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Abstract

Order-sorted logic is a useful tool for knowledge representation and
reasoning because it enables representation of sorted terms and formulas
along with partially ordered sorts (called sort-hierarchy). However, this
logic cannot represent more complex sorted expressions when they are true
in any possible world (as rigid) or some possible worlds (as modality) such
as time, space, belief, or situation. In this study, we extend order-sorted
logic by introducing existential rigidity and many modalities. In the ex-
tended logic, sorted modal formulas are interpreted over the Cartesian
product of sets of possible worlds. We present a new labeled tableau cal-
culus to check the (un)satisfiability and validity of sorted modal formulas.

1 Introduction

Knowledge-based systems support intelligent decisions by using the technolo-
gies of knowledge, learning, and reasoning. Such systems use knowledge rep-
resentation languages for storage and reasoning engines for inferring valuable
knowledge. Processing of knowledge is required to deal with conceptual knowl-
edge (e.g., ontology) and temporal and situational dependencies of knowledge
(e.g., real world data). As a tool of artificial intelligence, logical languages and
deductions provide us with theoretical foundations for knowledge representation
and reasoning.

Order-sorted logic [20, 9, 17, 26, 22] has been known as first-order predicate
logic that extends to include many sorts and their hierarchy (called sort hi-
erarchy). In knowledge representation and reasoning, automated deduction
for order-sorted logic, which offers advantages in this area, has been thor-
oughly studied [6, 27, 28]. These advantages include: (i) reduced search space
through restriction on domains and ranges of functions, predicates, and vari-
ables [23, 24, 25], (ii) reasoning on taxonomic knowledge by means of partially
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ordered sorts [3, 14, 15], and (iii) detection of sort errors in well-sorted formu-
las [18]. Similar to type-checked programs, sorted formulas ensure the reliability
of knowledge representation and reasoning.

On the other hand, a number of the extensions of order-sorted logic have
been proposed for logical reasoning regarding time, knowledge, and actions.
Galton [7] proposed reified temporal logic that can be used to describe events
and actions in sorted formulas. Based on many-sorted logic, Cruz and Cross-
ley [4] introduced tiered logic for agents in different locations. Moreover, Sha-
panskykh and Treur [21] made use of the reified temporal predicate language to
specify cognitive processes and behaviors of agents. These extensions have been
made more sophisticated for the purposes of event description and reasoning
for events, time, agents, and sorts.

To the best of our knowledge, ordinal order-sorted logic (first-order predi-
cate logic with sort-hierarchy) and its extensions have not addressed the rigidity
and multiple modalities of sorted expressions in knowledge representation and
reasoning. First, rigidity and anti-rigidity of sorts are important for represent-
ing the essential property of static and dynamic conceptual knowledge not dealt
with by the existing temporal logic. Therefore there is a need to consider that
rigid sortal properties hold in any possible world but anti-rigid sortal properties
do not hold in certain possible worlds. Second, anti-rigid sorts cause a complex
combination among multiple modalities in n-dimensional possible worlds. This
is because the truths of anti-rigid sortal properties depend on a specific world,
such as time, space, belief, or situation. In the extensions of order-sorted logic,
events, time, agents, and sorts are effectively described; yet the semantics and
reasoning for many-dimensional modalities have not been established in the
temporal logic. For example, the modal formula O agt1 Cmim Csit 1 indicates
that an agent knows the fact F} in a situation at a time and the modal formula
CsitOAagt1 OTim P2 indicates that it is true in a situation that an agent knows
the fact Fy at a time. The expressions require development of a sound reason-
ing mechanism based on the semantics over many-dimensional worlds that the
above approaches do not support.

Rigidity [30] is defined as a meta-property of concepts; a sort is rigid if
the property is essential to all its instances in any time, space, belief, or
situation, otherwise it is non-rigid. Let us assume many modal operators
Oy, O, 1,000, O, and common modal operators B 4. Intuitively, some
of the modal operators are used to express temporal and situational opera-
tors Orim, <Omim, Usit, Osit and k& knowledge operators Oagt1, ..., Dagtk
(for each knowledge of k agents). In the semantics, the many modal opera-
tors O;, O; are interpreted as specific modalities over time points, locations,
or situations, and the common modal operators B, ¢ are interpreted as gen-
eral modalities over all the possible worlds. Given the temporal, situational,
and k knowledge operators, the common modal operator B indicates the com-



animal

male person

VRN

boy man student

Figure 1: An example of sort-hierarchy

mon knowledge among k agents in any time point and situation. That is, the
modal formula BF implies Oqym ' A Ogije "' A Oager F'A -« A Oagi . In con-
trast, the standard common knowledge operator Oajagts only indicates the
common knowledge among k agents; i.e., the modal formula Oy agts ' implies
Oagt1F' A -+ ADOagikF'. In order to handle relationships among time, situa-
tion, and knowledge worlds, accessibility relations over n-dimensional worlds
are considered. For example, let (tm, st,wy, ..., wy) be an n-dimensional world
(n = k + 2) that indicates an n-tuple of time, situation, and k-agents’ knowl-
edge worlds. The modal formula Oagt1 £ is true if and only if for every world
w) of agent 1 where &/ = (tm,st,w],...,wg) is accessible from the current
world @ = (tm, st,w1, ..., wg), F is true in @'. Moreover, OmimOage1 F is true
if and only if there exists some time tm’ where @’ = (tm/, st,w],... wg) is
accessible from @’ = (tm, st,w], ..., w) and F is true in @”. For the purpose
of our modeling of rigidity, we employ semantics of n-dimensional worlds dif-
ferent from the temporal logic formalisms in the area of agent systems, such as
Alternating-time Temporal Logic (ATL) and Alternating-time Temporal Epis-
temic Logic (ATEL) [19].

We consider some examples of sorted modal formulas with the axiomatic
system S4 for the temporal and situational operators Opy, and Og and the
common modal operator Oapagts and the axiomatic system S5 for the k knowl-
edge operators Oagt1, .., Oagtk. Let man, student, male, boy, person, and
animal be sorts with the following subsort relation (sort hierarchy), as described
in Figure 1:

boy < male

man < male
man < person
student < person
person < animal

male < animal

The sorted formula man(john: person) is true at any time and situation if



the sort man is rigid. In contrast, the sorted formula student(john: person)
is true only in a particular situation if the sort student is not rigid. In the
sort hierarchy, student(john: person) implies animal(john: person) because
the anti-rigid sort student is a subsort of the rigid sort animal. This subsort
relation is effectively defined in the rigidity of sorts where any rigid sort cannot
be a subsort of an anti-rigid sort. In other words, some instances of each anti-
rigid sort exist only in a particular time or situation that cannot belong to any
rigid subsort.

According to the rigidity of sorts, many different modalities play an impor-
tant role in representing anti-rigid sorts; i.e., a sortal property is true if it is
dependent on time, space, belief, or situation. For example, the anti-rigidity of
the sorted variable x: person is represented by the sorted modal formula:

YV : animal (Omimchild(z: animal) A Omim—child(x: animal))

which signifies that if  is an animal there exists a time point in which he/she
is a child, but there exists another time point in which he/she is not a child.
Using the sort hierarchy, the formula implies more specific statements sorted
by a subsort of animal, e.g.,

YV : person(Omimchild(z: person) A Omim—child(x: person))

The rigidity of sorts also becomes more realistic when ezistential rigidity [29]
is taken into account in ontological consideration. More precisely, a sort is
existentially rigid if in any possible world for which an instance of the property
exists, it instantiates the property. Consider the sorted modal formula:

Va: person(Opymman(x: person)).

Under existential rigidity, this formula indicates that if x is a person, then he
is a man in the time period in which he exists. This statement logically derives
the fact that there is no time point in which the person z exists but he is not
a man.

As a non-trivial example, the following sorted modal formulas are con-
structed by employing temporal and situational operators, k knowledge opera-
tors, and common operators. By representing the positive introspection axiom
(in the axiomatic systems for knowledge [10]), we can consider the sorted modal
formula:

(Oagt1Csishappy(bob: person)) — (Oage1Dage1 Csichappy(bob: person))

which states that an agent knows a fact which he/she knows, precisely, an agent
knows the fact “Bob is happy in a situation where he is a person” when he/she



knows that he/she knows it. Moreover, the negative introspection axiom (in the
axiomatic systems for knowledge [10]) leads to the sorted modal formula:

(mOagt1Omimrich(bob: person)) — (Oagt1 "DAagt1 Omimich(bob: person))

This expresses the statement that an agent knows the fact “Bob is rich at a
time point” which the agent does not know.

The common modal operator B can be used to represent a rigid sorted
formula, i.e., a property is true in any time point, situation, or agent knowledge.
For instance, we have a sorted modal formula for the rigid property male as
follows:

Wmnale(bob: person) — (Omimmale(bob: person) A Opgi1male(bob: person))

which says that if Bob is a male person, then he is a male person in any time
point in which he exists and an agent knows the fact that he is a male person
as long as he exists in the agent’s mind (i.e., when the agent knows that Bob is
alive). This axiom is validated by the feature of the common modal operator;
i.e., the modal formula BMF implies Opym F' A Ogije F' A Opager F' A - - A OagiicF
In the modalities, the subsort relation male < animal derives a more general
statement as follows:

Banimal(bob: person) —

(Omimanimal (bob: person) A Opgt1animal(bob: person))

Using the subsort relation person < animal, another general statement can be
derived as follows:

(3x: animal)(MWmale(z: animal) —

(Omimmale(x: animal) A Opgermale(x: animal)))

The dual operator ¢ of B indicates a modality for time points, situations,
and k agents’ knowledge, which can represent a non-rigid sorted formula (i.e., a
property is true in a time point, situation, or agent knowledge). As an example
of this, we can consider a sorted modal formulas for the non-rigid property child
as follows:

Omimchild(bob: person) — child(bob: person)

which states that if Bob is a child in a time point, then the fact that Bob is a
child is true in another time point, situation, or agent knowledge.

These examples motivate us to enhance order-sorted logic by incorporating
many modalities under existential rigidity.

First-order modal logics have long been investigated independently from
order-sorted logic. Garson [8] discussed different systems for variants of quanti-
fied modal logics. Fitting and Mendelsohn [5] treated the rigidity of terms and



constant /varying domains by means of a tableau calculus and predicate ab-
straction. Cialdea-Mayer and Cerrito [2] proposed a prefixed tableau calculus
for all variants of quantified modal logics with respect to cumulative/varying
domains, rigid/non-rigid terms, and local/non-local terms. However, the exist-
ing approaches do not provide a combination of existential rigidity and many
modalities in logic. In particular, there is no reasoning system for the integrated
logic of sorted expressions, rigidity, and many modalities. To achieve the rea-
soning system for the combination, additional inference rules for the interaction
between sorts and modalities, which cannot be obtained by simply combining
them, have to be defined.

Based on the above motivation, we study an extension of order-sorted logic
by introducing existential rigidity and many modalities into sorted terms and
formulas. The existential rigidity and non-rigidity of sorts are expressed by the
distinctions among rigid and anti-rigid sorted terms together with an existential
predicate. That is, many different modal operators are used to express the
non-rigidity of sorts in various possible worlds such as time, space, belief, or
situation. In the semantic definition, sorted modal formulas are interpreted
over the Cartesian product of sets of possible worlds.

In order to apply our extension to reasoning mechanisms, we propose a la-
beled tableau calculus that tests the satisfiability and validity of sorted modal
formulas. This calculus is obtained by extending the prefixed tableau calcu-
lus proposed by Cialdea-Mayer and Cerrito. In the derivation process where
decomposed formulas are derived by rule application in calculus, sorted modal
formulas are labeled by a pair of the type of a world and the world itself.
New inference rules (many modal operator, sorted quantifier, rigid/anti-rigid
sort predicate, and existential predicate rules) are included to handle sorted
expressions and many modalities supporting existential rigidity.

The rest of this paper is arranged as follows. Section 2 formalizes the syntax
and semantics of order-sorted modal logic. In Section 3, we discuss a labeled
tableau calculus for our proposed order-sorted modal logic, which enables us
to check the satisfiability and validity of sorted modal formulas. In Section 4,
we show the completeness of the labeled tableau calculus. Then, we give some
examples for testing the validity of sorted modal formulas. Finally, in Section 5,
we provide our conclusion.

2  Order-Sorted Modal Logic

We define the syntax and semantics of order-sorted logic with many modalities
and existential rigidity.



2.1 Syntax

The alphabet of a sorted first-order modal language £ with rigidity and sort
predicates comprises the following symbols: a countable set 7 of type sym-
bols as rigid sorts (including the greatest type T), countable set Sy of anti-
rigid sort symbols (7 NS4 = (), countable set C' of constant symbols, count-
able set F), of n-ary function symbols for each natural number n, and count-
able set P,, of nm-ary predicate symbols for each natural number n with the
existential predicate symbol E and the set Pr_s, of sort predicate symbols
{ps | s € T US4}, the connectives A,V,—, -, quantifiers V, 3, modal opera-
tors {Oy,...,0n}, {C1,. .., On ), M ¢ with a natural number m, and auxiliary
symbols (,). We write F' = J,,~¢ Fn and P = J,,~o Pn-

All type symbols 7 and anti-rigid sort symbols o are called sort symbols s.
T U Sy is the set of sort symbols. V; denotes an infinite set of variables x; of
sort s. We abbreviate variables T of sort T as . The set of variables of all
sorts is denoted by V = | SETUSA Vs. The unary predicates ps € P; indexed
by the sorts s (called sort predicates) are introduced for all sorts s € 7 USq4.
In particular, the predicate p, indexed by a type 7 is called a type predicate,
and the predicate p, indexed by an anti-rigid sort ¢ is called an anti-rigid sort
predicate. Hereinafter, we assume that every sorted first-order modal language
L contains all the sort predicates in Prys,.

Let T C 7 and Sy € S4. A constant declaration is of the form c¢: — 7 if
c€ Cand 7 € T. A function declaration is of the form f: 7 x --- x 7, — 7 if
feF, (n>0)and 7,...,7,,7 € T. A predicate declaration p: s X -+ X s,
if pe P, and s1,...,8, € T'US4. In particular, for each type or anti-rigid sort
predicate ps € Prys,, the predicate declaration is of the form ps: T where T is
the greatest type.

Definition 1 (Sorted Signatures) A signature of a sorted first-order modal
language L with rigidity and sort predicates (called sorted signature) is a tuple
Y = (T, 54,<,9) such that

1. (T'US4, <) is a partially ordered set of sorts where T'U Sy is the union of

a set of type symbols and a set of anti-rigid sort symbols in L and each
ordered pair s; < sj is a subsort relation (i.e., s; is a subsort of sj).

2. no rigid sort is a subsort of an anti-rigid sort.
3. Q is a set of constant, function, and predicate declarations.

Intuitively, the distinction between rigid and anti-rigid sorts is given as
follows. If an entity has a rigid property, then it must have that property
in any possible world. By following it, a sort is categorized as rigid if every
instance of the sort is an instance of that in any possible world. Otherwise, it
is anti-rigid.



Constants and functions are required to be rigidly sorted in order to avoid
the anti-rigid domains and ranges of constants and functions. The sort declara-
tions of constants ¢ and functions f are therefore denoted by the forms ¢: — 7
and f: 7 X --- X 7, — 7 where types 7;, 7 are used for the declarations. By
contrast, predicates may be anti-rigid. The sort declarations of predicates are
denoted by the form p: s; X - -+ X s, where types and anti-rigid sorts s; can be
used to set the domains of the predicates p.

In [14], the reason for not allowing the anti-rigid sorts of constants and func-
tions has been explained. We consider the following declarations of unrigidly
sorted constants, functions, and predicates:

john: — student,
father: person — teacher,
getting_a_scholarship: student.

Unfortunately, the anti-rigid sorts student and teacher give rise to the sorted
terms:

john: student,
father(john: student): teacher,

getting_a_scholarship(xsiydent)-

Due to the anti-rigidity of student and teacher, John is not a student in some
possible worlds and John’s father is not a teacher in some possible worlds. These
expressions are regarded as ill-sorted errors in some possible worlds. On the con-
trary, the anti-rigid sort of the predicate leads to getting_a_scholarship(x student)
being true or false but it causes no ill-sorted error.

In the sorted signature, the three types of terms: typed term, anti-rigid
sorted term, and sorted term are inductively defined in a sorted first-order
modal language Ly.

Definition 2 (Typed Terms) Let ¥ = (T,54,<,9Q) be a sorted signature.
The set T of terms of type T (called typed terms) is the smallest set such that

1. for every x, € Vy, v € T ;
2. for every c € C withc: — 1€ Q, ¢, € T ;

Soiftr €T ,... sty €T, f € Fp, and f: 71 X - X7y — 7 € Q, then
frer(ti, o ty) € T with 7 =7y, ...,Ty;

4. ifte T and v <7, thent e T .

Definition 3 (Anti-Rigid Sorted Terms) Let ¥ = (T, 54, <,Q) be a sorted
signature. The set T of terms of anti-rigid sort o (called anti-rigid sorted
terms) is the smallest set such that



1. for every v, € Vo, 2o € T ;

2. ifteT, ando' <o, thentec T .

The anti-rigid sorted terms are only variables because the anti-rigid sorts of
constants and functions are not allowed in the sorted signatures (as explained
above).

Definition 4 (Sorted Terms) Let ¥ = (T, 54,<,Q) be a sorted signature.
The set T of terms of sort s (called sorted terms) is the smallest set such that

1. if s=1, then T, C Tg;
2. ift €Ty and s’ < s, thent € T;.

We denote the set of ground terms of sort s by 75o. Based on the rigidity of
types and anti-rigid sorts, any anti-rigid sorted term (in 7, ) must be a variable
term whereas typed terms (in 7.) can contain constants and functions. In other
words, every anti-rigid sorted term is not rigid (e.g., Zstudent) and every typed
term is rigid (e.g., Cperson). We define sort(t) as the sort of a term ¢; precisely,
we define sort(t) = s if ¢ is of the form zg, ¢, or fr= s(t1,...,tp).

Next, the set of sorted modal formulas in the language Ly is given as follows.

Definition 5 (Sorted Modal Formulas) Let ¥ = (T, 54,<,Q) be a sorted
signature. The set F of formulas is the smallest set such that

1. ifty € Tgyyoo sty €75, p € Py, and p: s1X---X 8y, € Q, then p(ty, ..., ty)
s a formula;

2. ift € Tr, ps € Prus,, and ps: T € Q, then ps(t) is a formula;
3. if t € Tt, then E(t) is a formula;

4. if F, Fy, and Fy are formulas, then —F, (Vzs)F, (3xs)F, O F, O F, RF,
OF, W NFy, Iy V Fy, and Fy — Fy are formulas.

The existential predicate formula E(t) asserts the existence of an individual
denoted by a term ¢ in a possible world. A sorted formula is called closed if it
does not contain free variables. We use some of the modal operators to represent
temporal and situational operators Omym, <$mim, Usit, Csit and k& knowledge
operators Oagt1, - .., Dagtk (for each knowledge of k agents). We abbreviate
(Oagt1F) A+ A (OagtF) by the common knowledge operator DanagtsF'-



2.2 Semantics

Here we define the semantics of our sorted first-order modal languages Ls.
Let w1,...,w, be worlds. In the following, we denote an n-tuple of worlds
(W, ..., wy) by w.

Definition 6 (Sorted X-Structures) Let ¥ be a sorted signature. A sorted
Y-structure M is a tuple (W, o, {R1,...,Rn}, R, U,I) such that

1. W =Wy x---x W, where each W; is a non-empty set of worlds and for
every 1 <i < j <m, I/ViﬂWjZQ);

2. Wy € W;

3. R C{{{wi,...,wp), (W, ...;w,)) € WxW |Vk e {1,... mIN{i} (w, =
wy,)} where R; is reflexive and transitive, or reflexive, transitive, and
symmetric,

4. R C W x W is a superset of Ri U ---U Ry, where R is reflexive and
transitive;

5. Ug is a non-empty set of individuals for each w € W ;
6. U is a superset of Jgew Uas

7. 1 ={Ig| W€ W} is the set of interpretation functions Lg for all tuples
w € W with the following conditions:

(a) if s € T U Sy, then Iz(s) C Ug, (in particular, if s = T, then
LE(S) = Ulﬁ)7

(b) if s; < sj with s;,s5 € T'USa, then Ly(s;) C Ig(sj),

(c) ifce C and c: — 1 € Q, then Iz(c) € Iz(T),

(d) if fe€ Fyand f: 1y X X1 = T €Q, then Iz(f): Ig(m) X -+ X
Iﬁ}(Tn) - Iw(T),

(e) ifp € Py andp: sy X+ %8, €Q, then Iz(p) C Iz(s1) X xIg(sn),
and

(f) if s € TUSa and ps € Prug,, then Iy(s) = Ly(ps)-

In the sorted X-structures, an individual set Ug for each n-tuple @ of worlds
is used to represent the set of individuals that exist in an n-dimensional world

W = (wi,...,wy). The accessibility relation ((w1,..., wy), (W],...,w,,)) € R;
indicates that (wf,...,w;,) is accessible from (w1, ..., wy,) such that w;, = wj,

for every k € {1,...,m}\{i}. Unlike the general accessibility R, accessibility
R; indexed by ¢ is limited to a relation that accesses w; in multiple dimensional
worlds of (wy, ..., wpy).

10



We define the existential rigidity of sorts, constants, and functions in sorted
Y-structures by supporting the conditions of individual existence in the follow-
ing manner.

Definition 7 (Existential Rigidity) Let M = (W,wy,{R1,...,Rn}, R, U,I)
be a sorted X-structure, w € W, Iz be an interpretation function for &, d € Ug,

and let R be an accessibility relation over W x W. Then, M is a sorted -

structure with existential rigidity if for all w;,w; € W and for any interpretation

Junctions Iz, and Lz, for w; and wj, the following conditions hold:

1. if Ig,(c), Ig;(c) € Ug, N Ug;, then Ig,(c) = Lg,(c) where ¢ is a constant;

2. foranydy,...,d, € U’LﬁimUzﬂjz Zf{lu_fz(f)(dla . '7dn)71u7j(f)(d17 .- adn)} -
Ug, NUg;, then Iz (f)(dy, ..., dn) = Ig,(f)(d1,...,dy) where f is an n-

ary function;

3. for every type 7, if d € Iz(7) and (W,w') € R, then d € Ug implies
d S Iﬁ/(T),’

4. for every anti-rigid sort o, if d € Iz(o), then there exists W; € W with
(W, ;) € R such that d ¢ Ly, (o) with d € Ug; .

In order to support the existential rigidity of sorts, the interpretation function
and accessibility relation in sorted X-structures with existential rigidity (of
Definition 7) is restricted by adding some conditions to them in sorted X-
structures (of Definition 6).

The denotation of terms is defined by introducing the set Cy of new con-
stants d for individuals d in U where every new constant is interpreted by itself.
In what follows, we adopt a sorted first-order modal language Ly, extended by
adding the set Cy of new constants.

Definition 8 Let M = (W, Wy, {R1,...,Rn}, R, U,I) be a sorted L-structure
and let W € W. The denotation [ [z: Tt 0 — Ug is defined by the following
rules:

1. [er] g = Lw(c) for c € C where c: — 7 € Q,
2. [d)z=d for d € Cy, and

3. [frer(tr, . t)lg = La(f)[tilg, - - - [tnlg) for f € F, where f: 1 %
e X Ty — T €

Note that 77 o (the domain of [ ;) denotes the set of ground terms of all sorts
since T is the greatest type and 7o denotes the set of ground terms of sort s
and all its subsorts. A closed formula is a sorted modal formula without free
variables. We define the set of subterms of a term ¢ as follows:

11



1.

2.

if t = ¢,, then sub(t) = {c;};

if t = frer(t1,...,tn): s, then sub(t) = {fr+(t1,...,tn): s} Usub(t;) U
- U sub(ty).

To define the satisfiability of sorted modal formulas, the existence of individ-
uals denoted by terms in each world is handled. Let M = (W, Wy, {R1, ..., R},
R, U,I) be a sorted Y-structure, let F', F}, and F, be sorted modal formulas,
let @ € W, and let [t]; be the denotation of a sorted ground term ¢ in @. The
set Nex of closed formulas with sorted ground terms non-existing in o is the
smallest set such that

1.

D.
6.

p(t1,...,tn) € Nexg iff for some ground term ¢ € sub(ty) U --- U sub(ty),

[[t]]w ¢ Ug;

. 2F, (V) F, (3xs)F € Nexy iff F € Nexg;
L OF, OF, BF ) F ¢ Nexg;

. F1 NFy € Nexyg iff F1 € Nexg or Fy € Nex;

Fy VvV Fy € Nexg iff F1 € Nexg and Fy € Nexg;

Py — F5 € Nexg iff -F) € Nexg and Fy € Nexg.

Definition 9 (X-Satisfiability Relation) Let M = (W, @y, {R1,...,Rn}, R,
U,I) be a X-structure, let F' be a closed formula, and let & = (wy,...,wy,) € W.
The Y.-satisfiability relation W= F is defined inductively as follows:

1.

© % NS & e

Frplt, o sta) iff ([l [tnd ) € Ta0);
WE=E(t) iff there exists d € Ug such that [t] ; = d;
WE-F iff WHEF;

WEF A Fy iff WEF and WEFy;

WEFLV Fy iff WEF) or W= Fy;

WEF — By iff W F or W= Fa;

W= (Vas)F iff for all d € Ig(s), 0= Flas/d);

W= (3xs)F iff for some d € Iz(s), W= Flzs/d];

W O;F iff for all w' € W; with (W,4'") € R;, W EF or F € Nexg
where W' = (wq, ..., Wi—1, W, Wit1, ..., Wy);

12



10. WO F iff for some w' € Wy with (W, ') € R;, W'E=F and F ¢ Nexg
where W' = (w1, ..., Wi—1, W, Wit1,...,Wy);

11. WE=MFE iff for all W' € W with (W,7') € R, W =F or F € Nexy;

12. G=4F iff for some W' € W with (W, w') € R, W'=F and F ¢ Nexg .

The modal formula O0;F (or BF) is satisfied in a world « if for any world '
accessible from w, F' is satisfied in @’ (@' = F) or some ground terms in F' do
not exist in W' (F € Nexg ). Let F be a formula. It is X-true in M if @y = F
(M is a ¥-model of F). If F has a Y-model, it is X-satisfiable, otherwise, it
is Y-unsatisfiable. F' is Y-valid if every sorted Y-structure is a ¥-model of F.
Let ¥ be a set of formulas. A formula F' is a consequence of ¥ in the class
of Y-structures (denoted ¥ |= F) if for every Y-structure M, M = ¥ implies

To test the satisfiability of any closed formula, the following proposition
guarantees that any closed formula can be transformed into an equivalent one in
negation normal form (i.e., negation occurs only in front of an atomic formula).
Let Iy and F5 be closed formulas. The formulas F; and F5 are semantically
equivalent (denoted Fy} ~ Fj) if for every sorted X-structure with existential
rigidity M = (W, @y, {R1,...,Rn}, R, U,I) and for every & € W, & = F if
and only if @ = Fy.

Proposition 1 Let F, Fy, and Fy be closed formulas and let i € {1,...,m}.
The following semantic equivalences hold:

——F ~F
~(FL A Fy) ~ —F) V —F
~(FLV Fy) ~ —F) A —F
—(Fy — Fy) ~ Fy A —Fy
—(Vas)F ~ (Jxs)—F
=(Jzs)F ~ (Vog)-F
—-lF ~ ¢(-F)
—4¢F ~ B(—F)
-0, F ~ O (—F)
—O4F =~ Oy(—F)

Proof. Let M = (W, @y, {R1,...,Rn}, R, U,I)beany sorted 3-structure with
existential rigidity and let @ € W. By Definition 9, the semantic equivalences
can be proved as follows: (—-—F ~ F) & = —-—F if and only & £ —F if and
only if & =F. (—4F ~ W(—F)) & =—4F if and only if for all & € W with
(W,d") € R, W' £ F or F € Nexy if and only if for all W' € W with (@, ') € R,
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W' E-F or =F € Nexg if and only if W =B-F. (-0;F ~ &;(—F)) W E-0O;F
if and only if for some W' € W; with (W, w') € R;, W £ F and F ¢ Nexg if and
only if for some @' € W; with (@, &) € R;, W' |=—F and —-F ¢ Nexy if and
only if @ =< (—F). Similarly, the other cases can be shown. I

3 Tableau Calculus

In this section, we present a labeled tableau calculus for testing the satisfiability
of a sorted modal formula in order-sorted modal logic.

Let A be a closed formula in negation normal form (i.e., negation occurs
only in front of an atomic formula) and ¥ be a finite set of closed formulas in
negation normal form. We define the annotated term ¢(»™ by annotating each
constant symbol and function symbol with (i,n) € {W,Ty,...,T,,} X N (e.g.,
™ and fT(f’;;T(a:ﬁ,c%’n))). The annotated set W™ and formula AG™ are
obtained as follows: If ¥ = {Ay,..., A;} then plin) — {Agi’n), .. ,A,(j’n)}. If
A, =p(ty, ..., 1) thenAAZ(.Z’n) = p(tgl’n), . ,t,(;’n)), and otherwise, AEM) = A,.
The annotated term ¢(™) implies that it exists in the world corresponding to
(i,n). Let W and T; denote the two types of worlds corresponding to B and
0O;, respectively. Each node in a tableau is labeled with a formula set (i,n): ¥
where i € {W,Ty,...,T,} and n € N. The initial tableau for ¥ is the single
node (W, 0): SW:0),

The tableau calculus contains conjunction and disjunction rules, existential
predicate rules, modal operator rules, sorted quantifier rules, and sort predicate
rules. The pair (i,n) of labels 7 and n denotes a type of worlds and a natural
number. Note that in order to support many modalities, modal formulas are
labeled by a pair (i,n) such that two labels i and n are needed to represent
the type of a current world ¢ and the level of a current modality n. For ex-
ample, consider the modal formula F = g #Ommrich(bob: person) that is
decomposed in the inference process as follows:

(W,0): Cgit #OTimrich(bob: person)
(Sit,1): 4 mmrich(bob: person)
(W,2): Oqymrich(bob: person)
(Tim, 3): rich(bob: person)

First, the formula (W, 0): $gi 4#<Omim ' with three modal operators is annotated
by the initial label (W, 0). Second, (Sit,1): ¢ mym F' is derived by deleting < gt
where ¢y F' is true in a situation world and the nested level is 1. Third,
(W,2): Oy F' is inferred by deleting ¢ where Oy, F' is true in a world and
the nested level is 2. Finally, (Tm,3): F is derived by deleting ¢y, where F
is true in a time world and the nested level is 3. It is important that the pair
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of two labels (Tim,3) keeps the information that the current world is a time
and the three modal operators are nested.

A ground term ¢ is of (i, n) if the annotated term ¢(»™ occurs in an ancestor.
Leti e {W, Ty, ..., T}, j € {T1, ..., T}, let t be any ground term with (i, n)
, and let comma be the union of sets (i.e., U1, ¥y = Uy U Uy, A, ¥ = {A}U T,
and A,B = {A} U{B}). Each rule cannot be applied to a formula set if its
conclusion has already been included in the formula set.

Conjunction and disjunction rules
(i,n): ANB,¥ (i,n): AV B, ¥
(i,n): A6, BOm) @ (i,n): AG™) T (i,n): BGM ¥

(@) ()

The conjunction and disjunction rules are based on the standard tableau rules.
It can be seen that if a formula is decomposed into atomic formulas, the ground
terms in the atomic formulas are labeled with the natural number n, as A®™).
This indicates that the included terms exist in world n, and they are referred
to as terms with (i,n) . For example, the labeled formula (Tim, 3): p(cT%3))
indicates that the constant c is an existing individual of the time world denoted
by (Tim,3) and p(c) is true in the world.

In a-rule and (-rule, the decomposed formulas A and B are annotated
with (i,n) (such as A" and B#™) since they may be atomic formulas. For

example, if p(t) A F' is decomposed to p(t) and F' by a-rule, then we obtain the
annotated atomic formula p(t(").

Existential predicate rule

(i,n): =E(t),¥
(i,n): L,—E(t),¥

(E)

This rule is introduced to cover the existential predicate. In E-rule, if the term
t is labled by (i,n) , it derives a contradiction because ¢ must exist in world 7.

In the modal operator rules, *¥ denotes {*F' | FF € ¥} for« € {l, Oy,...,0,,}
(possibly *¥ = ). Let 7y be the set of ground terms. The translation function
& is defined by E(p(t1, ..., tn)) = 0 if {t1, ..., tn} € Ty, otherwise E(p(ty, ...,
tn)) = E(t1) A--- N E(t,). For any formula F', the function £ can be expanded
as follows:

(i

) E(+F) = E(F) for every € {~, Va,, Ix},
(i)

)

)

xF) = () for every x € {Oy,..., 0., O1,..., O, B ¢},
(iii

1V

&(
&(
E(FLAFy) = E(Fy) A £(F), and
E(FLV Fy) = E(F) V E(F).
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Moreover, we define ¥ V =&€(V) = {FV =E(F) | F' € U}. Moreover, we define
ANE(A) = Aand AV—E(A) = Aif E(A) = 0. Let ¥ be a set of closed formulas.
We denote WA E(Y) as {FANE(F) | F € U} and ¥ V =E(V) as {F VvV -&E(F) |
F e v},

Many modal operator rules

(4,m): O;A, ¥
(J,n): AV -E(A),0;A, ¥

(i,n): ©;A,0;VURY, T’
Gt 1) AAE(A) . T -£(0) Wy )

()

(j,n): ©O;A, 0;GURY, ¥
(J,n+1): ANE(A), TV -E(Y), 0, YURY

(75)

(ivn): ‘A, .‘1’,\1’/
Won+1): AAEA), UV &), me ™)

(i,n): WA, U . (i,n): O;A, T
(i,n): AV-E(A),0:A4,...,0,A BRA TV (W0) (i,n): $#A,O;A, ¥

(C4)

(i,n): ©;A, T
(t,n): ANE(A), 4A,O;A T

(O47)

The vj-rule derives the disjunction of the formula A and the negation ~£(A) of
the existential predicate formula. In other words, the disjunction implies that
the formula A is true or some ground terms in A do not exist.

The 7;-rule, m;;-rule, and my~rule derive the conjunction of the formula A
and the existence £(A) of the ground terms in A and these increase the natural
number n (by the annotation (j,n + 1) in the conclusion), since the modal
operators <; and 4 imply that there exists a world n + 1 accessible from n. In
mij-rule, i # j, in m;-rule and m;;-rule, ¥’ is a set of closed formulas without
the forms BF and O;F, and in my~rule, ¥’ is a set of closed formulas without
the form BF'. The 7;-rule does not modify the type of worlds but the m;_; rule
modifies the type of worlds i into j (by replacing the annotation (i,n) with the
annotation (j,n+1)). Further, when the my~rule is applied to a black diamond
formula, the type of worlds is labeled as W (by the annotation (W,n + 1) in
the conclusion), denoting any type of worlds. Additionally, MO-rule and <4-
rule are introduced by supporting the fact that the possible worlds of time and
situation are a subset of the set of worlds. If ¢; is a knowledge operator, the
<4t -rule is applied instead of the O4¢-rule.

The following sorted quantifier rules and sort predicate rules are applied to
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the quantifiers of typed variables and anti-rigid sorted variables.

Sorted quantifier rules

(i,n): Ve AU
(i,n): Alz,/t]0™) Vo, AU

(i,n): py (t(i’")), Vo, A, W
(i,n): py (t(i’")), A[a:s/t](i’”),Va:sA, 0

() (7s)

(4,n): Jx, A, ¥
(i,n): B(c%™), Alz, /e )™ 3z, A, ¥

(67)

(i,n): Jx, A, ¥
(i,n): pg(cS-i’n)), A[ZEU/CT](i’n), Jx, A, W

(95)

In ~;-rule, sort(t) < 7, in ys-rule, s’ < s and py is an anti-rigid sort predicate,
in d,-rule, ¢, is a constant not in {3z, A} U ¥, and in d,-rule, ¢, is a constant
not in {Jz,A} UV where p,: T € Q. Then, ~,- and J.-rules are used for typed
variables, ds-rule is used for anti-rigid sorted variables, and the ~ys-rule is used
for both typed and anti-rigid sorted variables.

The sort predicate rules derive the type and sort predicate formulas from a
subsort relation. If the type of a term ¢ is a subtype of 7, then this type predicate
formula is true. Moreover, if s is a subsort of s, then the sort predicate formula
ps derives the sort predicate formula p,.

Sort predicate rules

(i,n): ps(t(i’")), U
(i,n): py (t0M), py(tE7) T

(<)

where s < s'.

Type predicate rules

(i,n): W
(i,n): pr(t™), @

(i,n): pT(t("’”)), N
(i,n): Wp,(t0"), ¥

(pr) (Mp;)

where sort(t) < 7.
Anti-rigid sort predicate rules
(i,n): po(t™), ¥
(i,n): #-pe(t™), U

(#p5)

A tableau rule is called static if it does not change the level (i,n) (i.e.,
(i,n): ¥ is expanded to (i,n): ¥’ by an application of the rule), it is called
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dynamic otherwise (e.g., mj-rule, m;_,;-rule, and my~rule are dynamic). The set
of closed nodes in a tableau for (i,n): ¥ is defined as follows:

(i) if a node contains two complementary literals (=4 and A®™) or the clash
symbol |, then it is closed, and

(ii) if all the children of a node are closed, then it is closed.

A tableau is closed if the root is closed.

4 Completeness

This section proves the completeness of our proposed tableau calculus by com-
bining the techniques in order-sorted logic [1, 12, 11] and in quantified modal
logic [2].

Lemma 1 Let M = (W,wy,{R1,...,Rn}, R, U, I) be a sorted X-structure
with existential rigidity and A be a closed formula. For every w € W, the
following statements hold:

1. A € Nexg if and only if WHE(A) and E(A) # 0.
2. If A does not contain any ground term, then A € Nexg and E(A) = 0.

Proof. By definition, it is trivial. 1

Lemma 2 Let M = (W,wy,{R1,...,Rn}, R, U, I) be a sorted X-structure
with existential rigidity, let W € W, and let t € Tyo. If [t]; = d, then W =

Alz,s/d] < W= Alzs/t].
Proof. Similar to the proof of the counterpart in [2]. 1

The following theorem shows the soundness of the labeled tableau calculus.
Theorem 1 If there exists a closed tableau for ¥, then ¥ is ¥X-unsatisfiable.

Proof. Suppose that ¥ is >-satisfiable. Then, there exists a sorted 3-structure
with existential rigidity M = (W, Wy, {R1,..., R}, R, U,I) such that @y =V.
We will prove that there is no closed tableau for ¥. Let T be any tableau
for ¥. In order to show it, we construct a sub-tableau 7" of T' such that the
root ¥g = S (W’O), each non-leaf node ¥y has only one child ¥y, and every
node is Y-satisfiable (which implies that every node is not closed because every
closed node is ¥-unsatisfiable). We show the satisfiability of each node ¥y by
induction on the depth k of the tableau T.
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Base case: k = 0. By the assumption, M satisfies all the formulas in ¥. So,
Wy = UT where Ut is the non-annotated set of SW'9) in the initial tableau for
v.

Induction step: k£ > 0.

(vj-rule) Let us assume @ |={0; A} UV’ where &/ € W. Then, for all &’ € W;
with (@, @") € Rj, W' [=A or A € Nexy . Since R; is reflexive, (W, W) € R;, and
so WA or A € Nexg. This derives W=AV —E(A) by Lemma 1 (1).

(mj-rule) Let us assume o = {<; A}UD,; WURY' UP” where @ € W. For some
Wo € W; with (W, W,) € Rj, Wol=A and A & Nex,, and thus o, = A A E(A).
Let F € {F | O;F € 0;%/URY'}. By the assumption, for all &’ € W; with
(W,w') € Rj, W =F or F € Nexy. So, Wy |=F VvV —=E(F) by Lemma 1 (1).
Moreover, since R; is transitive, if (@, W,) and (@W,, @) in R;, then (W, ) in
R;. This implies that for all @’ € W; with (W,, W) € Rj, W’ |=F or F € Nexg»
(i.e., Wy =EO;F). Let F € {F | BF € O, V'URY’'}. By the assumption, for all
W' € W with (W,4') € R, W =F or F € Nexy. Since (W,w,) € R; (C R),
We =F V —E(F) by Lemma 1 (1). Since R is transitive, if (i, w,) and (@, @)
in R, then (&, ) in R. Hence, for all W’ € W with (W,, w") € R, W' = F or
F € Nexgn (i.e., W, ):.F)

(mij-rule) Let us assume o ={<C;A} U O; W UMY U ¥ with i # j where
e Wifi=W, we W, otherwise. For some w, € W; with (W, w,) € Rj,
Wol=A and A € Nexy,. So, Wo=ANE(A). Let F € {F | 0;F € O, WURY'}.
By the assumption, for all @' € W; with (@, ') € Rj, W' |=F or F € Nex.
So, Wy =F V ~&E(F) by Lemma 1 (1). Let F € {F | BF € O;V'URY’'}. By the
assumption, for all &/ € W with (@, ') € R, W/ EF or F € Nexg. Because
(W,W,) € Rj (C R), Wo =FV -E(F) by Lemma 1 (1). Moreover, since R is
transitive, if (@, w,) and (W,, @) in R, then (w,w)) in R. This implies that
for all W € W with (@, ") € R, W' |=F or F € Nexgn (i.e., W, =RF).

(my~rule) Let us assume o = {¢A} UBY U U”. For some w, € W with
(W,W,) € R, Wol=A and A ¢ Nexy,. Hence, W, = ANE(A). Let F € {F |
BF € BV}, By the assumption, for all @/ € W with (w,w') € R, W' = F
or ' € Nexg. So, W, = F V —=&(F) by Lemma 1 (1). Moreover, since R is
transitive, if (W, w,) and (wW,,w)) in R, then (w,w)) in R. Therefore, for all
w” € W with (W, w") € R, W' =F or F € Nexgn (i.e., W, =WF).

(MO-rule) Let us assume @ ={MA} UV’ For all & € W with (@, d’) € R,
wW'EAor A€ Nexg. R;is asubset of R. So, for all ' € W with (@, ') € R;,
W' EA or A € Nexy. Hence, @ = O A and o = Ogip A. Since R is reflexive,
(W, W) € R, and by Lemma 1 (1), WAV -E(A).

(O#-rule) Let us assume @ |={<; A} U ¥ where <©; is a knowledge operator.
For some W, € W; with (W, w,) € Rj, Wo |F A and A ¢ Nexy, (i.e., W, =
ANE(A)). Due to Rj C Rand W; C W, (W, w,) € R and W, € W. From this
W =4 A follows.
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(O#t-rule) Let us assume o |={<O; A} U W', By the soundness of MO-rule,
for some w, € W; with (@, w,) € Rj, W, = AN E(A) and @ |= ¢A follows.
Because R; is symmetric, (W,, W) € Rj, WE=ANE(A).

(v,-rule) Let @ = {Vz, A} UW'. For all d € I5(7), W = Alz,/d]. Since
sort(t) < 7 and t is a ground term with (i,n) , [t]z = d' € UgNlz(7) (C Iz(1)).
So, W= Az, /d']. This yields w = Alx, /t].

(ys-rule) Let @ = {py(t),VasA} U ¥ where s’ < s. Then, [t]z € Lz(ps),
and for all d € Iz(s), W }*A[xs/cﬂ If s is extensible, then py is an anti-rigid
sort predicate, Iz(ps) = Lz(s") (C Lg(s)). If s is inextensible, then (Iz(ps) C)
ILs(ps) = Iz(s). Thus, [t]; = d' € Iz(s), and @ = Alzg/d']. Tt follows that
whEAlxs/t].

(6,-rule) Let @ = {3x,A} U ¥, For some d € Iz(1), @ = A[z,/d]. Let
us extend M to M’ by setting Iz(c) = d (€ Iz(r) C Ug) where ¢, is not in
{32, A} UV and ¢: — 7 € Q. Therefore, w=FE(c;) and wE= Alx,/c;] in M.

(05-rule) Let @ = {Fr,A} U ¥ where p,: 7 € Q. For some d € [z(o),
W= Alw,/d]. Let us extend M to M’ by setting I5(c) = d (€ I(c)) where ¢,
is not in {Jz, AUV and ¢: — 7 € Q. Thus, WEA[z,/c;] in M'. Because of
I3(0) = Lz(py), wEps(c;) in M'.

(<-rule) Let @ = {ps(t)} UP’. If s < &, then by definition, I3(ps) C Lz (ps).
Hence, W E=py(t).

(E-rule) Let us assume o = {—FE(t)} U V" where t is a ground term with
(i,m) . Then, t(*™ occurs in a positive atomic formula (i.e., ¥ contains (i)
an atomic formula p(t; e "), e ,tl(i’n)) where ¢ = ¢, for some u € {1,...,l} or
(i) E(tE™)). For (i), ([tilg---,[tlg) € La() (€ Ug x --- x Ug), so that
[t]z € Ug. Thus, (i) and (ii) imply @ }=E(t). It is a contradiction.

(a-rule), (B-rule), and (I-rule) For the cases, it is easy to show that each
tableau rule preserves satisfiability.

(pr-rule) Let o =¥, and let ¢ be a ground term such that sort(t) < 7. Then,
[t]lz € Ug N Iz(7), and by the definition of sorted X-structures, [t]; € Lz(T).
Since I3(1) C Iz(pr), we obtain & =p,(t).

(Mp,-rule) Let @ |=T’, and let ¢ be a ground term. Then, t]; € UzNIz(7),
and by the definition of existential rigidity, for any world @’ with (&, @') € R,
[tlg & Ug (1) or [t] s € Ly (7). Since Lz (1) C Ly (pr), we obtain o |=Mp-(t).

(#po-rule) Let « =¥, and let ¢ be a ground term. Then, [t]; € UgNIz(0),
and by the definition of existential rigidity, there exists w; € W with (@, ;) €
R such that [t]; € Iz, (o) with [t]; € Ug,. Therefore, @ = 4-p, ().

Therefore, since every node ¥y in the sub-tableau T” is Y-satisfiable, it is
not closed. 1

In order to prove the completeness of the labeled tableau calculus, we need

to define saturated sets of formulas and a canonical interpretation of a formula
set. Let (i,n): ¥ be a labeled set of closed formulas. We denote the set of
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ground terms of sort s with (i,n) in ¥ by 7 4((i,n): ¥) = {t € 7, N T |
") oceurs in U}, We represent the set of ground terms of a sort predicate

ps with (i,n) . T, o((i,n): ¥) = Uy {t € Ty | ps (™) € W}, The set

T, 0((i,n): ¥) consists of the ground terms ¢ in atomic sort predicate formulas

py (1) for all the sorts s’ with s’ < s'.

Lemma 3 Let ¥ = (T, S4, <,Q) be a sorted signature and (i,n): ¥ be a labeled
set of closed formulas. If s < s', then T ((i,n): V) C T, (((i,n): ¥) and
7,,0((in): ¥) €T, o((i,n): ¥).

Proof. By definition, it is easy to show. I

A set U of closed formulas is consistent if its non-annotated set does not
contain any pair of complementary literals (i.e., =A and A) or the clash symbol
L. For example, if {-p(t),p(t™)} C W, then it is not consistent.

Definition 10 A labeled set (i,n): ¥ is saturated if VU is consistent and the
following rules are satisfied:

1. pT(t(i’")) € W for every ground term t € ’Z’T’O((i, n): ).
if ps(tt™) € W and s < ', then py (™) € 0.
if pr(t0M) € U, then Wp, (t07) € T

if po(t"™) € W, then #-py (1) € V.

Svood o e

if Fi ANFy € U, then F{"™ € W and Fy'"™ € W.
6. if 1V Iy € U, then either Fl(i’”) c U or FQ(W) cv.

7. if (Vas)F € U, then Fxs/t]™) € W for every ground term t € T, 0((i,n): T)U
T, o((i,n): U).

DPs,

8. if (Fxs)F € ¥, then ps(c(Ti’n)),F[a?S/cT}(i’") € U for some constant c;
where T =5 if s €T, ps: T € Q0 otherwise.

9. if O,F € U, then 'V —-E(F) € V.
10. if MF € U, then F v —&(F),04F,...,0,,F € .
11. if O;F € U, then ¢F € V.

12. if O;F € U and <; is a knowledge operator, then ANE(A), 4F € V.

!Every subsort relation is reflexive, antisymmetric, and transitive since it is a partial order.
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A labeled set (i,m): W is tab-consistent if for every finite subset U’ of U there
is no closed tableau for (i,n): U’

Lemma 4 If (i,n): U is tab-consistent, then there exists a superset U* of U
such that (i,n): U* is saturated.

Proof. Let a labeled set (i,n): ¥ be tab-consistent. We inductively construct
a sequence (i,n): Uy, (i,n): ¥,..., (i,n): Vg,... of nodes by applications of
static tableau rules where Wy = W.

(i,n): Uy

(k > 0) Let a static tableau rule of the form (i,n): Uyy; be applied. Since
(i,n): ¥y is tab-consistent, (i,n): Wiy is tab-consistent. This is because every
static rule does not delete any pair of complementary literals (i.e., 7A and A) or

(i, n) : \I/k
the clash symbol L. Let a static tableau rule of the form (i,n): ¥ (i,n): ¥”
be applied. Since (i,n): ¥y is tab-consistent, (i,n): ¥ or (i,n): ¥” is tab-
consistent. We define Wy = U if (i,n): U is tab-consistent, ¥y, 1 = ¥”
otherwise.

It remains to prove that there exists a superset U* of W such that (i,n): ¥*
is saturated.

Let ¥* = [Jpey Yi- Assume that the non-annotated set of ¥* contains a
pair of an atomic formula A and its negation —A or the clash L. For each set
Uy, let us denote the set of literals and L occurring in Wy by L(¥y). Since
every static rule does not delete them, L(¥g) C L(¥;) C --- C L(P¥g) C ---.
By the assumption, there exists m € N such that ¥,, is not consistent. This is
contradictory to the fact that every node (i,n): ¥y, is tab-consistent. It follows
that ¥* is consistent.

We need to check that U* satisfies Conditions (1) - (12) in Definition 10.
Condition (1). By p,-rule, this condition is satisfied. Condition (2). By <-rule,
this condition is satisfied. Conditions (3) and (4). By Mp,-rule and #p,-rule,
these conditions are satisfied. Conditions (5) and (6). By a-rule and S-rule,
these conditions are satisfied. Condition (7). Let s = 7. By ~,-rule, for
every t € T_o((i,n): ¥7), Fla,/t]") € U*. Let t € 7, o((i,n): ¥*). Then,
Flz,/t]®*™) € U* by ~,-rule. Let s = o. 7,0((4,n): ¥”) is the empty set since
T, N T, = 0 (by Definition 2). For every t € 7, ,((i,n): ¥¥), there exists o’
such that o/ < o and py (t0")) € U*. By ~,-rule, F[z,/t]") € ¥*. Condition
(8). Let s = 7. By d,-rule, E(CS—i’n)),F[I‘T/CT](i’n) € U* and thus, by p,-rule,
pT(cg’n)) € U*. Let s = 0 with p,: 7 € Q. By d,-rule, pg(c(f’n)), Flz,/c. ™ €
U*. Conditions (9) - (12). By vj-rule, BO-rule, O4-rule, and O47F-rule, these
conditions are satisfied.

These yield the conclusion that (i,n): ¥* is saturated. 1

The following lemma will be used to construct a canonical interpretation.
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Lemma 5 Let (i,n): ¥ be tab-consistent and let j € {1,...,m}. The following
statements hold:

1if O = QAU URY U (1 = j), then (j,n+1): AANEA),T V
=E(V'),(0;, MY’ is tab-consistent.

2. 4f U = O;A 0,V URY ' (i # j), then (j,n+ 1): ANE(A), TV
=E(V'), MY’ is tab-consistent.

3. if U =¢A RV V" then Wyn+1): ANE(A), ¥ Vv -E(T), BV is tab-
consistent.

Proof. (1) Let us suppose that (j,n+1): AAE(A), V'V -£E(¥),0; ¥ URY
is not tab-consistent. Then, for some finite subset W; of it, there exists a closed
tableau for (j,n+1): ¥;. We canset ¥; = (U1 AE(V1))U(VaV-E(Vsa))UW3UW,
where Uy C {A}, Uy C U/, W3 C O;0, and Uy C MY, Let U] ={ANE(A)}U
(W5 VvV =E(W5)) U W, U, where ¥ =Wy U{B | 0,;B € U3} U{B | MB € U },
Ui = U3 U 0¥y, and ¥y = ¥y U WPy, Because of U; C W, there exists a
closed tableau for (j,n+1): ¥}. Due to O;U,URY, = W5 U V), mj-rule derives
(4,n+1): U} from (i,n): O;A, 0, WH5URYS,. Since U, C ¥/, {O; A U0, ULURYY,
is a finite subset of . Hence, ¥ is not tab-consistent.

(2) Suppose that (j,n+1): ANE(A), ¥'Vv-E(T'), BT’ is not tab-consistent.
Then, for some finite subset ¥; of it, there exists a closed tableau for (j,n +
1): U;. We can set U = (U AE(V1)) U (Vo vV =E(Ps)) U U3 where ¥y C {A},
Uy C ¥, and U3 C WY Let W) = {AANE(A)} U (T V =E(T)) U Wy where
U, =V, U{B | BB € V3} and ¥4 = U3 U @Y, Because of ¥; C U}, there
exists a closed tableau for (j,n +1): ;. Due to BV, = W%, 71, ;-rule infers
(4,n+1): U} from (i,n): O;A, 0;W,URYS,. Since U5 C ¥/, {O; A U0, U5URYY,
is a finite subset of W. Thus, W is not tab-consistent.

(3) Let us suppose that (W,n+1): AANE(A), ¥ Vv =E(T'), MY is not tab-
consistent. Then, for some finite subset W; of it, there exists a closed tableau
for (W,n+1): ;. We can set ¥; = (U1 AE(V1)) U (To VvV —=E(Ps)) U ¥s where
Uy C {A}, Uy C ¥, and ¥3 C BY’. Moreover, let U; = {AANE(A)} U (T5V
=E(W,))U W, where ¥, = UoU{B | BB € U3} and V5 = U3 UBY,y. Because of
U; C U, there exists a closed tableau for (W, n+1): ¥;. Due to MY, = Ul my-
rule derives (W,n +1): ¥} from (i,n): ¢A, BY,. Since ¥, C V', {¢A} URY,
is a finite subset of W. It follows that ¥ is not tab-consistent. 1

We now are ready to define the canonical interpretation of a formula set.

Definition 11 Let ¥ be a finite set of closed formulas and let the initial set
(W,0): SO be tab-consistent. The canonical interpretation of SO is a
tuple M. = (W, wy,{R1,...,Rn}, R, U,I) fulfilling the following conditions:

1. W is a set of m-tuples for labeled sets of closed formulas where
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(a) W € W with @y = (1,...,m) for (W,0): (SO such that (S(W:0))*
is a superset of SO &y is saturated (it exists by Lemma 4), and
maz(wWo) = m. Then, Wy is tab-consistent since (W,0): SW:0) s
tab-consistent,

(b) if W € W with @ = (w1, ..., wy) for (i,n): Vi (n>0), then

i. forevery O;A in Uy (= {O;A U0, VUMY UV ) b = (wy,...,wi—1,
max (W) + 1, wiy1, ..., wn) for (i,n+1): U, such that W) is a
superset of {ANE(A)}U (V' V=E(W)) U,V URY, & is sat-
urated, mazx (W) = max(W) + 1, (i,n+1): {AANEA)} U (¥ V
=E(P)) U 0,9 URY is tab-consistent (by Lemma 5), W' exists
and is tab-consistent (by Lemma 4), and (w0, w') € R;,

. for every O;A (i # j) in Uy (= {O;A}U O URY U DY),
W= (wi,...,wj—1,max(W)+1,wjt1, ..., W) for (j,n+1): ¥}

such that ¥ is a superset of {ANE(A)}U (V' V-E(T)) URY,
W' is saturated, max(W') = mazx(wW)+1, (j,n+1): {ANE(A)}U
(U v =E(V) UMY is tab-consistent (by Lemma 5), W' exists
and is tab-consistent (by Lemma 4), and (W, d') € R;,

iii. for every #A in Uy (= {¢A}URY UV") & = (max(wW) +
1,...,max(wW)+m) for (W,n+1): W such that ¥} is a superset
of {ANE(A)YU (W' V=E(W))URY' o is saturated, max(W') =
mazx(w) +m, (Wyn+1): {AANEA)} U (V' Vv =E£(T)) URY
is tab-consistent (by Lemma 5), W' exists and is tab-consistent
(by Lemma 4), and (W, ') € R';

Wi = {wl | W= <’U)1,...,U}m> fOT’ (Z,TL) ‘Ijk}}
R; = cl(R;) or ™ (R;)%;
R=c(R1U---UR,, UR/);

AR NI

U is a superset of Ugey Us where Ug = {t € T | t0n) occurs in Uy}
and @ is for (i,n): Vg;

6. I is the set of interpretation functions Iz for all worlds W € W for
(i,n): Uy such that
(a) Ig(s) =T o((i,n): i) UT, o((i,m): W),
(b) Iz(c) =c, wherec: — 1 €9,

(c) Ig(f)(t1,... . t;) = fq—*ﬂ—(tl,...,tl) with 7" =7, ...,7 where f: 171 X
e X T TE,

2Let r be an ordered set. cl(r) (resp. cI™(r)) denotes the reflexive and transitive closure
of 7 (resp. the reflexive, transitive, and symmetric closure of r). This is used to make an
accessibility relation reflexive and transitive (or reflexive, transitive, and symmetric) over
possible worlds.
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(4) Io(p) = {(tr,....t0) [ ("™, ") € Wy}

Let ¥ be a finite set of closed formulas such that the initial tableau (W, 0): ¥(W:0)
is tab-consistent. The following lemma indicates model existence for ¥ and the
semantic condition of the existential rigidity holding.

Lemma 6 Let (W,0): W0 be tab-consistent and let M, = (W, @o, {R1, ..., Rm},
R, U, I) be the canonical interpretation of WW0) . (i) M. is a sorted S-structure

with existential rigidity, and (ii) for all F € (SWO)* where @y is for (W,0): (SW:0))*,
wWo = F' where F' is the non-annotated formula of F.

Proof. Let M. = (W,wy,{R1,...,Rn}, R, U,I) be the canonical interpreta-
tion of W(W:0),

(i) We show that M, satisfies Conditions (1) - (5) in the definition of sorted
Y-structures and Conditions (1) - (4) in the definition of existential rigidity
(i.e., sorted X-structures with existential rigidity).

(sorted X-structure in Definition 6) The dummy constants make the domain
of each world non-empty. So, by Definition 11 (1) - (2), Conditions (1) and (2)
are satisfied. By Definition 11 (3), Condition (3) is satisfied, and by Defini-
tion 11 (4), Condition (4) is satisfied. By Definition 11 (5), Condition (5) is
satisfied.

Condition (6-a). Let s € T'U S4. By Definition 11 (5) and (6-a), Iz(s) =
T, o(W) UT,, o(W) CUg.

Condltlon (6-b). Let t € Iz(s) with s < §’. By Definition 11 (6-a), ¢
T, o(W) UT, (wW)(C Ug). By Lemma 3, if t € 7, ((&) then t € 7, ;(), and 1f
t € T, o(w) then ¢ € 7, o(w). Thus, we have t € I(s .

Condition (6-c). By Definition 11 (6-a) and (6-b), for every ¢ € C with
c: »T1€Q Iglc)=cr € TyNT C Iz(T).

Condition (6-d). By Definition 11 (6-a) and (6-¢c), for every f € F, with
fimx-oxm—oTEQ, Iu_}'(f)(t17...,tl) = fT*,’T(tla"'7tl) eTyNT. C Iu-;(T)
where 7 = 711,...,Th.

Condition (6-e). Let (t1,...,t;) € Lz(p) where @ is for (i,n): Wy and p: s1 X

- x §; € Q. By Definition 11 (6-d), p(tgl’n), ce tl(l’n)) € ¥y, where t, € ToN7T;,
for all w € {1,...,1}. By Condition (6-a), Uz N Iz(s) C Iz(s) for every s €
T U Sy. Hence, Iz(p) C Lg(s1) x -+ x Lg(s;). Let t € Iz (ps) where @ is
for (i,n): ¥y and ps: 7 € Q. By Definition 11 (6-d), ps(t™) € ¥}, where
t € ToN7;. So, by (v-1), t € Iz(7), and hence I3(ps) C I 7(7) by Definition 11
(6-a).

Condition (6-f). Let @ € W for (i,n): ¥y and let t € I(s). Let s = 7.
If t € 7T _o(w), then by Definition 10 (1), pr(t0™) € Uy, Let s = o. Since
there is no ground anti-rigid sorted term, 7;70(1[1’) = (). On the other hand, if

t € 7, o(w), then by definition, Py (™) € Wy with s < 5. When s # s,
by Definition 10 (2), ps(t®™) € ¥y, Thus, Iz(s) C Lz(ps). If @ € W for
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(i,n): Uy and t € Iz(ps), then py(t™) € W, By Definition 11 (6-a) and
(6-d), t € 7, o(wW) (C I5(s)). From this, I;5(ps) € Lz(s) follows.

(existential rigidity in Definition 7) Conditions (1) and (2). Let w;, w; € W
and let ¢y or fr« +(t1,...,4) in Ug, N Usg;. Definition 11 (6-b) entails Iz (c) =
Cr = Iw'j (C) and Iwi(f)(tl, ‘e ,tl) = fT*J(tl, “vey tl) = Lj;]. (f)(t1, vy tl) where
c: »>7€Qand f:7my X X1 —>TE

Condition (3). Let w € W and t € Ug. Let 7 be a type with ¢t € Iz(7)(=
T, 0((i,n): Wp)UT, o((i,n): Vi) Ift € T, 4((i,n): P), then by Definition 10
(1), pr(t0™) € Uy If t € 7, o((i,n): Wg), then ps(t™) € Uy with s < 7. So,
by Definition 10 (2), p,(t%"")) € W,. Therefore, by Definition 10 (3), we have
Wy, (t) € \I'k Let (W, w') € R. Then by Definition 11 (1-b), p-(t) V=E(p-(t)) €
W) where o' is for (z n+m): V. Ift € Uy (iff —E(t) & \Il' i), then p (t"*™)
must belong to V). So, t € T ((z ,n+m): ¥)). Therefore, by Definition 11
(6-a), t € Iy (1) (= Tﬂo((z n —|— m) V) UT, o' n+m): ¥p)).

Condition (4). Let W € W and t € Ug. Let o be an anti-rigid sort with ¢ €
L(0)(= T, ((i,n): Wk)UT, o((i,n): Vi) where @ is for (i,m): Wg. Since there
is no ground anti-rigid sorted term, 7, ,((i,n): W) = 0. Ift € T, o((3,n): ¥y),
then by definition, po (t(*™) € W}, with o/ < o. When ¢’ # o, by Definition 10
(2), po (tE™)) € ;. Then, by Definition 10 (4), #—py(t') € ¥). By Definition 11
(1-b), there exists @' for (W,n + 1): ¥} such that —p,(t), E¢W"+D)) € @)
So, po (tWm+1)) & W, . Hence, t ¢ T, o((Win +1): W), Since T, ,((W,n +
1): 9) = {awnt } and t # a(WnH), we have t ¢ T (). Therefore, by
Definition 11 ( a), t & Iy (o) with t € Ugr.

(ii) We next verify that for every @ € W for (i,n): ¥y and for every F' € Uy,
W F’ where F’ is the non-annotated formula of F'.

Let F = p(tgz’n), . ,tl(z’n)). Due to p(tgl’n), . ,t;z’n)) € Wy, it is clear that
wWE=p(t,...,t) (by Definition 11 (6-d)).

Let F' = —p(ty,...,t;). Since (i,n): ¥} is tab-consistent, p(t(Z ) ...,tl(z’n)) 4
\I/k. Thus, w#p(th ve ,tl).

Let FF = Fy A F5. Then, Fl(i’n),F(Z e W} because W is saturated. By the
induction hypothesis, W = Fy and @ = Fy. So, WE=Fy A Fs.

Let ' = Fy V F5. Then, Fl(i’n) € Uy or FQ(i’n) € W, since w is saturated. By
the induction hypothesis, @ = F) or @ |= F». Hence, W= Fy V Fs.

Let F' = (Va,)Fy. By Definition 10 (5), F}[zs/t]®™ € Wy, for every ground
term t € 7, ((W)UT, o(W) (= I5(s)). By the induction hypothesis, = Fi [x5/t].
This yields @ = (Vzs) F1.

Let F' = (3z5)F1. By Definition 10 (6), ps(cgi’n)) € Uy and F[zs/c, | €
;. for some constant ¢,. If s € T, then s = 7. Thus, ¢; € 7o N7, and it
occurs in Wg. This implies ¢, € 7 o(w) (C Iz ( ). If s € T, then ps must be
inextensible (since s is an anti- rigid sort). Then, ¢; € 7, o(wW) (C Iz(s)). By

P
the induction hypothesis, @ = Fi[zs/c.]. Hence, W= (Jxs) Fy.
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Let F = O,F. Let & € W such that (&,a’) € R; and o' is for (j,n +
m): ). By Definition 11 (1-b)-i and ii, Fy V ~&€(F1) € ¥). By Definition 10
(4), F/T™ € W) or —=E(Fy) € W), (if £(F1) # 0). By the induction hypothesis,
if F''¢ Nex;, then @' |=F;. Therefore, =0, F;.

Let F' = ©;F;. By Definition 11 (1-b)-i and ii, there exists @’ for (j,n +
1): W, such that (W,d’) € R; and F1 A E(F1) € W). Since ¥ is saturated,
Fy € V) and E(Fy) € ¥}, (if E(F1) # 0). By the induction hypothesis, o’ = Fy
and by Lemma 1 (1), F; & Nexy . By definition, w =< Fy.

Let F' = BF;. Let &' € W such that (@, d’) € R and ' is for (¢, n+m): ¥,.
By Definition 11 (1-b)-iii, Fy V =€ (Fy) € V). By Definition 10 (4), F]""™ € ¥},
or ~€(Fy) € W), (if £(F1) # 0). By the induction hypothesis, if F' ¢ Nex,
then ' = Fy. Hence, W =MF;.

Let F' = 4F. By Definition 11 (1-b)-iii, there exists @’ for (W,n + 1): ¥},
such that (@,w’) € R and Fy A E(Fy) € W).. Since U} is saturated, F1 € ¥},
and E(F1) € W), (if £(F1) # 0). By the induction hypothesis, @' = F; and by
Lemma 1 (1), Fy & Nexg . Therefore, i = 4F]. I

Theorem 2 If V is X-unsatisfiable, then there exists a closed tableau for W.

Proof. We show that if there exists no closed tableau for ¥, then W is
Y-satisfiable. By the assumption, there is no subset ¥’ of S0 such that
(W,0): ¥ has a closed tableau, i.e., (W,0): SW:0) is tab-consistent. So, by
Definition 11, ¥W:0) ¢ §W.0) ¢ (§W0))* where iy is for (W,0): (SWV0)*,
and by Lemma 6, Wy =W. Thus, it is X-satisfiable. 1

This theorem leads to the completeness of the tableau calculus as follows:
Theorem 3 (Completeness) There exists a closed tableau for V if and only
if U is Y-unsatisfiable.

Proof. By Theorem 1 and Theorem 2, it can be proved. ]

4.1 Examples

We consider three examples for testing the consequence and validity of sorted
modal formulas using the proposed tableau calculus.

Example 1 Let ¥; = (T, 54, <,Q) be a sorted signature such that
1. T = {man, person, T},
2. S4 =0,
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3. < is the transitive and reflexive closure of {(man, person), (person, T)},
= {pmana Pperson, pT}a
4. Q = {bob: — person, pman: T, Pperson: 1, PT: T}

We prove that the following sorted modal formula F} is a consequence of ¥ by
using the calculus.

Fl - pman(bObperson) — .pman(bObpe’rson)

\Ill - {.vxperson(pman(xpev"son) - .pman(xperson))}
The formula F indicates that if bobperson is @ man, then he is a man in any
world as long as it exists. The formula set W states that every man is always
a man in any possible world.

In order to test the consequence Wy |= Fy, it is sufficient to check the un-
satisfiability of {—=F;} U ¥y since ¥y = F; holds if and only if {=F;} U ¥y is
Y-unsatisfiable. According to Proposition 1, the formulas in {—F;} U ¥y are
transformed into equivalent ones in negation normal form as follows:

=F1 = 2(Pman(bobperson) — Mpman(bobperson))
>~ Prman(b0bperson) N ~MPman (b0bperson)
>~ Dman (D0bperson) N #(—Pman (b0bperson))
U1 = {WY2person (Pman (Tperson) — Mpman (Tperson))
~ {BYZperson(“Pman (Tperson) V Mpman (Tperson))

Figure 2 illustrates a proof of testing the unsatisfiability of {—F;} U U1 where
every tableau for {—F1} U is closed. We abbreviate py,q, and bobperson as pm
and bob,, respectively. In Figure 2, the initial tableau of the normal negation
form of {=F1} U Wy:

(W, 0): pm(bp) A #(=pm (b)), MYy (~pm (p) V Bpm ()
is decomposed to the following node by applying BO-rule, a-rule, and ~,-rule.
(W,0): (0", #(=pn(8)), =P (bp) V Bpia(b)
This splits into the following two branch nodes:
(W,0): prn(b5"V), ~pin (bp), $(=pim (b))

and
(W,0): D (85"7). (=pin (b)), Wi (b:)
by applying S-rule to the disjunctive formula —py,(b,) V Bpp,(by). The first

branch is closed because it contains pm(b}(,W’O)) and —py, (by). The second branch
is decomposed to the following node by applying my~rule and a-rule.

(W,1): =pin(by), GV, pn(by) v ~E(by)
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(W,0): Pin(bp) A O(jpm(bp))ﬁ lep(—\pm(Ip) Vv .pm(%»

(W,0): pm(bp) A ’(_‘Pm(bp))v v31719(ﬂ1?m(55p) v .Pm(Ip))
(W,0)

(,0): pr(0p "), $(pm(by). V() V Wy ()
(W,0): pr(05""), 8= (8y)). P (b,) V Wi (by)
(.0 0" o). #-paly) (00l )l Byl
(W, 1): =pm(bp) A E(bp), pm(by) V ~E(by)
(W,1): ~pua(by), B0 "), pn(by) V ~E(by) "
(W 1): ﬂpm(bp),pm(béw’l)),E(b](ow’l)) (W.1): ~pm(by), “E(bp)aE<bz()»lcl)) E)
(W,1): ~pu(by), L, ~E(b,), By

(')"T )

Figure 2: A proof for unsatisfiability of {—F;} U ¥,

Furthermore, this splits into the following two branch nodes:
(W.1): =pn(by), i (b0, B(BD)

and
(W7 1) : _'pm(bp)a _'E(bp)’ E(bz()WJ))

by applying B-rule to the disjunctive formula p,(b,) V—E(b,). The first branch
is closed and the second branch derives the following closed node:

(W, 1): =pm(by), L, E(bp), E(BY"Y)

by applying E-rule. This concludes that {—F;} U ¥ is Y-unsatisfiable because
every leaf node in the tableau is closed, and hence ¥y = F holds.

Example 2 Let X9 = (T, 54, <,Q) be a sorted signature such that
1. T = {person, male, female, animal, T},
2. Sy = {hospitalPatient, patient, doctor, nurse},

3. < is the transitive and reflexive closure of {(hospitalPatient,patient),
(patient, person), (doctor, person), (nourse, person), (person, animal),
(female, animal), (male,animal), (animal, T)},

4. Q= {bOb: — PET'SON, Pperson - T, PhospitalPatient - T, Ppatient - T, Ddoctor :
T, Pnurse: T Pmate: T, Pfemale* T, Panimat: T, pT: T}'

In the sorted signature, person, male, female, animal, and T are rigid sorts
and hospitalPatient, patient, doctor, and nurse are anti-rigid sorts.
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We consider testing whether the following sorted modal formula F5 is a
consequence of Wo:

F2 = <>Timphospz'talPatient (bObperson) - <>Ti1n (Elxperson) ( g SitPpatient (:Eperson ))
‘1]2 = {. UTim (vyperson) (phospitalpatient (yperson ) - DSitphospitalPatient (yperson ) ) }

The formula F> means that if Bob is a hospital patient at a time, a person exists
at a time who is a patient in any situation within the time. The formula set
W, states that for every time of any possible world, every hospital patient is a
hospital patient in any situation. The formulas in {—=F5} U ¥y are transformed
into equivalent ones in negation normal form as follows:

_‘F2 = (<>TimphospitalPatient (bObperson) - <>’I‘1m (Ell'person) ( DSitppatient (xperson ) ) )
= <>Tirnphospitalpatient (bObperson) A =OTim (Ell'pemon) (DSitppatient (-Tperson)

= <>Tirnphospitalpatient (bObperson) A Ui (Elxperson ) ( DSitppatient (xperson)

)
)
~ OimPhospitalPatient (D00person) A OTim (YZperson ) (TO0sit Ppatient (Tperson))
~ OimPhospitalPatient (000person) A OTim (YZperson ) Csit (TPpatient (Tperson))

)

\I/Q - {. |:lTi.rn (vyperson) (phospitalPatient (ype’rson) - DSitphospitalPatient (yperson ) }

~ {. |:lTi.rn (vyperson) (_‘phospitalpatient (yperson) \ DSitphospitalPatient (ype’rson) ) }

In Figure 3, we show a proof of testing the unsatisfiability of {=Fs} U Ws.
Since every tableau for {—Fy} U ¥y is closed, ¥y = F5 holds. We abbreviate

PhospitalPatienty Ppatient, Tpersons Ypersons and bObperson aS Phy Pas Tp, Yp, and bpa
respectively. In Figure 2, the initial tableau of the normal negation form of

{-F} U,
(W,0): Omimpn (bp) ADTim (Y2p) Csit (—Pa (%)), MO wimn (VY ) (=21 (yp) V Bsie Pr (Yp))
is decomposed to the following three branch nodes by applying some rules.
(Tim, 1): pa(by ™), ~pn(Bp), EOST™Y), Osie(+pa(by))
(Sit, 2): _‘pa(bp)apa(bz(75it’2))a E(béS”’Q))

(Sit’ 2) : _'pa(bp)v L1, _'E(bp)¢ E(b;()SitVQ))

This concludes that {—~Fy} U ¥y is ¥-unsatisfiable because these three nodes in
the tableau are closed, and hence Wy = F» holds.

Example 3 Let X3 = (T, 54, <,Q) be a sorted signature such that
1. T = {person, male, female, animal, T},

2. Sy = {hospitalPatient, patient, doctor, nurse},
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(W,0): Orimh(Bp) A Otim (¥25) Osit (0 () ), MOTimn (Y55) (<1 (9p) V O (1))
(700 ) O 55 ) i)V O]
(,0]: O}, Srim 72y 5t (3, 7)1 V Csemnl)

(Tin 1) pally) 1 Eby) (72,)Osi (). () (23 ¥ D)

@m>WWWWWWWWWMWWwWWM

(Tim, 1) by ™), £, O (puly). ) i) Y Osemnll)

(Tim, 1)z py(6"™Y), E(BT™), Ogie(~pa(by)): ~palby) V Dsiepn(by) 9
(Tim.1): 0™, B "), 050y (i 1) ™), <bp“m1>0sn<ﬂpa<b ). Dl |
)A

(5037 i) VBl VBl
(Sit,2): palby) EOS™). pa(by) v ~E(by) o
(5it,2): ~walby)pulty L BB (Sit,2): palty),~E,) B
(it.2): ) lth™) BOY™) * (Si62): lly L B0y ) ™)

(lD)

Figure 3: A proof for unsatisfiability of {=Fy} U Uy

3. < is the transitive and reflexive closure of {(hospitalPatient,patient),
(patient, person), (doctor, person), (nourse, person), (person, animal),
(female, animal), (male, animal), (animal, T)},

4. Q= {bOb: — PET'SON, Pperson T, PhospitalPatient * T, Ppatient - T, Ddoctor :
T, Prurse: T, Pmate: Ty Pfemale: 15 Panimal: T, hypertension: person,
maximumBlood Presurel20mmHg: T, minimumBlood Presure80mm-
Hg: T,pr: T}

In the sorted signature, we can represent the following formula:

VZperson) ((MmaximumBlood Presurel20mmH g(x: person)V
P

minimumBlood Presure80mmH g(z: person)) — hypertension(x: person))

We consider testing the validity of the following sorted modal formula (the
negative introspection axiom in epistemic logic):

(~Oagt1Omimhypertension(bob: person)) —

(O agt170Aagt1 Omimhypertension(bob: person))

This states that an agent knows the fact “Bob has a hypertension at a time
point” which s/he does not know. The formula —Fj3 is transformed into an
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(W0): Oagt1Orimt(By) A O agt1 Oagt1 OTimt(Dy)
(W,0): O agt1Omimt(Bp), gt Dagt1 OTimt (by)
(1W;0): O agtaOmimt(0y), Oagt1 Omimt(by) A E(By), #0agt1Omimt (By), gt Dagt Omamt(By)
(17.0): Oagu il DagraOmintlhy). Bl ) 4041 Omintlhy). Oa gt Dngn Ot
(A1 Dty By Ol VBl gt Orlly)
(gt 1): Oty B ™), Oty v ~B0). O Om )

(04)
(a)
(i)

(Agt1,1): E(E ™), ~B(by), Opimt(b,), Dagt1 Orimtlly) (Agt1, 1): Oty BB ™), Oint(h), Dngtr Omint () )
(Tim, 2): ~#(by) V E(By), Orumt(By)  E(by), Omin(By) a)”
(Tim,2): ~t{by) v ~E(k,). 00 ™), B ™), O t(t)

(Tim,2): (b 85" B, Ot (Tim,2): ~E () B, ™), O
Figure 4: A proof for unsatisfiability of —F3

equivalent one in negation normal form as follows:

=(—Oagt1Omimhypertension(by) — Oagt1 "Oager Omimhypertension(by))
~ =0Agt1 Omimhypertension(by,) A "0 agt1 "D Agt1 Omimhypertension(b,

)

~ O agt1~Cmimhypertension(by) A "Oagt1 7O agt1 CTimhypertension bp)
)

)

(bp) A (

(bp) A (
~ O agt1Omim—hypertension(by) A 7O agt1 "0 Agt1 Omim hypertension(by
~ O agt1Omim—hypertension(by) A O agt1 70 agt1 Omimhypertension(b,
(bp) D)

~ O agt1Omim—hypertension(by) A © agt10age1 Oim hypertension(b

In Figure 4, we show a proof of testing the unsatisfiability of the formula
—F3. Since every tableau for {—F3} is closed, F3 is Y-valid. We abbreviate
hypertension and bobperson as t and by, respectively.

5 Conclusion

We have presented an extension of order-sorted logic where sorted modal for-
mulas consist of rigid/anti-rigid sorted terms and many modal operators. The
multi-modalities of sorted modal formulas are interpreted over the Cartesian
product of sets of possible worlds. For the extended logic, we have developed
a labeled tableau calculus that can test the satisfiability and validity of sorted
modal formulas. In a previous study, Cialdea-Mayer and Cerrito’s prefixed
tableau calculus employed formulas labeled with a natural number n. In con-
trast, our tableau calculus is designed to handle many modalities together with
the existential predicate and rigid/anti-rigid sorted terms. In particular, sorted
modal formulas are labeled by the pair (i,n) of the type of worlds ¢ and a
natural number n in the reasoning process using the proposed calculus.
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The proposed tableau calculus is useful for us in implementing a reasoning
engine in various knowledge-based systems. In fact, many knowledge-based sys-
tems have to handle both dynamic knowledge in the real world and conceptual
knowledge (e.g., ontology) in a specific domain because they may access and
extract knowledge from various agents and networks. Our extension of order-
sorted logic supports the rigidity and anti-rigidity of conceptual knowledge us-
ing many-dimensional modalities. The extended order-sorted logic provides a
sound reasoning mechanism that can test the validity and logical consequence
for the complex knowledge obtained by combining the dynamic knowledge and
the conceptual ontology.
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