastalArea ≤ area } ∪
{ hits ≤ violates, violates ≤ illegalAct, robs ≤ illegalAct,
robsWithViolence ≤ robs, robsWithViolence ≤ violates,
eruption ≤ naturalDisaster, tsunami ≤ naturalDisaster,
earthquake ≤ naturalDisaster } ∪
{ causes ≤ likelyCauses, isFollowedBy ≤ likelyCauses,
stops ≤ likelyStops, exclusivelyHappens ≤ likelyStops,
spatioTemporallyIncludes ≤ temporallyIncludes,
spatioTemporallyIncludes ≤ spatiallyIncludes,
temporallyIncludes ≤ includes, spatiallyIncludes ≤ includes }.

We denote the transitive and reflexive closure of ≤ ∪{cp ≤ � | cp ∈ S ∪P ∪Ψ2}
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by ≤∗. This sorted signature represents the sort, predicate, and meta-predicate
hierarchies in Figs. 1 and 2.

We generally call sorts, predicates, and meta-predicates concepts. Let cp1, cp2,
and cp3 be three concepts. A concept cp2 is called an upper bound for cp1 if
cp1 ≤ cp2, and a concept cp2 is called a lower bound for cp1 if cp2 ≤ cp1.
The least upper bound cp1 � cp2 is an upper bound for cp1 and cp2 such that
cp1 � cp2 ≤ cp3 holds for any other upper bound cp3. The greatest lower bound
cp1 	 cp2 is a lower bound for cp1 and cp2 such that cp3 ≤ cp1 	 cp2 holds for
any other lower bound cp3.

We define the following sorted expressions in the sorted signature Σ: terms,
atoms (atomic formulas), meta-atoms (meta atomic formulas), goals, and clauses.

Definition 3 (Sorted Terms). Let Σ = (S, P,Ψn ,Ω,≤) be a sorted signature.
The set Ts of terms of sort s is defined by the following:

1. If x: s ∈ Vs, then x: s ∈ Ts.
2. If t1 ∈ Ts1 , . . . , tn ∈ Tsn , f ∈ Fn, and f : s1 × · · · × sn → s ∈ Ω, then
f(t1, . . . , tn): s ∈ Ts.

3. If t ∈ Ts′ and s′ ≤ s, then t ∈ Ts.
Note that Ts contains not only terms of sort s but also terms of subsorts s′ of
sort s if s′ ≤ s. The set of terms of all sorts is denoted by T =

⋃
s∈S Ts.

The function sort is a mapping from sorted terms to their sorts, defined by
(i) sort(x: s) = s and (ii) sort(f(t1, . . . , tn): s) = s. Let Var(t) denote the set
of variables occurring in a sorted term t. A sorted term t is called ground if
Var(t) = ∅. T0 = {t ∈ T |Var(t) = ∅} is the set of sorted ground terms, and the
set of ground terms of sort s is denoted by T0,s = T0 ∩ Ts. We write T Σ

s , T Σ
0 ,

T Σ
s,0, and T Σ for explicitly representing the sorted signature Σ.
In the following definition, sorted Horn clauses (Lloyd, 1987; Doets, 1994) are

extended by meta-atoms ψ(A1, . . . , An) that consist of meta-predicates ψ and
atoms A1, . . . , An. Atoms are defined by sorted terms and predicates, and then
meta-atoms are defined by atoms and meta-predicates.

Definition 4 (Atoms, Meta-Atoms, Goals, and Clauses). Let Σ = (S, P,
Ψn ,Ω,≤) be a sorted signature. The set A of atoms, the setMA of meta-atoms,
the set G of goals, and the set C of clauses are defined by:

1. If t1 ∈ Ts1 , . . . , tn ∈ Tsn , p ∈ Pn, and p: s1 × · · · × sn ∈ Ω, then p(t1, . . . , tn)
∈ A.

2. If A1, . . . , An ∈ A and ψ ∈ Ψn , then ψ(A1, . . . , An) ∈MA.
3. If L1, . . . , Ln ∈ A ∪MA (n ≥ 0), then {L1, . . . , Ln} ∈ G.
4. If G ∈ G and L ∈ A ∪MA, then L← G ∈ C.
For example, if mike: person, mary: person ∈ Tperson, helps ∈ P2, and helps:
person × person ∈ Ω, then helps(mike: person,mary: person) is an atom in A.
We can use atoms as arguments of meta-predicates to assert n-ary relations
ψ over atoms A1, . . . , An. For example, the atoms earthquake(c1: country) and
tsunami(c2: coastalArea) are used to assert the meta-atom

causes(earthquake(c1: country), tsunami(c2: coastalArea))

where causes is a binary meta-predicate in Ψ2 . Both atoms (in A) and meta-
atoms (inMA) can appear in the heads and bodies of extended Horn clauses. Let
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smolking(x: person), heavySmolker(x: person) be atoms in A and likelyCauses
(smolking(x: person), suffersFromLungCancer(x: person)) be a meta-atom in
MA. Then, we have the following clause in C:

likelyCauses(smoking(x: person), suffersFromLungCancer(x: person))

← {heavySmoker(x: person)}

A clause L← G is denoted by L← if G = ∅.
We define a sorted substitution such that each sorted variable x: s is replaced

with a sorted term in Ts.

Definition 5 (Sorted Substitutions). A sorted substitution is a partial func-
tion θ:V → T such that θ(x: s) ∈ Ts − {x: s} and the domain of θ (denoted
Dom(θ)) is finite. The substituted expression Eθ is defined by the following:

1. x: sθ = θ(x: s) if x: s ∈ Dom(θ),

2. x: sθ = x: s if x: s ∈ Dom(θ),

3. (f(t1, . . . , tn): s)θ = f(t1θ, . . . , tnθ): s,

4. (p(t1, . . . , tn))θ = p(t1θ, . . . , tnθ),

5. (ψ(A1, . . . , An))θ = ψ(A1θ, . . . , Anθ),

6. {L1, . . . , Ln}θ = {L1θ, . . . , Lnθ},
7. (L← G)θ = Lθ ← Gθ.

Each sorted substitution is represented by {x1: s1/t1, . . . , xn: sn/tn}. Let θ be
a sorted substitution. Then, θ is said to be a sorted ground substitution if for
every variable x: s ∈ Dom(θ), θ(x: s) is a sorted ground term. Let E be a sorted
expression. The substitution θ is a sorted ground substitution for E if Eθ is
ground and Dom(θ) = Var(E). The composition θ1θ2 of sorted substitutions θ1
and θ2 is defined by θ1θ2(x: s) = θ2(θ1(x: s)).

In Σ, there are various argument structures in the predicate hierarchy (P,≤)
because P contains predicates with various arities. Additionally, we declare the
argument structure for each predicate p ∈ P in Σ as follows.

Definition 6 (Argument Declaration). Let Σ = (S, P,Ψn ,Ω,≤) be a sorted
signature. An argument declaration Λ is a pair (AN,Π) of a set AN of argument
names and a set Π of argument structures such that there is a unique argument
structure of the form p: 〈a1, . . . , an〉 for each p ∈ Pn where a1, . . . , an ∈ AN and
for every i = j, it holds ai = aj .

In addition to the sorted signature, the argument declaration Λ = (AN,Π)
determines the roles and structure of arguments in each predicate. In Λ, each
argument name implies the role of an argument and the tuple of argument names
a (∈ AN) in the form p: 〈a1, . . . , an〉 indicates the argument structure of predicate
p.

Example 2. Let us consider the argument declaration Λ = ({sbj, obj1, obj2},
{prescribes: 〈sbj, obj1, obj2〉}) for a sorted signature Σ that contains the following
predicate declaration:

prescribes: person×medicine× disease

where prescribes is a ternary predicate and doctor, medicine, and disease are
sorts. Then, we have the atom prescribes(nick: doctor,m1:medicine, d1: disease).
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Given an argument declaration Λ = (AN,Π), we define an argument function
Arg :P → 2AN such that Arg(p) = {a1, . . . , an} for each p: 〈a1, . . . , an〉 ∈ Π. An
argument declaration Λ is well arranged in the predicate hierarchy if Arg(q) ⊆
Arg(p) for any p, q ∈ P with p ≤ q. Intuitively, the well-arranged argument
declaration implies that the predicate q does not have any argument that its
subpredicate p does not have. In addition, we assume that every sorted signature
Σ = (S, P,Ψn ,Ω,≤) satisfies the following condition: for any p, q ∈ P where
p ≤ q, p: s1 × · · · × sn ∈ Ω, and q: s′1 × · · · × s′m ∈ Ω, if ai = a′j for p: 〈a1, . . . , an〉
and q: 〈a′1, . . . , a′m〉 in Λ, then si ≤ s′j in Σ. We denote an n-tuple of elements
d1, . . . , dn by 〈d1, . . . , dn〉.

Definition 7 (Argument Elimination). Let Σ = (S, P,Ψn ,Ω,≤) be a sorted
signature with an argument declaration Λ = (AN,Π), let 〈d1, . . . , dn〉 be an n-
tuple, and let p ∈ Pn, q ∈ Pm with Arg(q) ⊆ Arg(p) and m ≤ n for natural num-
bers n,m. An argument elimination from p to q is a function σ−p→q(〈d1, . . . , dn〉) =
〈d′1, . . . , d′m〉 such that

d′i = dj if a
′
i = aj for each 1 ≤ i ≤ m

where p: 〈a1, . . . , an〉 and q: 〈a′1, . . . , a′m〉 in Π.

The argument elimination from predicate p to predicate q simply deletes some
arguments of p if q does not have their names in the argument declaration.

Example 3. Let us consider the argument declaration Λ = ({sbj, obj1, obj2},
{prescribes: 〈sbj, obj1, obj2〉, gives: 〈sbj, obj1〉}) for a sorted signature Σ that
contains the following predicate declarations:

prescribes: person×medicine× disease
and

gives: person× thing
where prescribes is a ternary predicate, gives is a binary predicates, and doctor,
medicine, thing, and disease are sorts.

According to Arg(gives) ⊆ Arg(prescribes), we have the argument elimina-
tion from prescribes to gives with

σ−prescribes→gives(〈nick: doctor,m1:medicine, d1: disease〉)
= 〈nick: doctor,m1:medicine〉

The argument eliminations will be used in the semantics and inference system
of OSL3h. An important property of argument eliminations that can be used for
the development of predicate-hierarchy reasoning is expressed as follows.

Proposition 1 (Transitivity of Argument Eliminations). Let Σ be a sort-
ed signature with an argument declaration Λ, let τ be an n-tuple, and let p ∈ Pn,
q ∈ Pm, and r ∈ Pk. If p ≤ q, q ≤ r, and Λ is well arranged in Σ, then
σ−q→r(σ

−
p→q(τ)) = σ−p→r(τ).

Proof. Suppose that p ≤ q ≤ r with arg(r) ⊆ arg(q) ⊆ arg(p). Let τ =
〈d1, . . . , dn〉, σ−p→q(τ) = 〈d′1, . . . , d′m〉, and σ−p→r(τ) = 〈d′′1 , . . . , d′′k〉 with k ≤ m ≤
n. To prove the proposition, we derive 〈d′′1 , . . . , d′′k〉 = σ−q→r(〈d′1, . . . , d′m〉). By
Definition 7 and arg(r) ⊆ arg(q), {d′′1 , . . . , d′′k} ⊆ {d′1, . . . , d′m}. Therefore, we
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have that σ−q→r(〈d′1, . . . , d′m〉) is identical to 〈d′′1 , . . . , d′′k〉.

This proposition guarantees that argument eliminations can be safely embedded
in predicate-hierarchy reasoning if the argument declaration is well arranged.

Example 4. Let us consider that eatsWith ≤ eats ≤ dines with arg(eatsWith)
= {sbj, obj, tool}, arg(eats) = {sbj, obj}, and arg(dines) = {sbj}. For the fol-
lowing two argument eliminations:

〈tom: person, c1: pasta〉 = σ−eatsWith→eats(〈tom: person, c1: pasta, c2: fork〉)

and 〈tom: person〉 = σ−eats→dines(〈tom: person, c1: pasta〉), we obtain

〈tom: person〉 = σ−eatsWith→dines(〈tom: person, c1: pasta, c2: fork〉)

3.2. Semantics

We define the semantics of OSL3h with sort, predicate, and meta-predicate hier-
archies as follows.

Definition 8 (Σ-Models). Let Σ be a sorted signature with a well-arranged
argument declaration Λ. A Σ-model M is a tuple (U,UF , I) such that

1. U is a non-empty set of individuals;

2. UF is a non-empty set of facts2;

3. I is a function with the following conditions:

(a) if s ∈ S, then I(s) ⊆ U (in particular, I(�) = U),

(b) if si ≤ sj for si, sj ∈ S, then I(si) ⊆ I(sj),
(c) if f ∈ Fn and f : s1×· · ·×sn → s ∈ Ω, then I(f): I(s1)×· · ·×I(sn)→ I(s),

(d) if p ∈ Pn and p: s1 × · · · × sn ∈ Ω, then I(p): I(s1)× · · · × I(sn)→ 2UF ,

(e) if p ≤ q for p ∈ Pn and q ∈ Pm, then I(p)(τ) ⊆ I(q)(σ−p→q(τ)),
(f) if ψ ∈ Ψn , then I(ψ) ⊆ UnF ,
(g) if ψ ≤ φ for ψ, φ ∈ Ψn , then I(ψ) ⊆ I(φ).

The class of Σ-models is a restricted class of standard models such that the
domains and ranges of functions and predicates are constrained by sorts and the
hierarchies of sorts, predicates, and meta-predicates are interpreted by subset
relations over U , UF , and U

n
F . In the improved semantics, the implication form

q(t1, . . . , tn) ← {p(t1, . . . , tn)} (in Definition 4) and the subpredicate relation
p ≤ q can be interpreted differently, i.e., using the predicate hierarchy, it can
be ensured that every ei ∈ I(p)(τ) is included in I(q)(τ) for p ≤ q, while the
implication form q(..) ← {p(..)} has a model such that e1 ∈ I(p)(τ) implies
e2 ∈ I(q)(τ), even if e1 = e2. Note that the implication form does not indicate a
concept hierarchy or subordinate-relation.

By the argument eliminations in the predicate hierarchy, the following two
properties are derived in the class of Σ-models.

Proposition 2 (Conceptuality of Predicates). Let p ∈ Pn, q ∈ Pm, and

2 Each fact is a statement that implies an event or action.



An Order-Sorted Query System for Sort, Predicate, and Meta-Predicate Hierarchies 11

r ∈ Pk and let τ1 ∈ Un, τ2 ∈ Um, and τ ∈ Uk. Every Σ-model M has the
following properties:

1. p� q ≤ r implies I(p)(τ1)∪ I(q)(τ2) ⊆ I(r)(τ) with τ = σ−p→r(τ1) = σ−q→r(τ2).

2. r ≤ p 	 q implies I(r)(τ) ⊆ I(p)(σ−r→p(τ)) ∩ I(q)(σ−r→q(τ)).
These properties are important for showing that predicates are consistently con-
ceptualized in a hierarchy. However, this is not simple because predicates have
their respective arguments that have different structures in the predicate hierar-
chy.

Even if predicates are conceptually interpreted as sets of tuples, it is necessary
to define a model that can identify each fact expressed by predicate formulas.

Proposition 3 (Identifiability of Predicates). Let τ be an n-tuple in Un,
and let p ∈ Pn, q ∈ Pm (p = q). Some Σ-modelsM have the following properties:

1. If Arg(p) = Arg(q), then there are two facts e1 ∈ (I(p)(τ) − I(q)(τ)) and
e2 ∈ (I(q)(τ)− I(p)(τ)).

2. If Arg(p) � Arg(q), then there are two facts e1 ∈ (I(p)(τ) − I(q)(σ−p→q(τ)))
and e2 ∈ (I(q)(σ−p→q(τ))− I(p)(τ)).

This proposition indicates that any two ground atoms with identical arguments
p(t1, . . . , tn) and q(t1, . . . , tn) can be identified as distinct facts, if necessary. In
the Σ-models, the set of facts UF is used to identify ground atoms such that
predicate assertions correspond to different elements in UF .

A variable assignment on a Σ-model M = (U,UF , I) is a function α:V →
U where α(x: s) ∈ I(s). The variable assignment α[x: s/d] is defined by (α −
{(x: s, α(x: s))}) ∪ {(x: s, d)}. In other words, if v = x: s, then α[x: s/d](v) = d,
and otherwise α[x: s/d](v) = α(v). Let Δ ⊆ UF be a valuation of facts on M . A
Σ-interpretation I is a tuple (M,Δ, α) of a Σ-model M , a valuation of facts Δ
onM , and a variable assignment α onM . The Σ-interpretation (M,Δ, α[x: s/d])
is simply denoted by Iα[x: s/d].

We define an interpretation of sorted terms and atoms as follows.

Definition 9. Let I = (M,Δ, α) be a Σ-interpretation. The denotation function
[[ ]]α: T → U is defined by the following:

1. [[x: s]]α = α(x: s),

2. [[f(t1, . . . , tn): s]]α = I(f)([[t1]]α, . . . , [[tn]]α) with f : s1 × · · · × sn → s ∈ Ω,

3. [[p(t1, . . . , tn)]]α = I(p)([[t1]]α, . . . , [[tn]]α) with p: s1 × · · · × sn ∈ Ω.

The satisfiability of atoms, meta-atoms, goals, and clauses is defined by a Σ-
interpretation I.

Definition 10 (Σ-Satisfiability Relation). Let I = (M,Δ, α) with M = (U,
UF , I) be a Σ-interpretation and let F ∈ A ∪MA ∪ G ∪ C. The Σ-satisfiability
relation I |= F is defined inductively as follows:

1. I |= A iff [[A]]α ∩Δ = ∅.
2. I |= ψ(A1, . . . , An) iff I |= A1, . . . , I |= An and ([[A1]]α×· · ·× [[An]]α)∩I(ψ) =
∅.

3. I |= {L1, . . . , Ln} iff I |= L1, . . . , I |= Ln.

4. I |= L ← G iff for all d1 ∈ I(s1),. . . ,dn ∈ I(sn), Iα[x1: s1/d1, . . . , xn: sn/dn]
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|= G implies Iα[x1: s1/d1, . . . , xn: sn/dn] |= L where Var (L← G) = {x1: s1,
. . . , xn: sn}.

Let F ∈ A∪MA∪G ∪ C. An expression F is said to be Σ-satisfiable if for some
Σ-interpretation I, I |= F . Otherwise, it is Σ-unsatisfiable. F is a consequence
of a set of expressions S in the class of Σ-interpretations (denoted S |= F ) if for
every Σ-interpretation I, I |= S implies I |= F . The following lemma implies
that if I satisfies a clause (an extended Horn clause) L← G, it also satisfies any
substituted expression (L← G)θ.

Lemma 1. Let I = (M,Δ, α) with M = (U,UF , I) be a Σ-interpretation, L←
G be a clause in C, and θ be a sorted substitution for L ← G. If I |= L ← G,
then I |= (L← G)θ.

Proof. Let Var(L ← G) = {x1: s1, . . . , xn: sn}. By Definition 10, for all d1 ∈
I(s1),. . . ,dn ∈ I(sn), Iα[x1: s1/d1, . . . , xn: sn/dn] |= G implies Iα[x1: s1/d1,
. . . , xn: sn/dn] |= L. Let d′1 ∈ I(s′1),. . . ,d

′
m ∈ I(s′m) where Var((L ← G)θ) =

{y1: s′1, . . . , ym: s′m}. Then, we have [[θ(x1: s1)]]α′ ∈ I(s1), . . ., [[θ(xn: sn)]]α′ ∈
I(sn) for α′ = α[y1: s

′
1/d
′
1, . . . , ym: s′m/d

′
m] because θ(x1: s1), . . ., θ(xn: sn) are

well-sorted terms of sorts s1, . . . , sn. This derives I |= (L← G)θ.

4. Horn-Clause Calculus for Predicate Hierarchies

In this section, we extend the order-sorted Horn-clause calculus by adding infer-
ence rules for predicate and meta-predicate hierarchies. A knowledge base K is a
finite set of sorted clauses in Σ where Σ = (S, P,Ψn ,Ω,≤) is a sorted signature
with a well-arranged argument declaration Λ. We use L[A]← G to denote that
an atom A occurs in L, e.g., ψ(A,A′)[A]← G and A[A]← G.

Definition 11 (Sorted Horn-Clause Calculus). Let C be a ground clause,
K be a knowledge base, l be a non-negative integer variable, and l1, l2 be non-
negative integers. A derivation of C from K (denoted K � l:C) in the sorted
Horn-clause calculus is defined as follows:

Sorted substitution rule: Let L← G ∈ K and θ be a sorted ground substi-
tution for L← G. Then, K � l: (L← G)θ and l is incremented.

Cut rule: Let L← G and L′ ← G′ ∪{L} be ground clauses. If K � l1:L← G
and K � l2:L′ ← G′ ∪ {L}, then K � l2:L′ ← G ∪G′.
Predicate hierarchy rule: Let L[p(t1, . . . , tn)] ← G be a ground clause. If
K � l1:L[p(t1, . . . , tn)] ← G and p ≤ q, then K � l1:L[q(t

′
1, . . . , t

′
m)] ← G

where σ−p→q(〈t1, . . . , tn〉) = 〈t′1, . . . , t′m〉.
Meta-predicate hierarchy rule: Let ψ(A1, . . . , An) ← G be a ground
clause. If K � l1:ψ(A1, . . . , An) ← G and ψ ≤ φ, then K � l1:φ(A1, . . . , An)
← G.

Fact derivation rule: Let ψ(A1, . . . , An) ← G be a ground clause. If K �
l1:ψ(A1, . . . , An) ← G, then K � l:Ai ← G with 1 ≤ i ≤ n and l is incre-
mented.

Initially, we set the variable l = 0. After a ground clause is derived by the sorted
substitution rule or fact derivation rule (i.e., we obtain K � 0:L ← G by the
first rule application), the value of l is incremented. For example, consider the
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following derivation process:

p(x: s1, y: s2)← G ∈ K
0: p(t1, t2)← G

(Sorted sub.)

0: q(t1)← G
(Predicate hie.)

r(v: s3)← {q(w: s1)} ∈ K
1: r(t3)← {q(t1)}

(Sorted sub.)

1: r(t3)← G
(Cut)

Note that the variable l is not changed by the predicate hierarchy rule, meta-
predicate hierarchy rule, or cut rule. In order to identify each conclusion, it is
incremented when a new fact (in the head of a clause) is derived, e.g., p(t1, t2)
and r(t3) are new facts but q(t1) is not in the derivation above. This is because
q(t1) is an abstract expression of the fact p(t1, t2). We simply write K � l:L
if K � l:L ←. The sorted substitution rule and the cut rule serve as sorted
inference rules in ordinary order-sorted logic. The sorted substitution rule yields
well-sorted ground clauses in the sort hierarchy. The predicate hierarchy rule
and the meta-predicate hierarchy rule can be used to derive predicate and meta-
predicate assertions in the predicate and meta-predicate hierarchies, respectively.
The fact derivation rule derives atoms from meta-atoms, which was used in the
third motivating example of Section 2.

We now show the soundness and completeness of the extended Horn-clause
calculus in the class of Σ-models. First, the soundness of the Horn-clause calculus
is proved in the usual manner.

Theorem 1 (Soundness of Horn-Clause Calculus). Let K be a knowledge
base and L be a ground atom or meta-atom. If K � l:L, then K |= L.

Proof. This is proven by induction on the height n of a derivation tree of
K � l:L. Let I = (M,Δ, α) be a Σ-interpretation.

Base case: n = 0. We have K � l:L if L←∈ K. So, I |= K implies I |= L.
Induction step: n > 0. The ground atom or meta-atom L is derived by some

applications of inference rules.

– Sorted substitution rule. We have L ← G ∈ K and θ is a sorted ground
substitution for L← G. So, I |= L← G. By Lemma 1, I |= (L← G)θ.

– Cut rule. Because K � l1:L ← G and K � l2:L′ ← G′ ∪ {L}, by induction
hypothesis, I |= L← G and I |= L′ ← G′ ∪ {L}. Hence, I |= L← G ∪G′.

– Predicate hierarchy rule. Because K � l1:L[p(t1, . . . , tn)] ← G and p ≤ q,
by induction hypothesis, I |= L[p(t1, . . . , tn)] ← G where I(p)(t1, . . . , tn) ⊆
I(q)(σ−p→q(t1, . . . , tn)), and if I |= G, then [[q(t′1, . . . , t

′
m)]]α ∩ Δ = ∅ where

σ−p→q(〈t1, . . . , tn〉) = 〈t′1, . . . , t′m〉. Thus, I |= L[q(t′1, . . . , t
′
m)]← G.

– Meta-predicate hierarchy rule. Because K � l1:ψ(A1, . . . , An)← G and ψ ≤ φ,
by induction hypothesis, I |= ψ(A1, . . . , An) ← G where I(ψ) ⊆ I(φ), and if
I |= G, then I |= A1, . . . , I |= An and ([[A1]]α × · · · × [[An]]α) ∩ I(φ) = ∅. So,
we have I |= φ(A1, . . . , An)← G.

– Fact derivation rule. Because K � l1:ψ(A1, . . . , An) ← G, by induction hy-
pothesis, I |= ψ(A1, . . . , An) ← G. By Definition 10, I |= ψ(A1, . . . , An) if
and only if I |= A1, . . . , I |= An and ([[A1]]α× · · · × [[An]]α)∩ I(ψ) = ∅. Hence,
I |= Ai ← G for every 1 ≤ i ≤ n.
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To prove the completeness of the Horn-clause calculus, we construct extended
Herbrand models for knowledge bases where positive atoms labeled by non-
negative integers are used to identify different facts. We write K �ψ(A1,...,An) l:Ai
if a labeled atom l:Ai is directly derived from a labeled meta-atom l1:ψ(A1, . . . ,
An) using the fact derivation rule. Let L← G be a clause. We define ground(L←
G) as the set of sorted ground clauses for L ← G. We define ground(K) =⋃
L←G∈K ground(L ← G) as the set of sorted ground clauses for all L ← G in
K.

Definition 12 (Herbrand Models). Let K be a knowledge base. A Herbrand
model MH for K is a tuple (UH , UF ,H , IH) such that

1. UH = T0,
2. UF ,H = N− {l ∈ N | ground(K) � l:L← G & L ∈MA},
3. IH is a function with the following conditions:

(a) IH(s) = T0,s for each sort s ∈ S,
(b) if f ∈ Fn and f : s1 × · · · × sn → s ∈ Ω, then IH(f)(t1, . . . , tn) = f(t1, . . . ,

tn): s where t1 ∈ IH(s1), . . . , tn ∈ IH(sn),

(c) if p ∈ Pn and p: s1 × · · · × sn ∈ Ω, then IH(p)(τ) =
⋃
q≤p{l ∈ UF ,H |

ground(K) � l: q(τ ′)} with σ−q→p(τ ′) = τ ,

(d) if ψ ∈ Ψn , then IH(ψ) =
⋃
φ≤ψ{(l1, . . . , ln) ∈ UnF ,H | for every 1 ≤ i ≤

n, ground(K) �φ(A1,...,An) li:Ai}.

A Herbrand model is a model such that ground terms and clauses are interpreted
by themselves. For example, the ground term tom: person ∈ T0 is interpreted by
tom: person ∈ UH . For this reason, we define UH = T0 in the above definition
of Herbrand models. The Herbrand model is extended for interpreting predicate
and meta-predicate hierarchies. We define the set UF ,H of facts as a set of non-
negative integers l introduced in ground(K) � l:L ← G with L ∈ A in order to
identify all the derived facts in the interpretation of predicates in a hierarchy.

A Herbrand interpretation IH for K is a tuple (MH ,ΔH , α) such that MH =
(UH , UF ,H , IH) is a Herbrand model forK, ΔH =

⋃
p∈P

⋃
τ∈T0,s1×···×T0,sn

IH(p)(τ)

with p: s1 × · · · × sn ∈ Ω is a valuation of facts on MH , and α is a variable as-
signment on MH .

We show that a Herbrand interpretation is a Σ-interpretation that satisfies a
knowledge base K.

Lemma 2. Let K be a knowledge base, let IH be a Herbrand interpretation for
K, and let L← G be a clause. Then, the following statements hold:

1. IH |= L← G if and only if IH |= ground (L← G).

2. IH is a Σ-interpretation of K.

Proof. (1) (⇒) Let L← G be a clause with Var(L← G) = {x1: s1, . . . , xh: sh}.
Let θ = {x1: s1/t1, . . . , xh: sh/th} be a sorted substitution such that (L← G)θ ∈
ground(L← G). By Definition 12, we have t1 ∈ IH(s1), . . . , th ∈ IH(sh) for IH .
Hence, IH |= (L← G)θ. (⇐) Let θ be a sorted ground substitution for L← G.
So, (L ← G)θ ∈ ground(L ← G). By the assumption, IH |= (L ← G)θ. By
Definition 12, for all t1 ∈ IH(s1),. . . ,th ∈ IH(sh), Iα[x1: s1/t1, . . . , xh: sh/th] |=
G implies Iα[x1: s1/t1, . . . , xh: sh/th] |= L. So, IH |= L← G.
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(2) We show that IH is a Σ-interpretation. By Definition 12, the conditions
1,2,3-(a), (b), and (c) of Σ-models (in Definition 8) hold. By the conditions 3-(c)
and 3-(d) in Definition 12, the conditions 3-(d) and 3-(f) in Definition 8 hold,
respectively. Moreover, let us show the conditions 3-(e) and 3-(g) in Definition 8.
Let p ≤ q and l0 ∈ IH(p)(τ). Then, by the Herbrand model, there is a sub-
predicate r of p (r ≤ p) such that ground(K) � l0: r(τ ′′) with σ−r→p(τ

′′) = τ .

Because of r ≤ q and σ−p→q(σ
−
r→p(τ

′′)) = σ−r→q(τ
′′) in Proposition 1, we have

l0 ∈ IH(q)(σ−p→q(τ)) by Definition 12. This satisfies the condition 3-(e). Let
ψ ≤ φ and (l1, . . . , ln) ∈ IH(ψ). Then, by the Herbrand model, there is a sub-
meta-predicate ψ0 of ψ (ψ0 ≤ ψ) such that ground(K) � l1:A1, . . . , ground(K) �
ln:An, and ground(K) � l′0:ψ0(A1, . . . , An). By ψ0 ≤ φ and Definition 12, we
have (l1, . . . , ln) ∈ IH(φ), and so this follows the condition 3-(g).

Next, we prove that IH satisfies K. Let L← G ∈ K. So we want to show IH |=
ground(L ← G). Let L′ ← G′ ∈ ground(L ← G). So, there is a sorted ground
substitution θ such that (L ← G)θ = L′ ← G′. Suppose IH |= {L1, . . . , Lh}θ
where G = {L1, . . . , Lh}. If Liθ is of the form q(t′1, . . . , t

′
m), then there is li ∈

[[q(t′1, . . . , t
′
m)]]α ∩ΔH = I(q)([[t′1]]α, . . . , [[t

′
m]]α)∩ΔH(= IH(q)(t′1, . . . , t

′
m)∩ΔH).

So, the condition 3-(c) in Definition 12 implies ground(K) � li: p(t1, . . . , tn) with
σ−p→q(〈t1, . . . , tn〉) = 〈t′1, . . . , t′m〉 and p ≤ q. By the sorted substitution rule, we
have K � li: p(t1, . . . , tn), and therefore, we obtain K � li: q(t′1, . . . , t′m) by the
predicate hierarchy rule. If Liθ is of the form ψ(A1, . . . , An), then there is an
n-tuple in ([[A1]]α×· · ·× [[An]]α)∩IH(ψ). So, the condition 3-(d) in Definition 12
implies ground(K) � li:φ(A1, . . . , An) because of ground(K) �φ(A1,...,An) l

′
j :Aj

and φ ≤ ψ. By the sorted substitution rule, we have K � li:φ(A1, . . . , An). Hence,
we obtain K � li:ψ(A1, . . . , An) by the meta-predicate rule. So, K � l1:L1θ, . . . ,
K � lh:Lhθ. Since L ← G ∈ K, the sorted substitution rule derives K � l: (L ←
{L1, . . . , Lh})θ. By applying the cut rule to them, K � l:Lθ, and therefore,
ground(K) � l:Lθ. If Lθ is an atom, then the condition 3-(c) in Definition 12
implies IH |= Lθ. If Lθ is a meta-atom ψ′(A′1, . . . , A

′
k), the condition 3-(d) in

Definition 12 derives (l′′1 , . . . , l
′′
k) ∈ IH(ψ′′) such that ψ′′ ≤ ψ′ and ground(K) �

l:ψ′′(A′1, . . . , A
′
k). By the fact derivation rule, we have ground(K) � l′′1 :A′1, . . . ,

ground(K) � l′′k :A
′
k. By the condition 3-(c) in Definition 12, we have IH |=

A′1, . . . , IH |= A′k. Since (l′′1 , . . . , l
′′
k) ∈ ([[A′1]]α × · · · × [[A′k]]α) ∩ IH(ψ′), we obtain

IH |= ψ′(A′1, . . . , A
′
k). Therefore, IH |= (L← G)θ. By the first statement in this

lemma, we have IH |= L← G.

We use the Herbrand model and the abovementioned lemma to prove the com-
pleteness of the Horn-clause calculus as follows.

Theorem 2 (Completeness of Horn-Clause Calculus). Let K be a knowl-
edge base in a sorted signature Σ and L be a ground atom or meta-atom. If
K |= L, then K � l:L.

Proof. Suppose K |= L. By Lemma 2, there exists a Herbrand interpretation
IH that satisfies K. So, we have IH |= L by the assumption. According to the
conditions 3-(c) and 3-(d) in Definition 12, there exists K � l: q(τ ′) or K �
l:ψ(A1, . . . , An) that further derives K � l:L by the predicate hierarchy rule or
the meta-predicate hierarchy rule.

We show the termination of the Horn-clause calculus where a sorted signature
is function-free.
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Theorem 3 (Termination of Horn-Clause Calculus). Let K be a knowl-
edge base in a sorted signature Σ. Then, the Horn-clause calculus terminates if
Σ is finite and function-free.

Proof. We show that every inference rule in the Horn-clause calculus cannot
be applied infinitely. The set of sorted ground terms in the sorted signature Σ
is limited to finite because Σ is finite and function-free. So, all ground clauses
in ground(K) can be derived by a finite number of applications of the sorted
substitution rule. Moreover, the other inference rules are applied only to ground
clauses. For each ground clause, the numbers of applications of these rules are
bounded by the numbers of predicate and meta-predicates in their hierarchies in
Σ, respectively. The number of applications of the fact derivation rule is bounded
by the number of arguments in meta-atoms appearing in the heads of ground
clauses. We set CS0 as the set of ground clauses that are derived from ground(K)
using the predicate hierarchy rule, meta-predicate hierarchy rule, and fact deriva-
tion rule, and operate CSi+1 = CSi ∪ {L′ ← G′} for each application of the cut
rule deriving L′ ← G′. Let CS∗ be the set of ground clauses L ← G such that
L ∈ {L′|L′ ← G′ ∈ CS0} and G ⊆

⋃
L′←G′∈CS0

G′. Then, there is a finite se-
quence CS0, CS1, . . . , CSk where CS0 ⊂ CS1 ⊂ · · · ⊂ CSk. This is because CS∗
is finite and for every CSi, CSi ⊆ CS∗ holds.

The termination of the calculus indicates the fact that the set of derivable clauses
Con(K) = {L ← G | K � l:L ← G} is finite. In other words, the calculus
cannot generate terms and clauses infinitely because the cardinality of Con(K)
is bounded by finite constant, predicate, and meta-predicate symbols in K.

We show the complexity of the derivation for atoms or meta-atoms L (not
limited to ground) from a knowledge base where the set of ground atoms or
meta-atoms Lθ is computed using the Horn-clause calculus.

Corollary 1 (Complexity of Derivation for Atoms or Meta-Atoms).
Let K be a knowledge base in a sorted signature Σ, L be an atom or meta-atom,
and θ be a sorted ground substitution for L. If Σ is function-free, then deriving
the set of ground atoms or meta-atoms Lθ with K � l:Lθ is EXPTIME-complete
(w.r.t. the size of K).
Proof. Let Σ be a function-free sorted signature (i.e., only constants such
as 0-ary functions in F0 are allowed). Suppose that |K| = m, |Σ| = k, and
d is the maximum number of arities of predicates (i.e., bounded arity). Then,
|Var(K)| ≤ m and |T Σ

0 | ≤ k. Let us count the number of derivation steps involved
when applying inference rules of the Horn-clause calculus. In order to reduce the
number of rule applications to a finite value the inference rules are applied in the
following three steps: (i) All ground clauses in ground(K) are derived by applying
the sorted substitution rule. This computation is bounded by the number of
ground clauses in ground(K), i.e., km. (ii) The predicate hierarchy rule, meta-
predicate hierarchy rule, and fact derivation rule are applied to the ground clauses
derived in step (i). Each ground clause L← G in ground(K) can further derive
at most kd+1 = kd × k clauses by applying these rules. This is because the
combinations of ground atoms and meta-atoms derived from L = q(t1, . . . , td) or

φ(q1(t1, . . . , td), q2(t
′
1, . . . , t

′
d), . . . , qd(t

′′
1 , . . . , t

′′
d))

are decided by |{ψ|φ ≤ ψ}|×|{q′1|q1 ≤ q′1}|×· · ·×|{q′d|qd ≤ q′d}|, i.e., k×kd. This
computation is bounded by km+d+1 = |ground(K)|×kd+1. We write ground+(K)
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for the set of ground clauses derived in steps (i) and (ii). (iii) The cut rule is
applied to the ground clauses in ground+(K) such that it is applied to K �
l1:L1, . . . , K � lh:Lh and K � l:L ← {L1, . . . , Lh}. These steps preserve the
completeness of the calculus using the proof of Theorem 2. We set CS0 = {L |
L ←∈ ground+(K)} and operate CSi+1 = CSi ∪ {L′} for each rule application
deriving L′. The CSi is used to provide the condition where each rule can be
applied if the conclusion L is not in CSi. The cardinality of CSi is bounded
by km+d+1 = |ground+(K)|. Therefore, the derivation in (i), (ii), and (iii) is
computed in km + km+d+1 + km+d+1 steps, (i.e., 2m log k + 2(m+d+1) log k+1 ≤
2(m+d+1) log k+2).

The hardness of the derivation problem is obtained from the program com-
plexity of DATALOG (Dantsin et al., 1997).

5. Query System

We describe a query-answering system for OSL3h. In this system, query expres-
sions are generalized by adding predicate variables in meta-atoms. The set of
predicate variables is denoted by V . The set of atoms with predicate variables is
defined by AV = {X: p(t1, . . . , tn) | X ∈ V&p(t1, . . . , tn) ∈ A}. We call the form
X: p(t1, . . . , tn) a predicate variable atom.

Definition 13 (Queries). Let Σ = (S, P,Ψn ,Ω,≤) be a sorted signature with

a well-arranged argument declaration Λ, and letMAV = {ψ(A+
1 , . . . , A

+
n ) | ψ ∈

Ψn&A
+
1 , . . . , A

+
n ∈ A ∪ AV} be the set of meta-atoms with predicate variables.

The set Q of queries is defined by that if L1, . . . , Lh ∈ A ∪ AV ∪MAV , then
{L1, . . . , Lh} ∈ Q.
We introduce substitutions for predicate variables X ∈ V such that each predi-
cate variable atom X: q(t′1, . . . , t

′
m) is replaced with an atom A ∈ A. We denote

the set of atoms restricted to the subpredicates p of q by Aq = {p(t1, . . . , tn) ∈
A | p ≤ q & σ−p→q(〈t1, . . . , tn〉) = 〈t′1, . . . , t′m〉}.

Definition 14 (Substitutions for Predicate Variables). A substitution for
predicate variables is a partial function δ:AV → A such that δ(X: q(t′1, . . . , t

′
m)) ∈

Aq and the domain of δ (denoted Dom(δ)) is finite.

The substitutions for predicate variables follow the predicate hierarchy, i.e., a
subpredicate p of q is substituted for the predicate variable atom X: q(τ). A
substitution δ is a most specific substitution for a predicate variable atomX: q(τ)
if δ(X: q(τ)) = p(τ ′) with σ−p→q(τ

′) = τ and there is no other substitution δ′ such

that δ′(X: q(τ)) = r(τ ′′) with σ−r→q(τ
′′) = τ and r ≤ p.

Definition 15 (Query System). Let Q be a query in Q, δ be a substitution
for predicate variables in Q, and θ be a sorted substitution for Qδ. Then, the
query system Query:Q → {yes, no} is defined by the following rule.

1. If there exists K � l:Qδθ such that V ar(Qδ)∩V = ∅ and V ar(Qδθ) = ∅, then
Query(Q) = yes.

2. Otherwise, Query(Q) = no.

Without losing decidability, the query system is realized in the following two
steps. In the first step, atoms are substituted for predicate variable atoms in
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a query Q along with the predicate hierarchy. In the second step, predicate
and meta-predicate assertions in the substituted query Qδ are derived using the
Horn-clause calculus.

Theorem 4 (Termination of Queries). LetK be a knowledge base in a sorted
signature Σ. Then, the query system terminates if Σ is function-free.

Proof. Suppose that |K| = m, |Σ| = k, and d is the maximum number of arities
of predicates (i.e., bounded arity). By using the Horn-clause calculus, we can
obtain Conatom(K) = {L | K � l:L} such that |Conatom(K)| ≤ 2(m+d+1) log k+2

according to the proof of Corollary 1. The answer to Query(Q) is computed
by searching all the elements in Conatom(K). If the answer is yes, then all the
substitutions δ and θ that satisfy the query K � l:Qδθ can be generated by the
search. The search steps are bounded by 2(m+d+1) log k+2.

The proof of the termination leads to the following corollary that the complexity
of the query-answering system is unaffected by the introduction of predicate
variables in the queries.

Corollary 2 (Complexity of Queries). LetK be a knowledge base in a sorted
signature Σ and let Q be a query. If Σ is function-free, then deciding Query(Q)
is EXPTIME-complete (w.r.t. the size of K).

6. Derivation using Argument Restructuring

In the Horn-clause calculus (discussed in Section 4), redundant arguments in each
predicate are deleted during the derivation of super predicates if the argument
structures are well-arranged in a hierarchy. In this section, we generalize sorted
signatures by removing the condition of them being well-arranged, i.e., some
predicates may have an argument that their subpredicates do not have.

We give some examples of hierarchies in a query-answering system for the case
where argument structures are not well-arranged in the sort, predicate, and meta-
predicate hierarchies shown in Figs. 1 and 2. If the fact assaults(tom:minor)
is valid, then the super predicate illegalAct can be derived in the predicate
hierarchy as follows.

assaults(tom:minor)
?-illegalAct(x:human,mary:woman)
no
?-illegalAct(x:human,y:human)
yes
x=tom:minor, y=c:human

In the first case, there is no fact that indicates someone acts against the second
argument mary:woman in the query. Thus, the answer to the first query is no. In
the second case, we can obtain the answer yes to the second query from the fact
assaults(tom:minor) and the predicate hierarchy. A new constant c:human is
substituted for the variable y because the argument structure of the predicate
assaults lacks the second argument of the predicate illegalAct.

For such argument structures in a predicate hierarchy (in a sorted signa-
ture), we perform the addition of missing arguments for the derivation of super
predicates as follows.
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Definition 16 (Naive Argument Restructuring). Let Σ = (S, P,Ψn ,Ω,≤)
be a sorted signature with an argument declaration Λ = (AN,Π), let 〈d1, . . . , dn〉
be an n-tuple, and let p ∈ Pn and q ∈ Pm. An argument restructuring from p to
q is a function σ+

p→q(〈d1, . . . , dn〉) = 〈d′1, . . . , d′m〉 such that

d′i =

{
dj if a′i = aj

ci otherwise

where p: 〈a1, . . . , an〉 and q: 〈a′1, . . . , a′m〉 in Π and each ci is a new element.

The naive argument restructuring from predicate p to predicate q deletes some
arguments of p and adds some arguments of q as new constants in order to fit a
tuple of arguments of p into the argument structure of q.

Example 5. Let us consider the argument declaration Λ = ({sbj, obj1, obj2},
{tells: 〈sbj, obj1〉, informs: 〈sbj, obj1, obj2〉}) for a sorted signature Σ that con-
tains the following predicate declarations:

tells: person× information
and

informs: person× information× person
where tells is a binary predicate, informs is a ternary predicates, and person
and information are sorts. By the naive argument restructuring, we have the
following result:

σ+
tells→informs(〈sarry: person, i1: information〉)

= 〈sarry: person, i1: information, c〉
We refine the definition of Σ-models such a way that every argument elimi-

nation σ−p→q is replaced with an argument restructuring σ+
p→q. The satisfiability

relation |= is denoted by |=σ+ if an argument restructuring σ+ is employed in
each Σ-model. The conceptuality and identifiability of predicates in Proposi-
tions 2 and 3 hold for the case where the Σ-models are refined by replacement
with an argument restructuring σ+.

In order to embed an argument restructuring σ+ in the Horn-clause calculus,
we further extend the calculus as follows.

Definition 17 (Extended Sorted Horn-Clause Calculus). Let C be a gr-
ound clause and K be a knowledge base. A derivation of C from K (denoted
K �σ+ l:C) in the sorted Horn-clause calculus is extended by replacing the
predicate hierarchy rule with the following rule:

Predicate hierarchy rule+: Let L[p(t1, . . . , tn)] ← G be a ground clause.
If K � l1:L[p(t1, . . . , tn)] ← G and p ≤ q, then K � l1:L[q(t′1, . . . , t′m)] ← G
where σ+

p→q(〈t1, . . . , tn〉) = 〈t′1, . . . , t′m〉.
This extension preserves the soundness of the extended Horn-clause calculus as
follows.

Theorem 5 (Soundness of Extended Horn-Clause Calculus). Let K be
a knowledge base and L be a ground atom or meta-atom. If K �σ+ L, then
K |=σ+ L.
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An atom A1 is a parent of another atom A2 if K �σ+ l:A2 ← G is derived from
K �σ+ l:A1 ← G by an application of the predicate hierarchy rule. An atom A1

is an ancestor of another atom A2 if (i) A1 is a parent of A2 or (ii) A1 is an
ancestor of an atom A and A is a parent of A2. Let A be an atom p(t1, . . . , tn)
with p: 〈a1, . . . , an〉 ∈ Π. We denote the occurrence of an argument name ak and
a term tk in A by A[ak, tk] if 1 ≤ k ≤ n. The set of pairs of argument names and
terms for a labeled atom l:A is defined by AL(l:A) = {(a, t) | A[a, t]} ∪ {(a, t) |
A′[a, t] is an ancestor of A}.

In the following definition, we introduce a label-based argument restructuring
in order to solve this problem of incomplete derivation, i.e., the transitivity in
Proposition 1 no longer holds if the argument structures are not well-arranged.
Hence, it is necessary to solve the problem to prove the completeness of the
extended sorted Horn-clause calculus.

Definition 18 (Label-Based Argument Restructuring in Derivation).
Let Σ = (S, P,Ψn ,Ω,≤) be a sorted signature with an argument declaration
Λ = (AN,Π), let 〈d1, . . . , dn〉 be an n-tuple, let p ∈ Pn and q ∈ Pm, and l be a
label (non-negative integer). An argument restructuring from p to q is label-based
if it is defined as a function σ∗p→q(〈t1, . . . , tn〉) = 〈t′1, . . . , t′m〉 such that

t′i =

{
tj if a′i = aj with (aj , tj) ∈ AL(l: p(t1, . . . , tn))

cl,a′i : si otherwise

where p: 〈a1, . . . , an〉 and q: 〈a′1, . . . , a′m〉 in Π, q: s1×· · ·×sm in Ω, and each cl,a′i
is a new constant indexed by the pair of the label l and the argument name a′i.

The label-based argument restructuring from predicate p to predicate q adds the
terms tj that have been derived or new constants indexed by the pairs of labels
l and argument names a′i as arguments of q.

Example 6. Let us consider the argument declaration Λ for Σ in Example 5.
By the label-based argument restructuring, we have the following result:

σ∗tells→informs(〈sarry: person, i1: information〉)
= 〈sarry: person, i1: information, c3,obj2 : person〉

if K � 3: tells(sarry: person, i1: information)← G.

We denote the set of new constants that are used to add missing arguments
in a label-based argument restructuring σ∗ by F0,new. The label-based argument
restructuring σ∗ can be applied to a tuple of terms t1, . . . , tn in a labeled atom
l: p(t1, . . . , tn) in the derivation. This leads to the following transitivity, although
the transitivity of naive argument restructurings σ+ does not hold.

Proposition 4 (Transitivity of Label-Based Argument Restructurings).
Let Σ be a sorted signature with an argument declaration Λ, let τ be an n-
tuple, and let p ∈ Pn, q ∈ Pm, and r ∈ Pk. If p ≤ q and q ≤ r, then
σ∗q→r(σ

∗
p→q(τ)) = σ∗p→r(τ).

Proof. Suppose that p ≤ q ≤ r with | arg(p)| = n, | arg(q)| = m, and | arg(r)| =
k. Let τ = 〈d1, . . . , dn〉, σ∗p→q(τ) = 〈d′1, . . . , d′m〉, and σ∗p→r(τ) = 〈d′′1 , . . . , d′′k〉. We
show 〈d′′1 , . . . , d′′k〉 = 〈d′′′1 , . . . , d′′′k 〉 where σ∗q→r(〈d′1, . . . , d′m〉) = 〈d′′′1 , . . . , d′′′k 〉. Let
d′′′i ∈ {d′′′1 , . . . , d′′′k }. If (ai, d′′′i ) ∈ AL(l: p(τ)), then d′′′i = d′′i due to (ai, d

′′′
i ) ∈
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AL(l: q(d′1, . . . , d
′
m)). This is because AL(l: p(τ)) ⊆ AL(l: q(d′1, . . . , d

′
m)) by Def-

inition 18. If (ai, d
′′′
i ) ∈ AL(l: p(τ)), then d′′′i = cl,ai : si. Also, if (ai, d

′′′
i ) ∈

AL(l: q(d′1, . . . , d
′
m)), then d′′i = cl,ai : si. Otherwise, the same constant cl,ai : si

must be added in the operation σ∗p→q(τ), and therefore d′′i = cl,ai : si. Hence, we
have that σ∗q→r(〈d′1, . . . , d′m〉) = 〈d′′′1 , . . . , d′′′k 〉 is identical to 〈d′′1 , . . . , d′′k〉.

The transitivity of label-based argument restructurings will be used to show the
completeness of the extended sorted Horn-clause calculus.

Theorem 6 (Completeness of Extended Horn-Clause Calculus). Let K
be a knowledge base in a sorted signature Σ and L be a ground atom or meta-
atom. If K |=σ+ L, then K �σ∗ L.

Similar to the proof of Theorem 2, we can prove Theorem 6 by using Propo-
sition 4. Note that the consequence relation K |=σ+ L is defined with a naive
argument restructuring σ+ but the derivation K �σ∗ L is extended to contain a
label-based argument restructuring σ∗. This is because K �σ+ L is incomplete
for K |=σ+ L, i.e., the derivation is insufficient for the semantics.

However, the label-based argument restructurings σ∗ lead to the undecidabil-
ity of the extended sorted Horn-clause calculus as follows.

Theorem 7 (Undecidability of Extended Horn-Clause Calculus). The
extended Horn-clause calculus does not terminate for a knowledge base K in a
function-free sorted signature Σ.

Proof. We can give the knowledge base that contains the fact p(c: s2) and the
rule p(y: s2)← {q(x: s1, y: s2)} in the sorted signature Σ = ({ s, � }, { p, q, � },
∅, Ω, ≤∗) such that Ω = { c:→ s, c1:→ s, c2:→ s, . . . } and ≤= { p ≤ q }. In
the knowledge base, importantly, q has the second argument, whereas p does not
have the second argument. First of all, the fact p(c: s2) is used to derive another
fact q(c: s2, c1: s) along with the subpredicate relation between p and q. After
that, it further deducts the fact p(c1: s). Then, this fact can derive another fact
q(c1: s, c2: s) by introducing a new argument c2. As you see, this reasoning process
is cyclic. So, it cannot terminate because new arguments are generated infinitely
in this unsafe combination of ontologies and rules. Therefore, the calculus does
not terminate.

We will show that the consequence problem for OSL3h is undecidable. We use
the following undecidability of Horn-clauses in first-order logic.

Theorem 8 (Undecidability of Horn-Clauses with Functions). The sat-
isfiability problem for Horn-clauses with one binary predicate and two unary
functions is undecidable (Börger, Grädel and Gurevich, 1997).

We define the transformation from Horn-clauses with functions into sorted Horn-
clauses with a predicate-hierarchy as follows. Note that unary functions have to
be transformed into predicates and variables in OSL3h because function-free
sorted signatures are considered.

Definition 19 (Transformation). Let K be a finite set of Horn-clauses with
one binary predicate p and two unary functions f1, f2. Then, we define the
function-free sorted signature Σ = (S, P,Ψn ,Ω,≤∗) such that

S = { � },
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P = { p },
Ψn = ∅,
Ω = { p:�×�, δf1 :�, δ′f1 :�×�, δf2 :�, δ

′
f2 :�×� },

≤ = { δf1 ≤ δ′f1 , δf2 ≤ δ
′
f2 }

and the argument declaration Λ = (AN,Π) such that

AN = { a1, a2, a3, a4 },
Π = { p1: 〈a1, a2〉, δf1 : 〈a3〉, δ′f1 : 〈a3, a4〉, δf2 : 〈a3〉, δ

′
f2 : 〈a3, a4〉 }.

Let K0 = K′ with K′ = {(L ← G){x1/x1:�, . . . , xn/xn:�} | L ← G ∈
K & V ar(L ← G) = {x1, . . . , xn}}. By applying the following operation to
each Horn-clause L ← G in Ki and each function f ∈ {f1, f2}, Ki (i ≥ 0) is
transformed into Ki+1 (denoted by Ki →tr Ki+1):

–If L ← G contains f(x:�), then Ki+1 = (Ki − {L ← G}) ∪ {δf (x:�) ←,
L′ ← G′ ∪ {δ′f (x:�, v:�)}} where v:� is a new variable and L′ ← G′ is

obtained by replacing f(x:�) (in L← G) with v:�.

First, every variable x in K is replaced by the sorted variable x:�. In the transfor-
mation, the two unary functions f1, f2 are replaced by the two unary predicates
δf1 , δf2 with argument structures δf1 : 〈a3〉 and δf2 : 〈a3〉 and two binary predi-
cates δ′f1 , δ

′
f2

with argument structures δ′f1 : 〈a3, a4〉 and δ′f2 : 〈a3, a4〉. Using the

predicates, the functional terms f(t) in each clause are transformed into two
clauses without functions. For example, the Horn clause

p(f1(x), y)← {p(x, y)}

is transformed into the two clauses

δf1(x:�)←
p(v:�, y:�)← {p(x:�, y:�), δ′f1(x:�, v:�)}

where v:� is a new variable. Intuitively, the subpredicate relation δf1 ≤ δ′f1 leads
to a mapping f1 from x:� into v:�.

A knowledge base Km in OSL3h is obtained from K when no more transfor-
mation can be applied to Km, i.e., there is a finite sequence K0 →tr K1 →tr

· · · →tr Km−1 →tr Km. We denote the transformed knowledge base by trans(K)
= Km. The undecidability for Horn-clauses with one binary predicate and two
unary functions implies that there is a finite set of Horn-clauses the satisfiability
problem of which is undecidable. So, we show that this set can be transformed
into a finite set of extended Horn-clauses in OSL3h. The existence of trans(K)
for each K is guaranteed by the following lemma.

Lemma 3. For every finite set K of Horn-clauses with one binary predicate p
and two unary functions f1, f2, there exists trans(K).

Proof. This lemma is shown by the fact that each transformation deletes func-
tion symbols and the number of function symbols in K is finite.

Lemma 4. Let K be a finite set of Horn-clauses with one binary predicate p
and two unary functions f1, f2. Then, K is satisfiable if and only if trans(K) is
Σ-satisfiable.
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Proof. (⇒) Let M0 = (U0, I0) be a model and let I0 = (M0, α0) be an inter-
pretation of K, i.e., I0 |= K in the semantics of first-order logic. From I0, we
construct a Σ-model M = (U,UF , I) such that

1. U = U0,

2. UF = N ∪ ({f1, f2} × N),

3. I is a function with the following conditions:

(a) I(�) = U0,

(b) I(p): I(�) × I(�) → 2UF where for every (u, u′) ∈ I0(p), I(p)(u, u′) = {i}
with i ∈ N, and I(p)(u, u′) = I(p)(u′′, u′′′) if (u, u′) = (u′′, u′′′),

(c) if δf ∈ {δf1 , δf2}, then I(δf ): I(�)→ 2UF where for every u ∈ U , I(δf )(u) =
{(f, i)} with (f, i) ∈ {f} × N, and I(δf )(u) = I(δf )(u

′) if u = u′,

(d) if δ′f ∈ {δ′f1 , δ
′
f2
}, then I(δ′f ): I(�) × I(�) → 2UF where for every u ∈ U ,

I(δ′f )(u, I0(f)(u)) = I(δf )(u),

(e) for each f ∈ {f1, f2}, I(δf )(u) ⊆ I(δ′f )(σ
+
δf→δ′f

(u)) where σ+
δf→δ′f

(u) =

〈u, u′〉 if I0(f)(u) = u′.

This Σ-model M = (U,UF , I) is used to construct a Σ-interpretation I =
(M,Δ, α) such that

1. Δ ⊆ UF with the following conditions:

(a) i ∈ Δ if I(p)(u, u′) = {i},
(b) for each δf ∈ {δf1 , δf2}, (f, i) ∈ Δ if I(δf )(u) = (f, i),

(c) for each δ′f ∈ {δ′f1 , δ
′
f2
}, (f, i) ∈ Δ if I(δ′f )(u, u

′) = (f, i),

2. for every variable x:�, α(x:�) = α0(x).

The Σ-interpretation I satisfies every clause in trans(K). Hence, trans(K) is
satisfiable.

(⇐) Let M ′ = (U ′, U ′F , I
′) be a Σ-model and let I ′ = (M ′,Δ′, α′) be a Σ-

interpretation of trans(K), i.e., I ′ |= trans(K) in the semantics of OSL3h. From
I ′, we construct a model M = (U, I) such that

1. U = U ′,

2. I is a function with the following conditions:

(a) if f ∈ {f1, f2} and u ∈ U , then I(f):U → U where I(f)(u) = u′ with
σ+
δf→δ′f

(u) = 〈u, u′〉,
(b) I(p) ⊆ U × U where (u, u′) ∈ I(p) if I ′(p)(u, u′) ∩Δ′ = ∅.
The interpretation I satisfies every clause in K. Therefore, K is satisfiable.

Theorem 9 (Undecidability of Extended Horn-Clauses). Let K be a kn-
owledge base in a sorted signature Σ and L be an atom or meta-atom. Then, the
consequence problem K |= L is undecidable.

Proof. It can be shown by Lemmas 3 and 4.

Let p be an n-ary predicate and τ be an n-tuple of sorted terms. We denote an
atom or meta-atom L by Lp if L = p(τ) or L = ψ(A1, . . . , Am) with Ai = p(τ)
for some 1 ≤ i ≤ m.



24 K. Kaneiwa et al

Definition 20 (Paths in a Knowledge Base). Let K be a knowledge base
in a sorted signature Σ, let Lp, Lq be atoms or meta-atoms, and let a, a′ be
argument names. Then, K contains a path from a in predicate p to a′ in predicate
q if one of the following conditions holds:

1. p ≤ q with a = a′ or a′ ∈ arg(p),

2. Lq[a
′, x: s]← G ∈ K where Lp[a, x: s] ∈ G, and

3. K contains two paths from a in predicate p to a′′ in predicate r and from a′′

in predicate r to a′ in predicate q.

In order to avoid the undecidability, we define a restricted set of knowledge bases,
called safe knowledge bases.

Definition 21 (Safe Knowledge Bases). A knowledge base K is safe if

1. V ar(L) ⊆ V ar(G) for every clause L← G in K,
2. K contains

(a) no path from a in predicate p to a′ in predicate q such that q ≤ p, a = a′,
a ∈ arg(q), and a ∈ arg(p), and

(b) for each a in predicate p with r ≤ p and a ∈ arg(r), at most one path from
a in predicate p to a′ in predicate q with q ≤ p′ and arg(p′) ⊆ arg(q).

We give an example of unsafe knowledge bases that lead to undecidable reasoning
with argument restructurings.

Example 7. Given the sorted signature Σ = (S, P,Ψn ,Ω,≤∗) such that

S = { s1, s2, � },
P = { p, q, � },

Ψn = ∅,
Ω = { c:→ s1, p: s1 × s2, q: s1 },
≤ = { s1 ≤ s2 } ∪ { q ≤ p }

with the argument declaration Λ = (AN,Π) such that

AN = { a1, a2 },
Π = { p: 〈a1, a2〉, q: 〈a1〉 },

we can construct the unsafe knowledge base

K = { q(c: s1)←,
q(y: s2)← {p(x: s1, y: s2)} }.

Lemma 5. Let K be a safe knowledge base in a sorted signature Σ. Then, the
extended Horn-clause calculus with label-based argument restructuring does not
generate new constants infinitely.

Proof. Let Fun0(Con(K)) be the set of constants occurring in a set of clauses
Con(K) and let |P | be the number of predicates. We define Fun0,new(Con(K)) =
{c ∈ Fun0(Con(K))∩F0,new | c is generated from new constants more than |P |}.
Let F ′ = Fun0(Con(K)) − Fun0,new(Con(K)). Then, we have that F ′ is finite
because it is bounded by the condition of Fun0,new(Con(K)).

Suppose that a new constant c ∈ F0,new (introduced in a label-based ar-
gument restructuring) does not belong to F ′. The constant c must be indexed
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by cl′,a: s ∈ Fun0,new(Con(K)). If cl′,a: s is generated, then there is a clause
l′:Lp[a

′, c′] ← G in Con+(K) = {l:L ← G | K � l:L ← G} such that p ≤ q,
a ∈ arg(p), and a ∈ arg(q). This is because cl′,a: s must be introduced in the
predicate hierarchy rule, i.e., for p ≤ q, Lp[a′, c′] derives Lq[a, cl′,a: s] where cl′,a
is the new constant. However, every safe knowledge base contains no more than
|P |-length path to derive Lq[a, cl′,a: s] from Lp[a

′, c′]. This is contradictory to the
assumption. So, it must be sure c ∈ F ′, and therefore F0,new = F ′.

Furthermore, we can show the termination of the extended sorted Horn-clause
calculus with label-based argument restructuring where Σ is function-free.

Theorem 10 (Termination of Extended Horn-Clause Calculus). Let K
be a safe knowledge base in a sorted signature Σ. Then, the extended Horn-clause
calculus with label-based argument restructuring terminates if Σ is function-free.

Proof. By Lemma 5, it is sufficient to consider only finite sorted signatures if
knowledge bases are safe. So, similar to the proof of Theorem 3, Theorem 10 can
be shown.

Corollary 3 (Complexity of Derivation for Atoms or Meta-Atoms).
Let K be a safe knowledge base in a sorted signature Σ, L be an atom or meta-
atom, and θ be a sorted ground substitution for L. If Σ is function-free, then de-
riving the set of ground atoms or meta-atoms Lθ with K �σ∗ l:Lθ is EXPTIME-
complete (w.r.t. the size of K).

Proof. Let Σ be a function-free sorted signature (i.e., only constants such as
0-ary functions in F0 are allowed). Suppose that |K| = m, |Σ| = k, and d is
the maximum number of arities of predicates (i.e., bounded arity). Then, Σ is
extended into Σ+ by supplementing new constants in the predicate hierarchy
rule. Each ground atom can generate at most d · k2(= d× k × k) new constants
because the number of predicates occurring in a predicate hierarchy and the
length of a path are both equal to or less than k. The set of ground atoms
p(t1, . . . , td) is bounded by |P | × |F0|d ≤ kd+1. So, the total number of new
constants is bounded by d · kd+3 = d× k2× kd+1. Hence, |Σ+| ≤ |Σ|+ d · kd+3 =
k + d · kd+3. According to |Var(K)| ≤ m and |T Σ

0 | ≤ k + d · kd+3, the derivation
is computed in 2(m+d+1) log k+2+2(m+d+1)(d+3) log k+(m+d+1) log d+2 steps (similar
to the proof of Corollary 1).

Table 1 lists the complexity of the Horn-clause calculus with argument elim-
ination, naive argument restructuring, and label-based argument restructuring.
We can extend the query system by using the Horn-clause calculus with label-
based argument restructuring.

Theorem 11 (Termination of Extended Queries). Let K be a safe knowl-
edge base in a sorted signature Σ. Then, the extended query system terminates
if Σ is function-free.

Proof. This can be proven by Theorem 10.

Corollary 4 (Complexity of Extended Queries). Let K be a safe knowl-
edge base in a sorted signature Σ and let Q be a query. If Σ is function-free, then
deciding Query(Q) is EXPTIME-complete (w.r.t. the size of K).
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Table 1. The Complexity of Horn-Clause Calculus with Argument Manipulation

Horn-clause calculus complexity completeness

argument elimination EXPTIME yes

naive argument restructuring undecidable no

label-based argument restructuring undecidable yes

label-based argument restructuring
EXPTIME yes

for safe knowledge bases

7. Case Study Example

We consider how to reason on ontologies and rules in OSL3h for a Semantic Web
application. On the Semantic Web, ontologies and rules play an important role
in making information machine-readable.

As the most common Web application, Web search engines are useful tools for
searching for information on the Web. However, they currently only return Web
sites matching some keywords and often not an accurate or comprehensive answer
to a query. We provide a case study example of a Semantic Web application that
semantically combines a Web search engine service and a reasoning service.

For the reasoning service, the ontology designers construct the following pred-
icate hierarchy:

smokes ≤ inhales
inhales ≤ �

and the following meta-predicate hierarchy:

indirectlyCauses ≤ causes
directlyCauses ≤ causes

causes ≤ happensBefore
causes ≤ connectedTo

where smokes and � are unary predicates, inhales is a binary predicate, and
indirectlyCauses, causes, directlyCauses, happensBefore, and connectedTo are
binary meta-predicates.

In addition, the ontology designers can specify the following expressive rule
(an extended Horn clause):

indirectlyCauses(inhales(x: person, v: substance), hasCancer(y: lung))

← { hasPart(x: person, y: lung),
causes(inhales(x: person, v: substance), becomes(y: lung, z: color)),

causes(becomes(y: lung, z: color), hasCancer(y: lung)) }
The above rule expresses that the predicate “inhaling a substance indirectly
causes lung cancer” can be inferred from the three predicates: “the lungs belong
to the inhaling person,” “inhaling a substance causes the lungs to become black,”
and “a lung becoming black causes cancer.” This rule enables us to infer indirect
causality that indicates semantic links between event descriptions on the Web.

We assume that the following facts are extracted or mined from semantic
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tags and texts in some Web pages (as discussed in (Sánchez, Isern and Millan,
2011; Vongdoiwang and Batanov, 2006; Senkul and Salin, 2012)).

smokes(jack: person)←
hasPart(jack: person, c1: lung)←
becomes(c1: lung, black: color)←
causes(smokes(jack: person), becomes(c1: lung, black: color))←
causes(becomes(c1: lung, black: color), hasCancer(c1: lung))←

When a user tries to seek an answer to the query “what causes lung cancer
to a person?” If the search engine does not know the answer but it can find some
facts, then the following query could be formulated to the reasoning service
designed with ontologies and rules.

Query(happensBefore(X:�(y: person), hasCancer(c1: lung)))
Using the extended Horn-clause calculus, the reasoning service would return the
following conclusion (“Jack inhaling a substance” is a cause of lung cancer in
Jack):

X = inhales(jack: person, ca,l: substance)

In the reasoning steps, first the atom smokes(jack: person) derives the following
atom:

inhales(jack: person, ca,l: substance)

with argument restructuring for smokes ≤ inhales. Next, the above rule derives
the following causality:

indirectlyCauses(inhales(jack: person,ca,l: substance),hasCancer(c1: lung))

with indirectlyCauses ≤ causes and causes ≤ happensBefore. This meta-atom
further derives the following upper meta-predicate in the hierarchy:

happensBefore(inhales(jack: person, ca,l: substance), hasCancer(c1: lung))

Moreover, the query “what is the specific nature of (or what are the details
concerning) Jack inhaling a substance?” i.e., Query(Y : inhales(jack: person, ca,l:
substance)), would return the following specific answer (“Jack is a smoker”):

Y = smokes(jack: person)

From this result of the reasoning service with ontologies and rules, the search
engine can return an accurate answer to the user.

This example of reasoning can be implemented in a safe knowledge base
using label-based argument restructuring (listed in Table 1). To implement it in
a safe or unsafe knowledge base using argument elimination, the binary predicate
inhales has to be replaced by a unary predicate. This stops to generate any new
constant for the subpredicate relation smokes ≤ inhales of unary and binary
predicates.

However, the knowledge base becomes unsafe if it contains a cyclic path, or
the following rule with unary predicate absorbed, binary predicates mildlyAffects
and severelyAffects, and two subpredicate relations between them:

absorbed(w2: substance)← {inhales(w1: person,w2: substance)}
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absorbed ≤ mildlyAffects

absorbed ≤ severelyAffects

Intuitively, unsafety is caused by the fact that two new constants (i.e., persons
in mildlyAffects and in severelyAffects) are generated from one constant (i.e.,
substance) in the atom inhales(jack: person, ca,l: substance).

8. Related Work

In related studies, several approaches for combining ontologies and rules have
been proposed such as in (Krisnadhi, Maier and Hitzler, 2011). It is required
that reasoning services in the Semantics Web must be decidable. So, decidable
languages for ontologies and rules have been designed. In fact, Description Logics
and DATALOG are both decidable if they are separated. However, it is not so
easy to guarantee decidability if ontologies and rules are combined in reasoning
services.

SWRL (Semantic Web Rule Language) (Horrocks et al., 2004) is a combina-
tion of OWL and RuleML that leads to undecidable reasoning between ontologies
and rules. To overcome this undecidability, several decidable fragments for com-
bining ontologies and rules have been proposed.

DLP (Description Logic Programs) (Grosof et al., 2003) is a subset of both
Description Logic and DATALOG, and thus is decidable. OWL 2 RL (Motik
et al., 2009) is a recent formalism based on DLP and related to OSL3h. It can
represent both rules and ontologies. Its reasoning is tractable. Compared with
DLP and OWL 2 RL, OSL3h can describe rules and OWL 2 RL axioms using
full expressions in DATALOG, while DLP and OWL 2 RL cannot handle some
useful rule expressions because of their lack of full expressions in DATALOG.
OSL3h could be considered a superset of DLP and OWL 2 RL.

DL-safe rules (Hitzler and Parsia, 2009; Rosati, 2005; Motik et al., 2005)
are an approach to integration of rules and Description Logics. But in order to
preserve the decidability, the domain of each variable in DL-safe rules is limited to
named individuals in DL ABoxes and logic programs. For example, the following
DL-rule

C(x), R(x, y), p(x), q(y)→ r(x, y)

is safe because the variables x and y of concept C and role R have their domains
limited by the variables of predicates p and q in logic programs.

By generalizing the notion of DL-safe rules, extended DL-rules have been
proposed. ELP (Krötzsch et al., 2008) is a rule language based on the tractable
Description Logic EL++ and is formalized with extended DL-rules for EL++

(called OWL 2 EL). Its rule expressions can represent role inclusion, local reflex-
ivity, role disjointness, and the universal role. OSL3h and ELP can express the
following rules (presented in (Krötzsch et al., 2008)) which OWL 2 EL cannot
handle:

NutAllergic(x), NutProduct(y)→ dislikes(x, y)

orderedDish(x, y), dislikes(x, y)→ Unhappy(x)

dislikes(x, z), Dish(y), contains(y, z)→ dislikes(x, y)

Compared with ELP, OSL3h can describe n-ary predicates and meta-predicates
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in full rule expressions with sort, predicate, and meta-predicate hierarchies which
ELP lacks, e.g., see the case study example in Section 7.

9. Conclusions and Future Work

We developed an order-sorted logic programming language equipped with con-
cept hierarchies of sorts, predicates, and meta-predicates. In OSL3h, predicates
with differently structured arguments are conceptually interpreted in the seman-
tics. According to the semantics, predicate-hierarchy reasoning was realized in
the hierarchies of predicates and meta-predicates in which predicate assertions
can be used as arguments of meta-level predicates. To achieve such enhanced
reasoning, we designed inference rules for predicate and meta-predicate hier-
archies in the order-sorted Horn-clause calculus. We employed the calculus to
develop a query-answering system for generalized queries containing predicate
variables. We showed that the complexity of our expressive query-answering sys-
tem is identical to that of DATALOG. We proved several complexity results
where argument restructuring gives rise to undecidable reasoning services in the
derivation of super predicates in a predicate hierarchy, but a set of safe knowledge
bases preserves the decidability of the derivation with argument restructuring.

We further plan to extend the formalization of meta-predicates in OSL3h in
order to represent relationships between objects and events. For example, the
assertion kills(tsunami(c2 : country), John: person) contains an event and an
object in a causal relationship. Because of the limitation to meta-predicates
in OSL3h, this assertion cannot be described in the current formalization. In
addition, in order to derive upper and lower meta-predicates flexibly, we plan
to restructure arguments of meta-predicates in a meta-predicate hierarchy. The
operation of argument restructuring is useful to semantically connect event de-
scriptions in the Semantic Web, and contributes toward the building of the future
Linked Data Web (Groza, Grimnes, Handschuh and Decker, 2011). This is an
important step in the design of an efficient reasoning system on complex expres-
sions.
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