
Description Logics with Contraries, Contradictories, and Subcontraries1 1

Description Logics with Contraries, Con-

tradictories, and Subcontraries1

Ken KANEIWA

National Institute of Information and Communications Technology
3-5 Hikaridai, Seika, Soraku, Kyoto 619-0289, Japan

kaneiwa@nict.go.jp

Abstract Several constructive description logics,12) in which classical
negation was replaced by strong negation as a component to treat nega-
tive atomic information have been proposed as intuitionistic variants of
description logics. For conceptual representation, strong negation alone
and in a combination with classical negation seems to be useful and nec-
essary due to their respective predicate denial (e.g., not happy) and pred-
icate term negation (e.g., unhappy) properties. In this paper, we propose
an alternative description logic ALCn

∼ with classical negation and strong
negation. We adhere in particular to the notions of contraries, contradic-
tories, and subcontraries (as discussed in 6)), generated from conceivable
statement types using predicate denial and predicate term negation. To
capture these notions, our formalization includes a semantics that suitably
interprets various combinations of classical negation and strong negation.
We show that our semantics preserves contradictoriness and contrariness
for ALCn

∼-concepts, but the semantics of constructive description logic

CALC2
∼ with Heyting negation and strong negation cannot preserve the

property for CALC2
∼-concepts.

Keywords: negative information, constructive description logic, strong
negation, terminological knowledge representation

§1 Introduction
∗1 This is an extended version of the paper.8)

2 Ken KANEIWA

Negative information plays an important role in knowledge representa-
tion and reasoning (cf. 19, 10, 21)). Classical negation ¬F represents the negation
of a statement F , but a strong negation ∼F may be more suitable for expressing
explicit negative information (or negative facts). In other words, ∼F indicates
information that is directly opposite and exclusive to F rather than its comple-
mentary negation. Therefore, the law of contradiction ¬(F ∧ ∼F) holds, but
the law of excluded middle F ∨ ∼F does not hold.11, 1, 19) For example, given
the formula rich(x) that represents “x is rich,” the antonymous formula poor(x)
is defined by the strong negation ∼rich(x), and not by the classical negation
¬rich(x). Thus, we can logically recognize the inconsistency of rich(x) and
∼rich(x) (as poor(x)), and, because rich(x) ∨ ∼rich(x) is not valid, we can
represent “x is neither rich nor poor” as ¬rich(x) ∧ ¬∼rich(x).

In conceptual knowledge representation, negative concepts are necessary
because, when defining certain concepts, people may wish to use the complement
of one concept to define another. For example, using description logics,2) the
concept Bachelor can be defined by using the complement of ∃hasWife.Woman
as a specialization of the concept Man.

Bacelor ≡ ¬(∃hasWife.Woman) � Man

This subconcept ∃hasWife.Woman describes an individual who has a wife; and
further, that the wife is a woman.

In addition to the complement corresponding to classical negation, it
is conceivable that many concept names implicitly contain negative meanings
as lexical negations.∗1 Negative affixes (e.g., in-, il-, un-, and non-) generate
negative concepts such as Unfix, Illogical, Incoherent, Inactive, Impolite, Non-
selfish, etc. Obviously, positive concepts are obtained by deleting their affixes. A
lexicon with a negative meaning implies the negation of a positive concept. For
instance, the concepts Doubt, Deny, Dissuade, and Forget imply the negation of
the concepts Believe, Say, Persuade, and Remember, respectively. Unlike the
complements of positive concepts, these lexical negations correspond to strong
negation rather than classical negation. However, standard description logics do
not support strong negation, which results in two problems. The first is that
if we try to use the negative concepts Unhappy , Displeased , and Unsatisfied in
the concept hierarchy shown in Figure 1, the following axioms in the description
logic ALC will have to be supplemented to characterize their negative meanings.

∗1 See 13, 10).

Description Logics with Contraries, Contradictories, and Subcontraries1 3

Emotional

Happy Unhappy

Pleased Satisfied Displeased Unsatisfied

Fig. 1 A Concept Hierarchy with Negative Names

Problem 1: Redundant expressions in ALC

Unhappy � ¬Happy � Emotional

Happy 	 Unhappy
≡ �
Displeased � ¬P leased � Unhappy
P leased 	 Displeased
≡ �
Unsatisfied � ¬Satisfied � Unhappy
Satisfied 	 Unsatisfied
≡ �

The second axiom is the negation of a concept equivalence. Therefore, it cannot
be expressed in the description logic knowledge base. Instead of checking for
this equivalence, we must check whether the negation of the disjunction is not
empty, that is, satisfiable. Therefore, without adding these axioms we use sim-
pler descriptions of strong negation ∼Happy , ∼Pleased , and ∼Satisfied rather
than their translation into the ALC.

The second problem is that concept designers may use complex concepts,
including strong negation, in a manner that makes it difficult to express the
concepts in the description logic ALC.

Problem 2: How to express the following complex concepts in ALC?

Happy ≡ ¬Sad � P leased

∼Happy ≡ ∼(¬Sad � P leased)
¬∼Happy ≡ ¬∼(¬Sad � P leased)
∼¬∼Happy ≡ ∼¬∼(¬Sad � P leased)

...

Introducing a new operation (∼) to denote strong negation solves the problem.
To support the negation, the operation should be adequately formalized in the

4 Ken KANEIWA

concept language.
Odintsove and Wansing12) proposed several constructive description log-

ics as intuitionistic variants of description logics in which classical negation was
replaced by strong negation as a component to treat negative atomic infor-
mation. In contrast, since basic description logics correspond to a subclass of
classical first-order logic (i.e., they have classical negation), negative concepts
are expressed by classical negation. Due to the different features of negative
information, complex negative statements using strong negation and classical
negation can be usefully employed in conceptual representation. In the philo-
sophical study of negation, there is a distinction between predicate denial (e.g.,
not happy) and predicate term negation (e.g., unhappy).6, 21) Moreover, conceiv-
able statement types using predicate denial and predicate term negation give
rise to opposition between affirmation and negation (contraries, contradictories,
and subcontraries).6) To deal logically with such negation types in concept lan-
guages, it is required that the difference between classical negation and strong
negation must be embedded into the syntax and semantics of description logics.

In this paper, we propose a description logic ALCn
∼ extended with strong

negation, that is, an extension of the basic description logic ALC. The following
are our primary results. First, we present a semantics of ALCn

∼ that adheres to
oppositions – contraries, contradictories, and subcontraries in concept languages.
We point out that the conventional semantics of strong negation1) yields the un-
desirable equivalence C ≡ ∼¬C as opposed to our proposed semantics, where
there is an implication between C and ∼¬C instead of an equivalence. Secondly,
we show that our semantics preserves the property of contradictoriness and con-
trariness that there exists an element such that it belongs to the contradictory
negation ¬C but not to the contrary negation ∼C. The property characterizes
a distinction between the complement of a concept and the contrary opposition
of the concept such as ¬Rich and ∼Rich by imposing it on the semantics. Even
if a user has a model where there is no instance of ¬Rich�¬∼Rich, consistency
checking requires the property. This is similar to a case in which, if consistency
is checked, every concept must contain an element, but a user may have a model
where some concepts do not include any element. When Heyting negation and
classical negation are being used in constructive description logics, the property
cannot be preserved for some interpretations. This motivates us to redesign a
new semantics for contradictory negation and contrary negation. Based on our
semantics, we will develop a tableau-based algorithm for concept satisfiability

Description Logics with Contraries, Contradictories, and Subcontraries1 5

in ALCn
∼ and show the correctness – soundness, completeness, and termination.

Although three new completion rules are used to deal with the two negations,
the extended description logic ALCn

∼ does not increase the complexity of the
satisfiability problem in the basic description logic ALC.

§2 Preliminaries
This section describes the syntax and semantics of the basic description

logic ALC and briefly introduces the notions of contradictories, contraries, and
strong negation.

2.1 Classical description logic: ALC
The basic description logic ALC16) contains a set C of concept names A

including ⊥ and �, a set R of role names R, and a set I of individual names
a. The bottom concept ⊥ and the universal concept � represent the empty set
and the set of individuals, respectively. The concepts of the language (called
ALC-concepts) are constructed by concept names A; role names R; the con-
nectives �, 	, and ¬ (classical negation); and the quantifiers ∀ and ∃. Every
concept name A ∈ C is an ALC-concept. If R is a role name and C,D are
ALC-concepts, then ¬C, C � D, C 	 D, ∀R.C, and ∃R.C are ALC-concepts.
Concepts are used to represent classes as sets of individuals, and roles are used
to specify their properties and attributes. Let Male,Human,Girl, and Boy be
concept names, and let has-child be a role name. For example, the ALC-concept
¬Girl (negation of a concept) expresses “individuals who are not girls.” The
ALC-concepts Male�Human (intersection of concepts) and Boy	Girl (union of
concepts) represent “individuals who are male and female” and “individuals who
are boys or girls,” respectively. Moreover, ∃has-child.Male (existential quantifi-
cation) represents “individuals who have sons” and ∀has-child.Male (universal
quantification) expresses “individuals whose children are all male.”

An ALC-interpretation I is a tuple (ΔI , ·I), where ΔI is a non-empty
set and ·I is an interpretation function (AI ⊆ ΔI , RI ⊆ ΔI × ΔI , and aI ∈
ΔI) such that:

⊥I = ∅ and �I = ΔI .

6 Ken KANEIWA

The interpretation function ·I is expanded to ALC-concepts as follows:

(¬C)I = ΔI − CI

(C � D)I = CI ∩ DI

(C 	 D)I = CI ∪ DI

(∀R.C)I = {d1 ∈ ΔI | ∀d2[(d1, d2) ∈ RI implies d2 ∈ CI]}

(∃R.C)I = {d1 ∈ ΔI | ∃d2[(d1, d2) ∈ RI and d2 ∈ CI]}

2.2 Contradictories, contraries, and strong negation
The philosophical study of negation makes a distinction between predi-

cate denial and predicate term negation. As Horn explained in his paper6), “The
predicate denial—A is not B—has for Aristotle the appropriate semantics for
contradictory negation; it is true if and only if the corresponding affirmation—A

is B—is false. . . . alongside ordinary predicate denial, Aristotle acknowledges
the existence of term negation, in which a negative predicate term (not-ill) is
affirmed of a subject.”

Conceivable statement types using predicate denial and predicate term
negation derive an opposition between affirmation and negation, such as con-
traries, contradictories, and subcontraries, as shown in the following figure.

contraries

S is not not-P S is not Psubcontraries

contradictories

S is not-PS is P

A proposition ‘S is P ’ derives its contradictory opposition ‘S is not P ’ by pred-
icate denial and its contrary opposition ‘S is not-P ’ by term negation. The
statement ‘S is not not-P ’ is the contradictory opposition of ‘S is not-P ’ as an
affirmation of ‘S is P .’

In intuitionistic logic, Heyting negation and strong negation exist as
methods of dealing with the oppositions. In general, strong negation has been
formalized as a constructive negation of intuitionistic logic. Thomason17) pro-
posed the semantics of intuitionistic first-order logic only with strong negation,
Akama1) formalized intuitionistic logic with Heyting negation and strong nega-

Description Logics with Contraries, Contradictories, and Subcontraries1 7

tion, Wagner18) and Herre et al.4) defined weak negation and strong negation in
the logic they developed, and Pearce and Wagner14) proposed logic programming
with strong negation that was regarded as a subsystem of intuitionistic logic.

Here, we observe the properties of Heyting negation (−) and strong
negation (∼). Let F be a formula. The law of double negation −− F ↔ F and
the law of the excluded middle −F ∨F do not hold for Heyting negation, but the
law of double negation ∼∼F ↔ F is valid for strong negation. The combinations
of these negations lead to the valid axiom ∼−F ↔ F . Hence, the contradictory
F and −F can be replaced with ∼− F and −F by the equivalence ∼− F ↔ F ,
but they should be recognized as a contrary. This is in partial disagreement
with the abovementioned oppositions in which contradictories and contraries
are defined differently. With regard to these features, Heyting negation and
strong negation using the conventional semantics in intuitionistic logic17, 1, 4) do
not satisfy our requirements. Thus, we need to model contradictory negation and
contrary negation in description logics and compare them with the constructive
description logics proposed by Odintsove and Wansing12).

§3 Contradictories and contraries between con-
cepts

Strong negation can be used to describe conceptual oppositions (e.g.,
Happy and Unhappy) in description logics. For example, let us denote by
Happy , ¬Happy (classical negation), and ∼Happy (strong negation) the con-
cepts “individuals that are happy,” “individuals that are not happy,” and “in-
dividuals that are unhappy,” respectively. We can then construct the com-
plex concepts – ∃has-child.¬Happy as “parents who have children that are
not happy,” ∃has-child.∼Happy as “parents who have unhappy children,” and
(¬Happy � ¬∼Happy) � Person as “persons who are neither happy nor un-
happy.” Syntactically, these allow us to express concepts composed of various
combinations of classical negation and strong negation, e.g., ∼¬C and ∼¬∼C.
As discussed in 15), the two negations represent the following oppositions between
affirmation and negation (which Horn6) renders):

8 Ken KANEIWA

S is Happy contraries

S is ¬∼Happy S is ¬Happysubcontraries

contradictories

S is ∼Happy
(S is unhappy)

(S is not happy)

(S is happy)

(S is not unhappy)

In our conceptual explanation of them, the contraries (Happy and ∼Happy)
imply that neither concept can contain an identical element. The contradictories
(Happy and ¬Happy) imply that one concept must contain an element when it
does not belong to the other. The subcontraries (¬∼Happy and ¬Happy) imply
that every element belongs to either of the concepts. To apply the oppositions
to any given DL-concepts, we must generalize them as follows:∗2

Contraries: (¬∼)iA and ∼(¬∼)iA

¬(∼¬)iA and (∼¬)i+1A

Contradictories: (∼¬)iA and ¬(∼¬)iA

∼(¬∼)iA and (¬∼)i+1A

Subcontraries: (¬∼)i+1A and ¬(¬∼)iA

¬(∼¬)i+1A and (∼¬)iA

where A is a concept name (i.e., an atomic concept). In the above, if X and Y

are contraries (contradictories or subcontraries), X is a contrary (contradictory
or subcontrary) of Y and Y is a contrary (contradictory or subcontrary) of X.
In reasoning algorithms for description logics with the two negations, contraries
and contradictories will be taken as a criterion for checking inconsistent pairs of
DL-concepts.

While intuitionistic logic and strong negation allow us to represent term
negation and predicate denial, we would like to propose a description logic such
that:

1. It contains classical negation and strong negation, since ALC is based
on classical logic.

2. It fulfills the property that contradictoriness and contrariness are pre-
served for every interpretation.

∗2 (∼¬)i (resp. (¬∼)i) denotes a chain of length i of ∼¬ (resp. ¬∼).

Description Logics with Contraries, Contradictories, and Subcontraries1 9

Let C be a DL-concept and let C(x) denote a first-order formula in one
free variable that corresponds to C.∗3 To incorporate strong negation into clas-
sical first-order logic and to remove the equivalence ∼¬C(x) ↔ C(x), we have
improved the semantics by capturing the following properties.9) The law of dou-
ble negation ¬¬C(x) ↔ C(x) and the law of the excluded middle ¬C(x)∨C(x)
hold for classical negation, and the equivalence ∼¬C(x) ↔ C(x) is not valid. In
conceptual representation based on this semantics, the strong negation ∼C of a
concept C is partial and exclusive to its affirmative expression C. The partiality
of strong negation entails the existence of information that is neither affirmative
nor strongly negative, i.e., ¬C � ¬∼C
≡ ⊥. In contrast, the classical negation
¬C is complementary and exclusive to its affirmative expression C. Hence, the
disjunction of affirmation and its classical negation expresses the set of all in-
dividuals, i.e., C 	 ¬C ≡ �. Additionally, the simple double negations ¬¬C

and ∼∼C are interpreted to be equivalent to the affirmation C. We can con-
structively define the complex double negations ∼¬C and ¬∼C without losing
the features of the two negations by refining the conventional semantics. If we
strongly deny the classical negation ¬C, then the double negation ∼¬C (called
constructive double negation) must be partial and exclusive to ¬C. If we express
the classical negation of a strong negation ∼C, then the double negation ¬∼C

(called weak double negation) must be complementary and exclusive to ∼C.

§4 Strong negation in description logics
In this section, we define description logics with classical negation and

strong negation and analyze the property of contradictoriness and contrariness
for the proposed logic. In addition, we define a constructive description logic
obtained by including Heyting negation and strong negation.

4.1 Description logics with classical negation and strong
negation: ALC2

∼ and ALCn
∼

The description logic ALC2
∼ (as an extension of ALC16)) is based upon

a set C of concept names A (including � and ⊥), a set R of role names R,
and a set I of individual names a. The concepts of the language (called ALC2

∼-
concepts) are constructed by concept names A; role names R; the connectives
�, 	, ¬ (classical negation), and ∼ (strong negation); and the quantifiers ∀ and

∗3 Each DL-concept C is interpreted as a subset of the universe that indicates the set of
instances of the concept. Let pC(x) (simply denoted C(x)) be a unary predicate formula
indexed by the concept name where pC is interpreted by the same set.

10 Ken KANEIWA

∃. Every concept name A ∈ C is an ALC2
∼-concept. If R is a role name and

C,D are ALC2
∼-concepts, then ¬C, ∼C, C � D, C 	 D, ∀R.C, and ∃R.C are

ALC2
∼-concepts.

We denote as sub(C) the set of subconcepts of an ALC2
∼-concept C. Let

X be a sequence of classical negation ¬ and strong negation ∼. We denote
(X)n as a chain of length n of X. For instance, ∼(¬∼)2C1 and (∼¬)0C2 denote
∼¬∼¬∼C1 and C2, respectively. Next, we define an interpretation of ALC2

∼-
concepts (called an ALC2

∼-interpretation) by using the conventional semantics
of strong negation.

Definition 4.1

An ALC2
∼-interpretation I is a tuple (ΔI , ·I+

, ·I−
), where ΔI is a non-empty set

and ·I+
and ·I−

are interpretation functions (AI+
, AI− ⊆ ΔI , RI+ ⊆ ΔI ×ΔI ,

and aI+ ∈ ΔI) such that:

1. ⊥I+
= ∅ and �I+

= ΔI ,
2. AI+ ∩ AI−

= ∅.

The interpretation functions ·I+
and ·I−

are expanded to ALC2
∼-concepts as

follows:

(¬C)I
+

= ΔI\CI+
(∼C)I

+
= CI−

(C � D)I
+

= CI+∩ DI+
(C 	 D)I

+
= CI+∪ DI+

(∀R.C)I
+

= {d1 ∈ ΔI | ∀d2[(d1, d2) ∈ RI+ → d2 ∈ CI+
]}

(∃R.C)I
+

= {d1 ∈ ΔI | ∃d2[(d1, d2) ∈ RI+ ∧ d2 ∈ CI+
]}

(¬C)I
−

= CI+
(∼C)I

−
= CI+

(C � D)I
−

= CI−∪ DI−
(C 	 D)I

−
= CI−∩ DI−

(∀R.C)I
−

= {d1 ∈ ΔI | ∃d2[(d1, d2) ∈ RI+ ∧ d2 ∈ CI−
]}

(∃R.C)I
−

= {d1 ∈ ΔI | ∀d2[(d1, d2) ∈ RI+ → d2 ∈ CI−
]}

An ALC2
∼-interpretation I satisfies the contrary condition if for all con-

cept names A, AI+ ∪ AI−
= ΔI . The ALC2
∼-interpretation is defined by the

two interpretation functions ·I+
and ·I−

, but it causes an undesirable equation
C ≡ ∼¬C, i.e., CI+

= (∼¬C)I
+
. Contradictoriness and contrariness are pre-

served in an ALC2
∼-interpretation I of ALC2

∼ if ∼CI � ¬CI . The interpretation
results in the following negative property:

Description Logics with Contraries, Contradictories, and Subcontraries1 11

I+(C)

d is ∼C

d is ¬∼C d is ¬C

subcontraries

contradictories

d is C

I−(C)

ΔI/I−(C) ΔI/I+(C)

d is ∼¬C

contraries

d is ¬∼¬C

contraries

Fig. 2 Oppositions in ALC2
∼-interpretations

Theorem 4.1 (Contradictoriness and contrariness for ALC2
∼)

Contradictoriness and contrariness are not preserved in any ALC2
∼-interpretation.

Proof Let I be any ALC2
∼-interpretation. By definition, AI+

= (¬¬A)I
+

=
(∼¬A)I

+
. Therefore, contradictoriness and contrariness are not preserved in

every ALC2
∼-interpretation.

Subsequently, the concepts of the language (called ALCn
∼-concepts) are

constructed by concept names A; role names R; the connectives �, 	, ¬ (classical
negation), and ∼ (strong negation); and the quantifiers ∀ and ∃. Every concept
name A ∈ C is an ALCn

∼-concept. If R is a role name and C,D are ALCn
∼-

concepts, then ¬C, ∼C, C � D, C 	 D, ∀R.C, and ∃R.C are ALCn
∼-concepts.

We define an interpretation of ALCn
∼-concepts (called an ALCn

∼-interpretation),
which is based on the semantics9) obtained by improving Akama’s semantics.1)

Definition 4.2

An ALCn
∼-interpretation I is a tuple (ΔI , {·I+

i | i ∈ ω∗4}, {·I−
i | i ∈ ω}), where

ΔI is a non-empty set and ·I+
i and ·I−

i are interpretation functions (AI+
i , AI−

i

⊆ ΔI , RI+
0 ⊆ ΔI × ΔI , and aI+

0 ∈ ΔI), such that:

1. ⊥I+
0 = ∅ and �I+

0 = ΔI ,
2. AI+

0 ∩ AI−
0 = ∅,

3. AI+
i+1 ⊆ AI+

i and AI−
i+1 ⊆ AI−

i .

The interpretation functions ·I+
i and ·I−

i are expanded to ALCn
∼-concepts as

∗4 The symbol ω denotes the set of natural numbers. Thus, {·I+
i | i ∈ ω} is infinite as

{·I+
0 , ·I+

1 , ·I+
2 , ·I+

3 , . . .}.

12 Ken KANEIWA

I+
i (C) contraries

d is ∼C

d is ¬∼C d is ¬C

subcontraries

contradictories

d is C

I−
i (C)

I−
i−1(C)I+

i−1(C)

d is ¬∼¬C

I−
i+1(C)

contraries
d is ∼¬C

I+
i+1(C)

contradictories

Fig. 3 Oppositions in ALCn
∼-interpretations

follows:

(¬C)I
+
0 = ΔI\CI+

0

(¬C)I
+
i = CI−

i−1(i > 0) (∼C)I
+
i = CI−

i

(C � D)I
+
i = CI+

i ∩ DI+
i (C 	 D)I

+
i = CI+

i ∪ DI+
i

(∀R.C)I
+
i = {d1 ∈ ΔI | ∀d2[(d1, d2) ∈ RI+

0 → d2 ∈ CI+
i]}

(∃R.C)I
+
i = {d1 ∈ ΔI | ∃d2[(d1, d2) ∈ RI+

0 ∧ d2 ∈ CI+
i]}

(¬C)I
−
i = CI+

i+1 (∼C)I
−
i = CI+

i

(C � D)I
−
i = CI−

i ∪ DI−
i (C 	 D)I

−
i = CI−

i ∩ DI−
i

(∀R.C)I
−
i = {d1 ∈ ΔI | ∃d2[(d1, d2) ∈ RI+

0 ∧ d2 ∈ CI−
i]}

(∃R.C)I
−
i = {d1 ∈ ΔI | ∀d2[(d1, d2) ∈ RI+

0 → d2 ∈ CI−
i]}

An ALCn
∼-interpretation I satisfies the contrary condition if for all con-

cept names A, AI+
0 ∪ AI−

0
= ΔI , AI+
i+1 � AI+

i , and AI−
i+1 � AI−

i . In the
two types of interpretations, conceptual oppositions are characterized as shown
in Figure 2 and Figure 3. The ALC2

∼-interpretation is defined as (∼¬C)I
+

=
(¬C)I

−
= CI+

, and hence, d ∈ (∼¬C)I if and only if d ∈ CI . This semanti-
cally causes loss in distinction between contraries (∼¬C and ¬C) and contra-
dictories (C and ¬C). Instead, the ALCn

∼-interpretation includes the definition

(∼¬C)I
+
i = (¬C)I

−
i = CI+

i+1 and (¬C)I
+
i = CI−

i−1 (i > 0), where infinite inter-
pretation functions are required. That is, the ALCn

∼-interpretation is improved
to capture the oppositions – contraries, contradictories, and subcontraries in the
philosophical study of negation.6)

Description Logics with Contraries, Contradictories, and Subcontraries1 13

Let ∗ ∈ {2, n}. Each ALC∗
∼-concept is interpreted by CI+

or CI+
0 (de-

noted CI). Let C,D be ALC∗
∼-concepts. The TBox (terminological knowledge)

is a finite set of general inclusion axioms of the form C � D. We write a concept
equation C ≡ D as C � D and D � C. An ALC∗

∼-concept C or a concept equa-
tion C ≡ D is ALC∗

∼-satisfiable if there exists an ALC∗
∼-interpretation I, called

an ALC∗
∼-model of C (or C ≡ D), such that CI
= ∅ (or CI = DI). Otherwise, it

is ALC∗
∼-unsatisfiable. In particular, if an ALC∗

∼-concept C is ALC∗
∼-satisfiable

and the ALC∗
∼-model satisfies the contrary condition, then it is ALC∗

∼-satisfiable
under the contrary condition. Otherwise, it is ALC∗

∼-unsatisfiable under the
contrary condition. A concept equation C ≡ D is ALC∗

∼-valid if every ALC∗
∼-

interpretation I is an ALC∗
∼-model of C ≡ D. We can derive the following fact

from these interpretations:

Proposition 4.1

Let C be an ALC2
∼-concept and D be an ALCn

∼-concept. Then, the concept

equation C ≡ ∼¬C is ALC2
∼-valid, but the concept equation D ≡ ∼¬D is not

ALCn
∼-valid.

In addition, since ALCn
∼-concepts do not contain the negation of roles,

each role is interpreted only by the interpretation function ·I+
0 (or ·I+

). Let

us give an example of an ALCn
∼-interpretation I = (ΔI , {·I+

i | i ∈ ω}, {·I−
i |

i ∈ ω}) such that ΔI = {John,Mary, Tom}, HappyI+
0 = {John}, HappyI−

0 =

{Mary,Tom}, HappyI+
1 = ∅, HappyI−

1 = {Tom}, HappyI+
2 = ∅, . . . , has-

childI+
0 = {(John, Tom)} with HappyI+

0 ∩HappyI−
0 = ∅, HappyI+

i+1 ⊆ HappyI+
i ,

and HappyI−
i+1 ⊆ HappyI−

i . The interpretation functions ·I+
i and ·I−

i are ex-
panded to the ALCn

∼-concepts ∃has-child.∼Happy, ¬∼¬∼Happy and ¬∼∼¬Happy
as below.

(∃has-child.∼Happy)I
+
0 = {d1 ∈ ΔI | ∃d1[(d1, d2) ∈ has-childI+

0 ∧ d2 ∈ HappyI−
0]}

= {John}

(¬∼¬∼Happy)I
+
0 = ΔI\(∼¬∼Happy)I

+
0 (¬∼∼¬Happy)I

+
0 = ΔI\(∼∼¬Happy)I

+
0

= ΔI\(¬∼Happy)I
−
0 = ΔI\(∼¬Happy)I

−
0

= ΔI\(∼Happy)I
+
1 = ΔI\(¬Happy)I

+
0

= ΔI\HappyI−
1 = {John}

= {John,Mary}

14 Ken KANEIWA

Remark. Semantically, the three conditions AI+
0 ∩AI−

0 = ∅, AI+
i+1 ⊆ AI+

i , and
AI−

i+1 ⊆ AI−
i in the ALCn

∼-interpretation I define the inconsistency of contraries
between ALCn

∼-concepts. Syntactically, the conditions lead to the inconsistent
pairs 〈A,∼A〉, 〈¬(∼¬)iA, (∼¬)i+1A〉, and 〈(¬∼)i+1A,∼(¬∼)i+1A〉 of ALCn

∼-
concepts. Each pair consists of a concept C and its strong negation ∼C (i.e.,
〈C,∼C〉) where C is of the form A, ¬(∼¬)iA, or (¬∼)i+1A. For example, ¬Red

and ∼¬Red are inconsistent. In the next lemma, these conditions are generalized
to any ALCn

∼-concept.

Lemma 4.1

Let I = (ΔI , {·I+
i | i ∈ ω}, {·I−

i | i ∈ ω}) be an ALCn
∼-interpretation. For any

ALCn
∼-concept C, the following statements hold:

1. CI ∩ ∼CI = ∅,
2. (∼¬)i+1CI ⊆ (∼¬)iCI ,
3. ∼(¬∼)i+1CI ⊆ ∼(¬∼)iCI .

Proof. We show this lemma by induction on the structure of an ALCn
∼-concept

C.
Case 1: If C = A, then it is straightforward.

Case 2: C = ¬C1. (i) Let d ∈ (¬C1)I
+
0 . Then d
∈ C

I+
0

1 . By the

induction hypothesis, we have d
∈ (∼¬C1)I
+
0 (by statement 2). (ii) Let d ∈

(∼¬)i+1¬C
I+
0

1 . By Definition 4.2, d ∈ ∼(¬∼)iC
I+
0

1 . If i = 0, then d ∈ ∼C
I+
0

1 .

By the induction hypothesis, d
∈ C
I+
0

1 (by statement 1). Hence, d ∈ ¬C
I+
0

1 , that

is, d ∈ (∼¬)i¬C
I+
0

1 (i = 0). If i > 0, then d ∈ ∼(¬∼)i−1C
I+
0

1 (by statement

3). So, we have d ∈ (∼¬)i¬C
I+
0

1 . (iii) Let d
∈ ∼(¬∼)i¬C
I+
0

1 . By the induction

hypothesis, d
∈ ∼(¬∼)i+1¬C
I+
0

1 (by statement 2).

Case 3: C = ∼C1. (i) Let d ∈ (∼C1)I
+
0 . By the induction hypothesis,

d
∈ C
I+
0

1 (by statement 1). By Definition 4.2, it suffices for d
∈ (∼∼C1)I
+
0 .

(ii) Let d ∈ (∼¬)i+1∼C
I+
0

1 (= ∼(¬∼)i+1C
I+
0

1). By the induction hypothesis,

d ∈ ∼(¬∼)iC
I+
0

1 (by statement 3). That is, d ∈ (∼¬)i∼C
I+
0

1 . (iii) Let d
∈
∼(¬∼)i∼C

I+
0

1 . We can view it as d
∈ (∼¬)iC
I+
0

1 . Thus, d
∈ (∼¬)i+1C
I+
0

1 by the

induction hypothesis for (ii). Hence, we obtain d
∈ ∼(¬∼)i+1∼C
I+
0

1 .

Description Logics with Contraries, Contradictories, and Subcontraries1 15

Furthermore, if C is of the form C1 � C2, C1 	 C2, ∀R.C1, or ∃R.C1,
then the statements can be proved in a way similar to the one above.

This lemma will be used to prove the correspondence between a tableau for an
ALCn

∼-concept and the satisfiability of the concept.
Any ALCn

∼-concept is transformed into an equivalent one in a negation
normal form (that is more complex than the negation normal form in ALC)
using the following equivalences, from left to right:

(¬)k(∼¬)i∼∼C ≡ (¬)k(∼¬)iC

(∼)k(¬∼)i¬¬C ≡ (∼)k(¬∼)iC

(¬)k(∼¬)i∼(C � D) ≡ (¬)k(∼¬)i(∼C 	 ∼D)

(¬)k(∼¬)i∼(C 	 D) ≡ (¬)k(∼¬)i(∼C � ∼D)

(¬)k(∼¬)i∼(∀R.C) ≡ (¬)k(∼¬)i(∃R.∼C)

(¬)k(∼¬)i∼(∃R.C) ≡ (¬)k(∼¬)i(∀R.∼C)

(∼)k(¬∼)i¬(C � D) ≡ (∼)k(¬∼)i(¬C 	 ¬D)

(∼)k(¬∼)i¬(C 	 D) ≡ (∼)k(¬∼)i(¬C � ¬D)

(∼)k(¬∼)i¬(∀R.C) ≡ (∼)k(¬∼)i(∃R.¬C)

(∼)k(¬∼)i¬(∃R.C) ≡ (∼)k(¬∼)i(∀R.¬C)

where k ∈ {0, 1} and i ∈ ω. The form of the concepts obtained by this trans-
formation is called a constructive negation normal form, where the four types of
negation forms (∼¬)i+1, ¬(∼¬)i, (¬∼)i+1, and ∼(¬∼)i occur only in front of a
concept name. For example, (∼¬A1	¬∼¬A2)�∼(¬∼)4A3 is in the constructive
negation normal form.

Proposition 4.2

Every concept equation C ≡ D in the translation is ALCn
∼-valid.

Next, we will discuss an important property of ALCn
∼-interpretations

that is derived from the contrary condition.

Lemma 4.2

Let I = (ΔI , {·I+
i | i ∈ ω}, {·I−

i | i ∈ ω}) be an ALCn
∼-interpretation that satis-

fies the contrary condition. For any ALCn
∼-concept C, the following statements

hold:

16 Ken KANEIWA

1. CI ∪ ∼CI
= ΔI ,
2. (∼¬)i+1CI � (∼¬)iCI ,
3. ∼(¬∼)i+1CI � ∼(¬∼)iCI .

Proof. We show this lemma by induction on the structure of an ALCn
∼-concept

C.
Case 1: If C = A, then it is straightforward.
Case 2: C = ¬C1. (i) By the induction hypothesis, there exists d such

that d ∈ (¬C1)I
+
0 and d
∈ (∼¬¬C1)I

+
0 (by statement 2). Hence, d
∈ C

I+
0

1 and

d
∈ (∼C1)I
+
0 . (ii) (i = 0) By the induction hypothesis, there exists d such that

d
∈ (¬C1)I
+
0 and d
∈ (∼¬C1)I

+
0 (by statement 1). Then, d ∈ C

I+
0

1 . (i > 0)
By the induction hypothesis, (∼¬)i+2CI

1 � (∼¬)i+1CI
1 (by statement 3). (iii)

(i = 0) By the induction hypothesis, there exists d such that d
∈ (¬∼C1)I
+
0 and

d
∈ (∼¬∼C1)I
+
0 (by statement 1). So, d ∈ (∼C1)I

+
0 . (i > 0) By statement 2,

((∼¬)i+1¬C1)I � ((∼¬)i¬C1)I .
Case 3: C = ∼C1. (i) By the induction hypothesis, there exists d such

that d
∈ C
I+
0

1 and d
∈ (∼C1)I
+
0 (by statement 1). Hence, d
∈ (∼∼C1)I

+
0 .

(ii) By the induction hypothesis, (∼(¬∼)i+1C1)I � (∼(¬∼)iC1)I (by statement
3). Thus, ((∼¬)i+1∼C1)I � ((∼¬)i∼C1)I . (iii) By the induction hypothe-
sis, ((∼¬)i+1C1)I � ((∼¬)iC1)I (by statement 2). Thus, (∼(¬∼)i+1∼C1)I �

(∼(¬∼)i∼C1)I.
For the other cases: C is of the forms C1 � C2, C1 	 C2, ∀R.C1, and

∃R.C1, the statements can be proved.

This lemma guarantees that the proposed semantics characterizes the
differences between contradictories and contraries in every interpretation. From
the lemma it follows that all ALCn

∼-interpretations need to have an infinite do-
main. This is an important model-theoretic property of the proposed logic be-
cause it is quite different from the standard description logic ALC (where every
ALC-concept is satisfiable in a finite model).

The following theorem states the property of contradictoriness and con-
trariness for ALCn

∼-interpretations. Contradictoriness and contrariness are pre-
served in an ALCn

∼-interpretation I of ALCn
∼, if ∼CI � ¬CI.

Description Logics with Contraries, Contradictories, and Subcontraries1 17

Theorem 4.2 (Contradictoriness and contrariness for ALCn
∼)

If an ALCn
∼-interpretation satisfies the contrary condition, then contradictoriness

and contrariness are preserved in the ALCn
∼-interpretation.

Proof. By statement 1 of Lemma 4.2 and by the ALCn
∼-validity of C	¬C ≡ �,

this can be proved.

We would like to apply the replacement property20) to conceptual rep-
resentation and strong negation in ALCn

∼. Knowledge base designers rewrite
concepts by their equivalent concepts in the context of (conceptual) knowledge
representation (e.g., rebuilding ontologies in the Semantic Web). However, the
replacement property provides a limitation such that concepts can only be re-
placed by strongly equivalent concepts when various combinations of the two
types of negation are used. Let C,D be ALCn

∼-concepts. C and D are equiv-
alent if, for every ALCn

∼-interpretation I, CI = DI . C and D are strongly

equivalent if, for every ALCn
∼-interpretation I and for every i ∈ ω, CI+

i = DI+
i

and CI−
i = DI−

i . Let E be ALCn
∼-concept. Then, EC indicates that E has

a subconcept C. The concept ED/C is obtained from EC by replacing some
occurrence of C with D.

Theorem 4.3 (Replacement for ALCn
∼)

Let C,D be ALCn
∼-concepts. If C and D are strongly equivalent, then EC and

ED/C are also equivalent.

Proof. Let I be an ALCn
∼-interpretation and let i ∈ ω. We consider that EC

is of the forms (∼¬)iCI , ∼(¬∼)iCI, (¬∼)iCI, ¬(∼¬)iCI, E′
C � E, E′

C 	 E,
∀R.E′

C , and ∃R.E′
C .

Case 1: If EC = (∼¬)iC, then (∼¬)iCI = CI+
i = DI+

i = (∼¬)iDI .

Case 2: If EC = ∼(¬∼)iC, then ∼(¬∼)iCI = CI−
i = DI−

i = ∼(¬∼)iDI .

Case 3: If EC = (¬∼)iC, then ¬∼(¬∼)i−1CI = ΔI\CI−
i−1 = ΔI\DI−

i−1

= ¬∼(¬∼)i−1DI.

Case 4: If EC = ¬(∼¬)iC, then ¬(∼¬)iCI = ΔI\CI+
i = ΔI\DI+

i =
¬(∼¬)iDI .

Case 5: If EC = E′
C �E′, then (E′

C �E′)I = (E′
C)I ∩ (E′)I = (E′

D/C)I ∩
(E′)I (by the induction hypothesis) = (E′

D/C � E′)I.

18 Ken KANEIWA

For the other forms E′
C	E, ∀R.E′

C , and ∃R.E′
C , the equivalence holds.

It should be noted that the replacement property under strong equiva-
lence is natural in the presence of strong negation. As a result of the semantics
of ALCn

∼, we obtain the property such that for any ALCn
∼-concepts C,D, if C

and D are equivalent, then C and D are strongly equivalent. Therefore, the
following corollary is immediately derived from the replacement theorem.

Corollary 4.1

Let C,D be ALCn
∼-concepts. If C and D are equivalent, then EC and ED/C are

also equivalent.

Proof. By assumption, for every ALCn
∼-interpretation I, CI = DI . So, by Def-

inition 4.2, for every ALCn
∼-interpretation I and for every i ∈ ω, CI+

i = DI+
i ,

and CI−
i = DI−

i . By Theorem 4.3, the conlusion is obtained.

This property enables a user to replace a subconcept (a concept included
in a complex concept) with any equivalent concept (when rebuilding ontolo-
gies). In contrast, the description logic ALC2

∼ using the conventional semantics
of strong negation does not have this property. For example, the ALC2

∼-concepts
Happy and ∼¬Happy are equivalent, but not strongly equivalent. This is because
∼Happy and ∼∼¬Happy are not equivalent. Hence, ∼(∼¬Happy�Person) can-
not be replaced by ∼(Happy � Person).

4.2 Constructive description logic with Heyting negation
and strong negation: CALC2

∼
We define a concept language (called CALC2

∼), that is an extension of
the constructive description logic CALCN4,12) by combining Heyting negation
and strong negation. The concepts in the language (called CALC2

∼-concepts) are
constructed by concept names A; role names R; the connectives �, 	, − (Heyting
negation), and ∼ (strong negation); and the quantifiers ∀, ∃. Every concept name
A ∈ C is a CALC2

∼-concept. If R is a role name and C,D are CALC2
∼-concepts,

then −C, ∼C, C �D, C 	D, ∀R.C, and ∃R.C are CALC2
∼-concepts. We give an

interpretation of CALC2
∼-concepts (called a CALC2

∼-interpretation) as follows:

Definition 4.3

A CALC2
∼-interpretation I is a tuple (W,�,ΔI , {·I+

t | t ∈ W}, {·I−
t | t ∈ W}),

Description Logics with Contraries, Contradictories, and Subcontraries1 19

where W is a set of worlds, ΔI = {ΔIt | t ∈ W} is the family of non-empty sets

and ·I+
t and ·I−

t are interpretation functions for each world t ∈ W (AI+
t , AI−

t ⊆
ΔI , RI+

t ⊆ ΔIt × ΔIt , and aI+
t ∈ ΔIt) such that:

1. ⊥I+
t = ∅ and �I+

t = ΔIt ,
2. AI+

t ∩ AI−
t = ∅,

3. if t, t′ ∈ W and t � t′, then ΔIt ⊆ ΔIt′ , AI+
t ⊆ AI+

t′ , AI−
t ⊆ AI−

t′ , and
RI+

t ⊆ RI+
t′ .

For every world t ∈ W , the interpretation functions ·I+
t and ·I−

t are expanded
to CALC2

∼-concepts as follows:

(−C)I
+
t = {d | d ∈ ΔIt′\CI+

t′ s.t. t � t′} (∼C)I
+
t = CI−

t

(C � D)I
+
t = CI+

t ∩ DI+
t (C 	 D)I

+
t = CI+

t ∪ DI+
t

(∀R.C)I
+
t = {d1 ∈ ΔIt | ∀t′[t � t′ → ∀d2 ∈ ΔIt′ [(d1, d2) ∈ RI+

t′ → d2 ∈ CI+
t′]]}

(∃R.C)I
+
t = {d1 ∈ ΔIt | ∃d2 ∈ ΔIt′ [(d1, d2) ∈ RI+

t ∧ d2 ∈ CI+
t]}

(−C)I
−
t = CI+

t (∼C)I
−
t = CI+

t

(C � D)I
−
t = CI−

t ∪ DI−
t (C 	 D)I

−
t = CI−

t ∩ DI−
t

(∀R.C)I
−
t = {d1 ∈ ΔIt | ∃d2 ∈ ΔIt′ [(d1, d2) ∈ RI+

t ∧ d2 ∈ CI−
t]}

(∃R.C)I
−
t = {d1 ∈ ΔIt | ∀t′[t � t′ → ∀d2 ∈ ΔIt′ [(d1, d2) ∈ RI+

t′ → d2 ∈ CI−
t′]]}

An ALCn
∼-interpretation I satisfies the contrary condition if AI+∪AI−
=

ΔI , where AI+
=

⋃

t∈W

AI+
t and AI−

=
⋃

t∈W

AI−
t . The CALC2

∼-interpretation CI

of each CALC2
∼-concept is given by

⋃

t∈W

CI+
t . A CALC2

∼-concept C (or a concept

equation C ≡ D) is CALC2
∼-satisfiable if there exists an CALC2

∼-interpretation
I, called a CALC2

∼-model of C (or C ≡ D), such that CI
= ∅ (or CI = DI);
otherwise, it is CALC2

∼-unsatisfiable. In particular, if a CALC2
∼-concept C is

CALC2
∼-satisfiable and the CALC2

∼-model satisfies the contrary condition, then
it is CALC2

∼-satisfiable under the contrary condition. Otherwise, it is CALC2
∼-

unsatisfiable under the contrary condition. A concept equation C ≡ D is CALC2
∼-

valid if every CALC2
∼-interpretation I is a CALC2

∼-model of C ≡ D. Contradic-
toriness and contrariness are preserved in an CALC2

∼-interpretation of CALC2
∼ if

∼CI � −CI .

20 Ken KANEIWA

Theorem 4.4 (Contradictoriness and contrariness for CALC2
∼)

Contradictoriness and contrariness are not preserved in some CALC2
∼-interpretations

that satisfy the contrary condition.

Proof. We construct a CALC2
∼-interpretation I = (W,�,ΔI , {·I+

t | t ∈ W}, {·I−
t |

t ∈ W}) such that:

W = {t1, t2, t3} � = {(t1, t1), (t1, t2), (t2, t2)}
ΔI

t1
= {d1, d2} ΔI

t2
= {d0, d1, d2} ΔI

t3
= {d3}

AI+
t1 = AI+

t2 = {d1} AI−
t1 = AI−

t2 = {d2} AI+
t3 = AI−

t3 = ∅.

It satisfies the contrary condition AI+ ∪AI−
= {d1, d2}
= {d0, d1, d2, d3} = ΔI .

By this interpretation, we have

(∼A)I = {d2} (−A)I = {d0, d2}
(∼− A)I = {d1} (−− A)I = {d1}.

However, since (∼−A)I = (−−A)I, contradictoriness and contrariness are not
preserved in the CALC2

∼-interpretation.

Table 1 shows the contradictoriness and contrariness for ALCn
∼ and

CALC2
∼. The CALC2

∼-concepts can be used to represent predicate denial and pred-
icate term negation that capture conceptual models or describe a certain domain
of interest; however, the contradictoriness and contrariness are not preserved
in some CALC2

∼-interpretations. For ALCn
∼-concepts, the contradictoriness and

contrariness are preserved in every ALCn
∼-interpretation since strong negation

is suitably added to the classical description logic ALC without the undesirable
equivalent C ≡ ∼¬C in the semantics. In the next section, the tableau-based
satisfiability algorithm for ALC is extended to ALCn

∼. This extension is based
on the contradictoriness and contrariness for the ALCn

∼-interpretations.

Table 1 Contradictoriness and contrariness for ALC2
∼, ALCn

∼, and CALC2
∼

DLs Contradictoriness and contrariness

ALC2
∼ not preserved for every interpretation

ALCn
∼ preserved for every interpretation

CALC2
∼ not preserved for some interpretations

Additionally, we show that the replacement property holds for strongly
equivalent CALC2

∼-concepts. Let C,D be CALC2
∼-concepts. C and D are equiv-

Description Logics with Contraries, Contradictories, and Subcontraries1 21

alent if, for every CALC2
∼-interpretation I, CI = DI . Let CI+

denote
⋃

t∈W

CI+
t

and CI−
denote

⋃

t∈W

CI−
t . C and D are strongly equivalent if, for every CALC2

∼-

interpretation I, CI+
= DI+

and CI−
= DI−

.

Theorem 4.5 (Replacement for CALC2
∼)

Let C,D be CALC2
∼-concepts. If C and D are strongly equivalent, then EC and

ED/C are (strongly) equivalent.

Proof. We show this theorem by induction on the structure of EC .
Case 1: If EC = C, then it is straightforward.
Case 2: If EC = ∼E′

C , then (∼E′
C)I

+
=

⋃

t∈W

(∼E′
C)I

+
t =

⋃

t∈W

(E′
C)I

−
t =

⋃

t∈W

(E′
D/C)I

−
t (by the induction hypothesis) =

⋃

t∈W

(∼E′
D/C)I

+
t = (∼E′

D/C)I
+
,

and (∼E′
C)I

−
=

⋃

t∈W

(∼E′
C)I

−
t =

⋃

t∈W

(E′
C)I

+
t =

⋃

t∈W

(E′
D/C)I

+
t (by the induction

hypothesis) =
⋃

t∈W

(∼E′
D/C)I

−
t = (∼E′

D/C)I
−
.

Case 3: If EC = −E′
C , then (−E′

C)I
+

=
⋃

t∈W

(−E′
C)I

+
t =

⋃

t∈W

{d |

d ∈ ΔIt′ \(E ′
C)I

+
t′ s.t. t � t′} =

⋃

t∈W

{d | d ∈ ΔIt′ \(E ′
D/C)I

+
t′ s.t. t � t′} (by

the induction hypothesis) =
⋃

t∈W

(−E′
D/C)I

+
t = (−E′

D/C)I
+
, and (−E′

C)I
−

=

⋃

t∈W

(−E′
C)I

−
t =

⋃

t∈W

(E′
C)I

+
t =

⋃

t∈W

(E′
D/C)I

+
t (by the induction hypothesis) =

⋃

t∈W

(−E′
D/C)I

−
t = (−E′

D/C)I
−
.

Case 4: If EC = E′
C � E′, then (E′

C � E′)I
+

=
⋃

t∈W

(E′
C � E′)I

+
t =

⋃

t∈W

(E′
C)I

+
t ∩ (E′)I

+
t =

⋃

t∈W

(E′
D/C)I

+
t ∩ (E′)I

+
t (by the induction hypothesis)

=
⋃

t∈W

(E′
D/C � E′)I

+
t = (E′

D/C � E′)I
+
, and (E′

C � E′)I
−

=
⋃

t∈W

(E′
C � E′)I

−
t =

⋃

t∈W

(E′
C)I

−
t ∪ (E′)I

−
t =

⋃

t∈W

(E′
D/C)I

−
t ∪ (E′)I

−
t (by the induction hypothesis)

22 Ken KANEIWA

=
⋃

t∈W

(E′
D/C � E′)I

−
t = (E′

D/C � E′)I
−
.

For the other forms E′
C 	E, ∀R.E′

C , and ∃R.E′
C , the statement holds.

§5 Tableau-based algorithm for ALCn
∼

We denote rol(C) as the set of roles occurring in an ALCn
∼-concept C.

For instance, rol(¬∀R1.∃R2.C1 	 ∼C2) = {R1, R2}. First we define a tableau
for an ALCn

∼-concept that is created by adding conditions for the forms ∼C and
(∼¬)iC to a tableau for an ALC-concept.7)

Definition 5.1

Let D be an ALCn
∼-concept in the constructive normal negation form. A tableau

T for D is a tuple (S,L,E), where S is a set of individuals, L : S → 2sub(D) is a
mapping from each individual into a set of concepts in sub(D), and E : rol(D) →
2S×S is a mapping from each role into a set of pairs of individuals. There exists
some s0 ∈ S such that D ∈ L(s0), and for all s, t ∈ S, the following conditions
hold:

1. if C ∈ L(s), then ∼C,¬C
∈ L(s),
2. if C1 � C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),
3. if C1 	 C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),
4. if ∀R.C ∈ L(s) and (s, t) ∈ E(R), then C ∈ L(t),
5. if ∃R.C ∈ L(s), then there exists t ∈ S such that (s, t) ∈ E(R) and

C ∈ L(t),
6. for every i ∈ ω, if (∼¬)i+1C ∈ L(s), then (∼¬)iC ∈ L(s).

In particular, it is called a C-tableau if the the following conditions hold:

7. for every i ∈ ω and for any ALCn
∼-concept C, there exists s ∈ S such

that (∼¬)iC ∈ L(s) and (∼¬)i+1C
∈ L(s),
8. for any ALCn

∼-concept C, there exists s ∈ S such that C
∈ L(s) and
∼C
∈ L(s).

Conditions 1 and 6 reflect the ALCn
∼-interpretation of ALCn

∼-concepts
combining classical and strong negations. Condition 1 states that C ∈ L(s)
implies ∼C
∈ L(s) (in addition to ¬C
∈ L(s)) to satisfy the semantic con-

dition AI+
0 ∩ AI−

0 = ∅. Moreover, Condition 6 is imposed for the semantic

Description Logics with Contraries, Contradictories, and Subcontraries1 23

conditions AI+
i+1 ⊆ AI+

i and AI−
i+1 ⊆ AI−

i . For example, by Condition 6,
if ∼¬∼Happy ∈ L(s), then ∼Happy ∈ L(s). In the corresponding seman-

tics, if d ∈ (∼¬∼Happy)I
+
0 , then d ∈ (∼Happy)I

+
1 . Hence, by the condition

AI+
i+1 ⊆ AI+

i , we get d ∈ (∼Happy)I
+
0 . Conditions 7 and 8 correspond to

the contrary condition for the ALCn
∼-interpretation, i.e. AI+

0 ∪ AI−
0
= ΔI ,

AI+
i+1 � AI+

i , and AI−
i+1 � AI−

i . The next lemma shows the correspondence
between the existence of a tableau for an ALCn

∼-concept and its satisfiability.

Lemma 5.1

Let D be an ALCn
∼-concept. There exists a tableau for D if and only if it is

ALCn
∼-satisfiable. In particular, there exists a C-tableau for D if and only if it

is ALCn
∼-satisfiable under the contrary condition.

Proof. (⇒) Suppose we have a tableau T = (S,L,E) for D. Then we can define

an ALCn
∼-model I = (ΔI , {·I+

i | i ∈ ω}, {·I−
i | i ∈ ω}) of D as follows:

ΔI = S

AI+
i = {s | (∼¬)iA ∈ L(s)} for all A ∈ sub(D)

AI−
i = {s | ∼(¬∼)iA ∈ L(s)} for all A ∈ sub(D)

RI+
0 = E(R) for all R ∈ rol(D).

For I, we want to verify that for all the concepts C in sub(D), C ∈ L(s) implies

s ∈ CI+
0 .
Case 1: If C = A, then by definition, s ∈ CI+

0 .
Case 2: If C = (∼¬)i+1A or C = ∼(¬∼)iA, then by definition of the

model and Definition 4.2, s ∈ CI+
0 .

Case 3: If C = ¬(∼¬)iA, then by Condition 1 (in Definition 5.1),

(∼¬)iA
∈ L(s). By definition, we have s
∈ AI(∼¬)i . So, s
∈ (∼¬)iAI+
0 iff

s ∈ ΔI\(∼¬)iAI+
0 iff s ∈ ¬(∼¬)iAI+

0 .
Case 4: If C = (¬∼)i+1A, then by Condition 1, ∼(¬∼)iA
∈ L(s). So

s
∈ AI∼(¬∼)i , and hence s ∈ (¬∼)i+1AI+
0 . For the other cases of the forms

C1 � C2, C1 	 C2, ∀R.C1, and ∃R.C1, by Conditions 2-5, the claim holds. In
addition, we will show that I is an ALCn

∼-interpretation that satisfies the three

conditions (i) AI+
0 ∩ AI−

0 = ∅, (ii) AI+
i+1 ⊆ AI+

i and (iii) AI−
i+1 ⊆ AI−

i . (i)

Let s ∈ AI+
0 . Since A ∈ L(s), by Condition 1, ∼A
∈ L(s). Hence s
∈ AI−

0 .

(ii) Let s ∈ AI+
i+1 . By definition, (∼¬)i+1A ∈ L(s). Then, by Condition 6,

24 Ken KANEIWA

(∼¬)iA ∈ L(s), and hence s
∈ ΔI\A+
i . (iii) Let s ∈ AI−

i+1 . s
∈ ΔI\AI−
i follows

from Condition 6. Moreover, we show that if T is a C-tableau, then I satisfies the
contrary condition. By Condition 8, there exists s ∈ S such that A
∈ L(s) and

∼A
∈ L(s). By definition, s
∈ AI+
0 and s
∈ AI−

0 . Hence, AI+
0 ∪ AI−

0
= ΔI . By
Condition 7, there exists s ∈ S such that (∼¬)iA ∈ L(s) and (∼¬)i+1A
∈ L(s),
and there exists s′ ∈ S such that (∼¬)i∼A ∈ L(s′) and (∼¬)i+1∼A
∈ L(s′). By

definition, s
∈ AI+
i+1 and s ∈ AI+

i , and s′
∈ AI−
i+1 and s′ ∈ AI−

i .
(⇐) Let I = (ΔI , {·I+

i | i ∈ ω}, {·I−
i | i ∈ ω}) be an ALCn

∼-model of D.
Then we can construct a tableau T = (S,L,E) for D as follows:

S = ΔI

L(s) = {C ∈ sub(D) | s ∈ CI+
0 }

E(R) = RI+
0 for all R ∈ rol(D).

Since D is ALCn
∼-satisfiable, DI+

0
= θ. So, by definition, D ∈ L(s) for some

s ∈ S with s ∈ DI+
0 . By Lemma 4.1, it is inductively proved that T satisfies

Conditions 1-6 in Definition 5.1. This shows T to be a tableau for D. Moreover,
we show that if I satisfies the contrary condition, then T is a C-tableau. By
Lemma 4.2, CI∪∼CI
= ΔI and (∼¬)i+1CI � (∼¬)iCI . Therefore, Conditions
7 and 8 in Definition 5.1 are verified.

Lemma 5.1 indicates that given a tableau for an ALCn
∼-concept D, we

can define an ALCn
∼-interpretation I satisfying it (i.e., an ALCn

∼-model of D).
The model is constructed in such a manner that for every constructive double
negation (∼¬)iA (resp. ∼(¬∼)iA) in sub(D), AI+

i (resp. AI−
i) is defined by the

set of individuals {s | (∼¬)iA ∈ L(s)} (resp. {s | ∼(¬∼)iA ∈ L(s)}).
To determine the satisfiability of ALCn

∼-concepts, the tableau-based al-
gorithm for ALC will be extended by introducing three new completion rules
((∼¬)i-rule 1, (∼¬)i-rule 2, and ∼-rule) and clash forms with respect to strong
negation and constructive double negation. In Figure 4, the completion rules
for ALCn

∼-concepts are presented (as in Hollunder et al. and Schmidt-Schauss
and Smolka5, 16)). (∼¬)i-rule 1 is applied to ALCn

∼-concepts of the forms (∼¬)iA

and ∼(¬∼)iA. (∼¬)i-rule 2 and ∼-rule introduce new variables if there exists
no z ∈ S such that (∼¬)i+1C
∈ L(z) and (∼¬)iC ∈ L(z); or {A,∼A}∩L(z) = ∅.

Description Logics with Contraries, Contradictories, and Subcontraries1 25

�-rule: L(x) = L(x) ∪ {C1, C2}
if C1 � C2 ∈ L(x) and {C1, C2}
⊆ L(x)

	-rule: L(x) = L(x) ∪ {C1} or L(x) = L(x) ∪ {C2}
if C1 	 C2 ∈ L(x) and {C1, C2} ∩ L(x) = ∅

∀-rule: L(y) = L(y) ∪ {C}
if ∀R.C ∈ L(x), (x, y) ∈ E(R) and C
∈ L(y)

∃-rule: S = S ∪ {y} with y
∈ S, E(R) = E(R) ∪ {(x, y)} and
L(y) = {C}
if ∃R.C ∈ L(x) and {z | (x, z) ∈ E(R), C ∈ L(z)} = ∅

(∼¬)i-rule 1: L(x) = L(x) ∪ {(∼¬)iC}
if (∼¬)i+1C ∈ L(x) and (∼¬)iC
∈ L(x)

(∼¬)i-rule 2: S = S ∪ {y} with y
∈ S and L(y) = {(∼¬)iC}
if (∼¬)iC ∈ L(x) and there exists no z ∈ S such that
(∼¬)i+1C
∈ L(z) and (∼¬)iC ∈ L(z)

∼-rule: S = S ∪ {y} with y
∈ S and L(y) = ∅
if A ∈ L(x) or ∼A ∈ L(x) and
there exists no z ∈ S such that {A,∼A} ∩ L(z) = ∅.
Fig. 4 Completion rules for ALCn

∼-concepts

26 Ken KANEIWA

Remark. The new algorithm has to recognize additional clash forms besides
{A,¬A} and {⊥}. L(x) contains a clash if it contains {C1,¬C1}, {C2,∼C2}, or
{⊥}, where C1 is of the form (∼¬)iA or ∼(¬∼)iA and C2 is of the form (¬∼)iA

or ¬(∼¬)iA. For example, if {¬∼¬A1,∼¬∼¬A1} ⊆ L(x1), then it contains a
clash.

We present a tableau-based satisfiability algorithm for ALCn
∼. Given an

ALCn
∼-concept D, the following procedure constructs a forest ST = (S,Erol(D)∪

E∼∪E(∼¬)i , x0) for D, where S is a set of individuals, each node x ∈ S is labeled
as L(x), Erol(D) = {(x, y) ∈ E(R) | R ∈ rol(D)} (each edge (x, y) ∈ E(R) is
labeled as R), (x, y) ∈ E∼ ⇔ y is introduced for A ∈ L(x) or ∼A ∈ L(x) in ∼-
rule, (x, y) ∈ E(∼¬)i ⇔ y is introduced for (∼¬)iC ∈ L(x) in (∼¬)i-rule 2, and
x0 is the root. First, set the initial forest ST = ({x0}, ∅, x0), where S = {x0},
L(x0) = {D}, E(R) = ∅ for all R ∈ rol(D), and E∼ = E(∼¬)i = ∅. Then, apply
completion rules in Figure 4 to ST until none of the rules are applicable. A
forest ST is called complete if any completion rule is not applicable to it. If
there is a clash-free complete forest ST , then return “satisfiable,” and otherwise
return “unsatisfiable.”

Note that while every ALCn
∼-interpretation I consists of infinite inter-

pretation functions ·I+
i and ·I−

i for i ∈ ω, we do not need to construct an
infinite ALCn

∼-model of an ALCn
∼-concept. In other words, the satisfiability of

each ALCn
∼-concept can be decided by finite interpretation functions because

the number of connectives occurring in it is finite. For example, the satisfiability
of (∼¬)mA can be decided by the maximum 2m + 1 of interpretation functions

·I+
0 , . . . , ·I+

m , ·I−
0 , . . . , ·I−

m−1 . In the proof of the completeness theorem, the finite
interpretation is theoretically expanded to an ALCn

∼-model by adding other infi-

nite interpretation functions ·I+
m , ·I+

m+1 , . . . , ·I−
m , ·I−

m+1 , Thus, the finiteness
of a completion forest ST for an ALCn

∼-concept will be helpful when providing
the termination of our satisfiability algorithm.

We show the correctness of the tableau-based satisfiability algorithm
under the contrary condition (soundness, completeness, and termination)∗5 and
the complexity of the satisfiability problem. In particular, we have to observe
the behavior of the new completion rules in the algorithm. Unlike the other
completion rules, each application of the new completion rules does not subdivide

∗5 By deleting (∼¬)i-rule 2 and ∼-rule, the tableau-based algorithm simply decides the
satisfiability of ALCn

∼-concepts, i.e., it does not consider the contrary condition. It can
be shown that the algorithm is complete in the class of ALCn

∼-interpretations.

Description Logics with Contraries, Contradictories, and Subcontraries1 27

a concept. However, since (∼¬)i-rules 1 and 2 add only a subconcept to each
node, ∼-rule creates an empty node, and the number of variables introduced
in (∼¬)i-rule 2 and ∼-rule is bounded by polynomial, the termination can be
established.

Theorem 5.1 (Satisfiability under the contrary condition)

Let D be an ALCn
∼-concept. The following statements hold:

1. The tableau-based algorithm terminates.
2. The tableau-based algorithm constructs a clash-free complete forest

for an ALCn
∼-concept D if and only if D is ALCn

∼-satisfiable under the
contrary condition.

3. Satisfiability of ALCn
∼-concepts is PSPACE-complete.

Theorem 5.1 is proved by the following claims.

Claim 1

The tableau-based algorithm terminates.

Proof. Suppose that |D| = m for an ALCn
∼-concept D. For any node x ∈ S

in the forest ST = (S,Erol(D) ∪ E∼ ∪ E(∼¬)i , x0) for D, L(x) must be a subset
of sub(D). Notice that when (∼¬)i-rule is applied to a node L(x) including
(∼¬)i+1C, the added concept (∼¬)iC is limited to a subconcept of D. Then
|L(x)| ≤ m since |sub(D)| ≤ |D|. Let Num∼(L(x)) denote the number of the
form ∼A or A occurring in a node L(x), let Num(∼¬)i(L(x)) denote the number
of the form (∼¬)iC occurring in a node L(x), and let NumR(L(x)) denote the
number of the form ∃R.C occurring in a node L(x). Each node L(x) can have
child nodes L(y) where each edge (x, y) is in Erol(D), E∼, or E(∼¬)i . The number
of child nodes of each node is at most m since Num∼(L(x))+Num(∼¬)i(L(x))+
NumR(L(x)) ≤ m. Therefore, we can apply the completion rules at most m

times to each node x with L(x). Moreover, we will find the depth of the forest
ST . For ∃R.C ∈ L(x), an application of ∃-rule creates a new node y from a
leaf x where L(y) contains only the subconcept C. For ∀R.C ′ ∈ L(x) with
(x, y) ∈ E(R), an application of ∀-rule adds the subconcept C ′ to L(y). Then,
we have dep(L(y)) < dep(L(x)) since for any Ci ∈ L(y), ∃R.Ci or ∀R.Ci must
belong to L(x). For (∼¬)iA ∈ L(x) or ∼(¬∼)iA ∈ L(x), (∼¬)i-rule 2 can be
applied at most i times. For A ∈ L(x) or ∼A ∈ L(x), ∼-rule can be applied
once. Hence, the depth of ST is at most m2, because of dep(D) ≤ m. This leads
to the termination.

28 Ken KANEIWA

Claim 2

If the tableau-based algorithm constructs a clash-free complete forest for an
ALCn

∼-concept D, then D is ALCn
∼-satisfiable under the contrary condition.

Proof. Let ST = (S,Erol(D), x0) with L and E be a clash-free complete forest
for D, which is constructed by the tableau-based algorithm. Let us define S′ =
S ∪ S+ and L′ = L ∪ L+ where

S+ ={v∼A | there exists no x ∈ S s.t. A ∈ L(x) or ∼A ∈ L(x)} ∪
{v(∼¬)iC | there exists no x ∈ S s.t. (∼¬)iC
∈ L(x) or (∼¬)i+1C ∈ L(x)}

L+ ={(v∼A, ∅) | v∼A ∈ S+} ∪
{(v(∼¬)iC , {(∼¬)kC | 0 ≤ k ≤ i}) | v(∼¬)iC ∈ S+}.

We will show the tuple (S′, L′, E) to be a tableau for D. By definition of the ini-
tial forest, D ∈ L(x0) for the root x0 ∈ S. The tableau has to satisfy Conditions
1-6 in Definition 5.1.

Condition 1: Let C ∈ L(x). Since ST is clash free, both ∼C and ¬C

are not in L(x). Let C ∈ L+(x). By the definition of L+, ∼C and ¬C are not
in L(x).

Conditions 2-5: These are satisfied by definition of �-rule, 	-rule, ∀-rule,
and ∃-rule.

Condition 6: If (∼¬)i+1C ∈ L(x), then by (∼¬)i-rule, (∼¬)iC ∈ L(x).
If (∼¬)i+1C ∈ L+(x), then by definition, (∼¬)iC ∈ L(x).

Moreover, we want to show it to be a C-tableau.
Condition 7: Suppose that there exists x ∈ S with (∼¬)iC ∈ L(x). By

(∼¬)i-rule 2, there exists y ∈ S such that (∼¬)iC ∈ L(y) and (∼¬)i+1C
∈ L(y)
since any completion rule does not add (∼¬)i+1C to L(y). Suppose that there
exists no x ∈ S with (∼¬)iC ∈ L(x). By (∼¬)i-rule 2, there exists no x ∈ S

with (∼¬)i+1C ∈ L(x). Hence, by definition, v(∼¬)iC ∈ S+, and so (∼¬)iC ∈
L+(v(∼¬)iC) and (∼¬)i+1C
∈ L+(v(∼¬)iC).

Condition 8: Let C = A. Suppose that there exists x ∈ S with A ∈
L(x) or ∼A ∈ L(x). By ∼-rule, there exists y ∈ S such that L(y) = ∅. So,
A,∼A
∈ L(y). Suppose that there exists no x ∈ S with A ∈ L(x) or ∼A ∈ L(x).
By definition, v∼A ∈ S+, and L+(v∼A) = ∅. Let C = ¬(∼¬)iA. By (∼¬)i-rule
2, there exists x ∈ S with (∼¬)i+1A
∈ L(x) and (∼¬)iA ∈ L(x). Since ST is
clash free, ¬(∼¬)iA
∈ L(x). Let C = (¬∼)iA (i > 0). By (∼¬)i-rule 2, there
exists x ∈ S with ∼(¬∼)iA
∈ L(x) and ∼(¬∼)i−1A ∈ L(x). Since ST is clash

Description Logics with Contraries, Contradictories, and Subcontraries1 29

free, (¬∼)iA
∈ L(x). Hence, C,∼C
∈ L(x). Therefore, by Lemma 5.1, D has
an ALCn

∼-model that satisfies the contrary condition.

Claim 3

If an ALCn
∼-concept D is ALCn

∼-satisfiable under the contrary condition, then
the tableau-based algorithm constructs a clash-free complete forest for D.

Proof. Let I = (ΔI , {·I+
i | i ∈ ω}, {·I−

i | i ∈ ω}) be an ALCn
∼-model of D

that satisfies the contrary condition. By Lemma 5.1, there exists a C-tableau
T = (S,L,E) for D where D ∈ L(s0) for some s0 ∈ S. The tableau-based
algorithm constructs a forest ST = (S′, E′

rol(D), x0) with L′ and E′. In the forest
construction, we define a mapping π : S′ → S such that (i) π(x0) = s0, (ii) if
π(x) = s, ∃R.C ∈ L′(x), and y is introduced in ∃-rule, then π(y) = t for some
t ∈ S with C ∈ L(t) and (s, t) ∈ E(R), (iii) if π(x) = s, (∼¬)iC ∈ L′(x) and y is
introduced in (∼¬)i-rule 2, then π(y) = t for some t ∈ S with (∼¬)iC ∈ L(t) and
(∼¬)i+1C
∈ L(t), and (iv) if π(x) = s, {A,∼A} ∩L′(x)
= ∅ and y is introduced
in ∼-rule, then π(y) = t for some t ∈ S with A,∼A
∈ L(t). Now we verify
L′(x) ⊆ L(π(x)) for all x ∈ S′ in ST . For the initial forest, L′(x0) = {D} ⊆
L(π(x0)) = L(s0). Let (∼¬)i-rule be applied to (∼¬)i+1C ∈ L′(x). Then,
L′(x) = L′(x) ∪ {(∼¬)iC}. By the induction hypothesis, (∼¬)i+1C ∈ L(π(x)).
By Condition 6, L(π(x)) contains (∼¬)kC for 0 ≤ k ≤ i. Moreover, by Condition
1 and Claim 1, it follows that ST is clash free and complete.

Claim 4

Satisfiability of ALCn
∼-concepts is in PSPACE.

Proof. Similar to the proof in 3), this can be shown. By checking a depth-
first construction of a forest ST (the depth of which is found in the proof of
Claim 1), we reuse space that is bounded by polynomial. It should be noted
that the contrary condition indicates that infinite individuals must exist that
define AI+

0 ∪ AI−
0
= ΔI , AI+

i+1 � AI+
i , and AI−

i+1 � AI−
i , but (∼¬)i-rule 2 and

∼-rule introduce new variables whose number is bounded by polynomial for each
node in a forest ST . The hardness of satisfiability is derived from ALC.16)

§6 Conclusion
We have presented an extended description logic ALCn

∼ that incorporates
classical negation and strong negation for representing contraries, contradicto-
ries, and subcontraries between concepts. Technically, the semantics of strong

30 Ken KANEIWA

negation is adapted to the oppositions in the philosophical study of negation.9)

The important specification of our description logic is that strong negation is
added to the classical description logic ALC and the property of contradictoriness
and contrariness holds for every interpretation. We have demonstrated that the
two negations are adequately characterized by ALCn

∼-interpretations, compar-
ing it with other description logics ALC2

∼ and CALC2
∼ (which we have originally

defined by introducing strong negation). We have developed a tableau-based sat-
isfiability algorithm for ALCn

∼ that is extended to add three new completion rules
to the tableau-based algorithm for ALC.16) It finds an ALCn

∼-model satisfying the
contrary condition, in which a constructive normal negation form and various
clash forms are defined to treat complex negative concepts. Consequently, the
description logic provides a decidable fragment (precisely, PSPACE-complete)
of classical first-order logic with classical negation and strong negation (but not
constructive description logic with Heyting negation and strong negation).

Acknowledgment This research was supported in part by the Min-
istry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scien-
tists (B), No.17700164.

References

1) S. Akama. Constructive predicate logic with strong negation and model theory.
Notre Dame Journal of Formal Logic, 29(1):18–27, 1988.

2) F. M. Donini. Complexity of reasoning. In Description Logic Handbook, pages
96–136, 2003.

3) J. Y. Halpern and Y. Moses. A guide to completeness and complexity for model
logics of knowledge and belief. Artificial Intelligence, 54(3):319–379, April 1992.

4) H. Herre, J. Jaspars, and G. Wagner. Partial logics with two kinds of negation as
a foundation for knowledge-based reasoning. In D.M. Gabbay and H. Wansing,
editors, What is Negation ?, pages 121–159. Kluwer Academic Publishers, 1999.

5) B. Hollunder, W. Nutt, and M. Schmidt-Schauß. Subsumption algorithms for
concept description languages. In Proceedings of ECAI-90, 9th European Con-
ference on Artificial Intelligence, pages 348–353, 1990.

6) L. R. Horn. A Natural History of Negation. University of Chicago Press, 1989.

7) I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description
logic. In Proceedings of the Seventeenth International Joint Conference on Ar-
tificial Intelligence, 2001.

8) K. Kaneiwa. Negations in description logic – contraries, contradictories, and
subcontradictories. In Proceedings of the 13th International Conference on Con-
ceptual Structures (ICCS ’05). Kassel University Press, 2005.

Description Logics with Contraries, Contradictories, and Subcontraries1 31

9) K. Kaneiwa. On the semantics of classical first-order logic with constructive
double negation. In Proceedings of the 2nd Indian International Conference on
Artificial Intelligence, 2005.

10) K. Kaneiwa and S. Tojo. An order-sorted resolution with implicitly negative
sorts. In Proceedings of the 2001 Int. Conf. on Logic Programming, pages 300–
314. Springer-Verlag, 2001. LNCS 2237.

11) D. Nelson. Constructible falsity. The Journal of Symbolic Logic, 14(1):16–26,
1949.

12) S. P. Odintsove and H. Wansing. Inconsistency-tolerant description logic. moti-
vation and basic systems. In V. Hendricks and J. Malinowski, editors, Trends in
Logic. 50 Years of Studia Logica, pages 301–335. Kluwer Academic Publishers,
2003.

13) A. Ota. Hitei No Imi (in Japanese). Taishukan, 1980.

14) D. Pearce and G. Wagner. Logic programming with strong negation. In
P. Schroeder-Heister, editor, Proceedings of the International Workshop on Ex-
tensions of Logic Programming, volume 475 of Lecture Notes in Artificial Intel-
ligence, pages 311–326, Tübingen, FRG, December, 8–10 1989. Springer-Verlag.

15) M. La Palme Reyes, J. Macnamara, G. E. Reyes, and H. Zolfaghari. Models for
non-boolean negations in natural languages based on aspect. In D.M. Gabbay
and H. Wansing, editors, What is Negation ?, pages 241–260. Kluwer Academic
Publishers, 1999.

16) M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48:1–26, 1991.

17) R. H. Thomason. A semantical study of constructible falsity. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 15:247–257, 1969.

18) G. Wagner. A database needs two kinds of negation. In B. Thalheim,
J. Demetrovics, and H-D. Gerhardt, editors, Mathematical Foundations of
Database Systems, pages 357–371. LNCS 495, Springer–Verlag, 1991.

19) G. Wagner. Vivid Logic: Knowledge-Based Reasoning with Two Kinds of Nega-
tion. Springer-Verlag, 1994.

20) H. Wansing. The logic of information structures, volume 681 of LNAI. Springer-
Verlag, 1993.

21) H. Wansing. Negation. In L. Goble, editor, The Blackwell Guide to Philosoph-
ical Logic, pages 415–436. Basil Blackwell Publishers, 2001.

