
Resolution for Label-based Formulas in Hierarchical Representation 1

Resolution for Label-based Formulas in
Hierarchical Representation

Ken KANEIWA

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 JAPAN

kaneiwa@nii.ac.jp

Abstract Order-sorted logic includes many and partially ordered
sorts as a sort-hierarchy. In the field of knowledge representation and
reasoning, it is useful to develop reasoning systems for terminological
knowledge, together with assertional knowledge. However, the expression
of sort-hierarchies cannot sufficiently capture the lexical diversity of ter-
minological knowledge. In addition to sorts, various kinds of symbols:
constants, functions and predicates are semantically and hierarchically
associated with each other. This is because natural language words iden-
tifying these symbols can be employed in the description of terminological
knowledge. In this paper, we present a label-based language for consis-
tently handling the variety of hierarchical relationships among symbol
names. For this language we develop a sorted resolution system whose
reasoning power is enhanced by adding hierarchical inference rules with
labeled substitutions.

Keywords Terminological Knowledge, Order-sorted Logic, Resolution
System, Knowledge Representation, Label-based Expressions.

§1 Introduction
Logical languages with class-hierarchy formally concentrate upon rep-

resentation and reasoning for terminological knowledge3) (and ontologies7)), to-
gether with assertional knowledge. The significant feature is that one can specify
classes as sets of individuals and their hierarchical relationships (e.g. is-a rela-
tions) in the languages. In the past, there have been several approaches to

2 Ken KANEIWA

the formalisms: order-sorted logic,15, 16, 5, 17) typed logic programming,1, 2, 9) de-
scription logics8, 13) and object-oriented deduction languages.12, 18) In particular,
order-sorted logic gives us the advantage of interacting terminological knowledge
and assertional knowledge. This logic theoretically corresponds to a first-order
predicate logic with sort-hierarchy, where sort symbols are many and partially
ordered. The sorted language can represent terminological knowledge as a sort-
hierarchy and assertional knowledge as sorted formulas.

However, the expression of sort-hierarchies cannot sufficiently capture
the lexical diversity of terminological knowledge since hierarchical information
exclusive of sorts is ignored in logical languages. The elements of terminological
knowledge can be regarded as various kinds of symbols in logic: sorts, constants,
functions and predicates, whereas the symbols are semantically separated from
each other and merely used as components in formulas. From the viewpoint
of symbolic knowledge representation, we require that the symbol names be
semantically and hierarchically associated with each other, without losing their
roles. To enrich hierarchical reasoning, Kaneiwa and Tojo10) proposed an order-
sorted logic with sort and predicate hierarchies, but the hierarchies did not enable
complicated expressions combining different kinds of symbols (e.g. father ≺
parent as a subordinate relation of a function and a predicate).

The aim of this paper is to provide a logical framework for consistently
handling various hierarchies of symbol names (of sorts, constants, functions and
predicates) and reasoning over them. We generalize an order-sorted logic by
means of consisting of label-based expressions. A label-based language contains
label-based terms and formulas and a label hierarchy, for representing assertional
knowledge and terminological knowledge. Labels denote all the symbol names of
sorts, constants, functions and predicates occurring in terms and formulas, and
build a common hierarchy of the symbols. The semantics of the label-based lan-
guage is specified in keeping the constraints on hierarchical relationships among
symbol names. More precisely, labels and their hierarchy are interpreted as the
combinations of different roles of symbols. We develop a sorted resolution sys-
tem for label-based clausal formulas by introducing labeled substitutions and
hierarchical resolution rules. This system performs reasoning on a label hierar-
chy, gained by various usages of labels and their hierarchical relationships (e.g.
the same label might be used for function and predicate symbols).

This paper is organized as follows. Section 2 explains the notions of
logic with sort-hierarchy14) and an order-sorted logic with sort predicates. In

Resolution for Label-based Formulas in Hierarchical Representation 3

animal

ancestor descendant

parent child

father mother son daughter

John Tom

human

Fig. 1 A terminological hierarchy

Section 3, we show a requirement for hierarchical expressions, under the dis-
cussion about various usages of labels in a terminological hierarchy. Section 4
provides the syntax and semantics of a label-based language. In Section 5, we
define labeled substitutions and hierarchical resolution rules in an inference sys-
tem for label-based expressions. In Section 6, we discuss conclusions and future
work.

§2 Logic with sort-hierarchy
Order-sorted logic is a first-order predicate logic with sort-hierarchy. A

sort-hierarchy is a pair (S,<s) of a set S of sort symbols s, s1, s2, . . . and a
subsort relation <s over S. A subsort relation is defined by a set of subsort
declarations si <s sj . For instance, father <s parent and mother <s parent

declare that father and mother are subsorts of the sort parent. As shown in
Fig. 1, the hierarchy can be built by subsort declarations. We use sort symbols to
express the restricted domains and ranges of variables, functions and predicates.
A sorted variable is denoted as x: s. For example, x: father is a sorted variable
of the sort father. A function declaration is denoted by f : s1 × · · · × sn → s,
and a predicate declaration is denoted by p: s1 × · · · × sn.

For knowledge base reasoning, Beierle et al.4) extended an order-sorted
resolution system that can strongly connect separated terminological knowledge
and assertional knowledge. In the sorted logic, each sort symbol can be used not
only as the sort of a term but also as a unary predicate (called a sort predicate).
Let C,C1, C2 be clauses, s, s1, s2 be sorts (or sort predicates), θ be a sorted
substitution, and t, t1, t2 be sorted terms. In addition to sorted substitutions,
the authors introduced inference rules of sort predicates as follows:

4 Ken KANEIWA

¬s1(t1) ∨ C1 s2(t2) ∨ C2

(C1 ∨ C2)θ
(subsort resolution rule)

if s2 ≤s s1 (i.e. s2 = s1 or s2 <s s1) and t1θ = t2θ, and

¬s(t) ∨ C

Cθ
(elimination rule)

if tθ is a term of the sort s or a subsort of s. Alternatively, in order to explicitly
embed negative information in a sort-hierarchy, Kaneiwa and Tojo11) developed
an order-sorted resolution system with structured sorts. In both sorted logics,
sort predicates are usefully introduced for interacting terminological knowledge
and assertional knowledge.

§3 Requirements for hierarchical expressions
In this section, we first show possible usages of labels as symbol names

using order-sorted logic, which will entail a requirement for hierarchical expres-
sions of symbol names. For terminological knowledge, we then discuss the neces-
sity of a sublabel relation to generally represent different types of subordinate
relations.

Five uses for labels. Given the terminological hierarchy as shown in Fig. 1,
each element of the hierarchy (e.g. John, human, father and child) is available
for the names of various symbols: sorts, constants, functions, unary predicates
and binary predicates. If the label ‘John’ is used as a constant, then the for-
mula parent(John) can describe the sentence “John is a parent.” If the label
‘human’ plays the role of a unary predicate, the formula human(John) is the
sentence “John is human,” in which ‘human’ can be relabeled more precisely as
‘is human.’ For the label ‘father’ as a function that maps from a person into its
father, the term father(Tom) expresses Tom’s father. If we have the relation-
ship between a father and his child, then ‘child’ as a binary predicate coincides
with ‘is a child of.’ Hence child(T om, John) expresses “Tom is a child of John.”
Finally, the formula walking(John : father) indicates “John who is a father is
walking” where ‘father’ is used as a sort.

These usages reflect the meaning and pragmatics of natural language
words. Fig. 2 classifies the roles of symbols as conceivable for the labels. Every
label except for John and Tom can be used as a unary predicate or sort, and
the labels exclusive of animal and human can be regarded as binary predicates.

Resolution for Label-based Formulas in Hierarchical Representation 5

animal

ancestor descendant

parent child

father mother son daughter

John Tom

constants

binary predicates

unary predicates or sorts

functions

human

Fig. 2 The roles of symbols in a terminological hierarchy

Moreover, mother and father can be functions as sublabels of parent, and John

and Tom can be constants as sublabels of human.
When logically supporting the usages, the formality of logic gives rise

to the syntax limited by the rigorous definition of symbol roles. Therefore,
the labels variously used as above cannot be incorporated in the hierarchical
information. To overcome the limitation, we will have to devise a method for
covering various types of subordinate relations, which are composed from sorts,
constants, functions, unary predicates and binary predicates. In other words,
there are different combinations of symbols for each sublabel relation as follows:

types of subordinate relation Ri sublabel relation

R1 : function ≺ sort
R2 : sort ≺ sort
R3 : sort ≺ unary predicate
R4 : binary predicate ≺ binary predicate

. . .






father ≺ parent

The sort-hierarchy in order-sorted logic does not express such hierarchi-
cal relationships including other kinds of symbols. Even if they are described in
first-order formulas, we lose the conciseness of terminological knowledge, namely,
different types of subordinate relations R1, R2, . . . cannot be generally treated
as one sublabel relation. In the next section, we will formalize a label-based
language for concisely representing the various hierarchical relationships.

6 Ken KANEIWA

§4 Label-based language LLB

We present a label-based language where labels are commonly used as the
names of different kinds of symbols. Thus, a hierarchy over a set of labels (which
we will call a label hierarchy) generally imply various hierarchies of first-order
symbols, and the terms and formulas in the language are composed of labels.

4.1 Syntax
Let LB be a set of labels. In the following, we write its elements as

L,M,N , or L0, L1, L2, A subordinate relation of labels (called a sublabel
relation) is declared as follows:

L2 ≺ L1, L3 ≺ L1, . . .

For example, for bird, animal ∈ LB, the declaration bird ≺ animal indicates
that bird is a sublabel of animal.

A label-based language LLB contains a label hierarchy LH = (LB,≺)
where LB is a set of labels and ≺ is a sublabel relation over LB. Note that the
label hierarchy is a partially ordered set of labels. By indexing c, fn, pn, or s to
each label L, the labels

Lc, Lfn, Lpn, Ls

are distinguished as constants, n-ary functions, n-ary predicates and sorts, re-
spectively. Using this notation, symbols in a first-order language are introduced
by the labels.

• C ⊆ {Lc | L ∈ LB} is a set of constant symbols of labels,
• Fn ⊆ {Lfn | L ∈ LB} is a set of n-ary function symbols of labels,
• Pn ⊆ {Lpn | L ∈ LB} is a set of n-ary predicate symbols of labels.

We denote the set of all function symbols by F and the set of all predicate
symbols by P .

Let S ⊆ {Ls | L ∈ LB} be a set of sort symbols of labels. A label-based
sort-hierarchy is obtained by a label hierarchy in such a way that a subsort
relation <s over S is defined on a sublabel relation as below:

Ls
i <s Ls

j if there are Ls
i , L

s
j ∈ S such that Li ≺ Lj

Namely, given a label hierarchy LH = (LB,≺), a label-based sort-hierarchy
is a pair (S,<s) where S is a set of sort symbols denoted by labels in LB

and <s= {(Ls
i , L

s
j) ∈ S × S | Li ≺ Lj}. The domain of each sorted variable

Resolution for Label-based Formulas in Hierarchical Representation 7

(denoted x:Ls
i) in LLB is restricted by a sort Ls

i in S. VLs
i

is a set of variables
x:Ls

i , y:Ls
i , . . . of sort Ls

i .
Remark. Each label-based language can be flexibly defined by containing any
sets C,F, P, S of symbols which labels in LB denote. For example, consider a
language where a label L ∈ LB is employed as a constant Lc ∈ C and a unary
function Lf1 ∈ F , but another label M ∈ LB is employed only as a unary
predicate Mp1 ∈ P (i.e. M c �∈ C and Mf1 �∈ F).

Definition 4.1 (Labeled signature ΣLH)

Let LH be a label hierarchy. A signature of a label-based language LLB with
LH (called a labeled signature) is a tuple ΣLH = (S,C, F, P,D) where

• (S,<s) is a label-based sort-hierarchy,
• C,F, P are sets of constant symbols, function symbols and predicate sym-

bols of labels with C ∩ F ∩ P = ∅,
• D is a set of sort declarations such that

– Lc:→ Ls
0 ∈ D for every Lc ∈ C (constant declaration),

– Lfn:Ls
1 ×· · · ×Ls

n → Ls
0 ∈ D for every Lfn ∈ F (function declaration),

– Lpn:Ls
1 × · · · × Ls

n ∈ D for every Lpn ∈ P (predicate declaration),
– Lfn:Ls

1 × · · · × Ls
n → Ls

0 ∈ D iff Lpn+1:Ls
0 × Ls

1 × · · · × Ls
n ∈ D.

A labeled signature can include more than one sort declaration for each symbol
in C ∪ F ∪ P . For example, for Johnc ∈ C, we have the constant declarations
Johnc:humans and Johnc:animals in D. For each label L ∈ LB, if Lfn ∈ F

and Lpn+1 ∈ P , then some of their sort declarations might be different but the
condition that Lfn:Ls

1 × · · · × Ls
n → Ls

0 ∈ D (n ≥ 1) if and only if Lpn+1:Ls
0 ×

Ls
1 × · · · × Ls

n ∈ D must be satisfied.
In a label-based language, we can view terms and formulas as composi-

tions of mere labels when the role of each label is undescribed. We suppose that
the expression

L1(x: L2) ∧ L3(y:L4)

is a formula of the form A ∧ B where A,B are atomic formulas. Then, we
recognizes that L1(x: L2) and L3(y:L4) are atomic formulas, and the positions
of the labels determine that L1, L3 are unary predicates and L2, L4 are the sorts
of variables x, y. In rigorous formalism, symbols in any formula must respectively
have their unique roles and defer to a labeled signature ΣLH . For example, we
have

8 Ken KANEIWA

Lp1
1 (x: Ls

2) ∧ Lp1
3 (y:Ls

4)

where p1 and s indicate their unique roles as a unary predicate and a sort
respectively. We define expressions of the language LLB : label terms and label
formulas as follows.

Definition 4.2 (Label terms of sort Ls
0)

The set TERMLs
0

of label terms of sort Ls
0 is defined inductively by the following

rule:

tLs
0

::= x:Ls
0 | Lc:Ls

0 | Lfn(tLs
1
, . . . , tLs

n
):Ls

0 | tMs

where Lc:→ Ls
0 ∈ D, Lfn:Ls

1 × · · · ×Ls
n → Ls

0 ∈ D, for 1 ≤ i ≤ n, tLs
i

is a label
term of sort Ls

i , and tMs is a label term of sort M s with M s <s Ls
0.

The set of label terms of all sorts is denoted by TERM =
⋃

Ls∈S

TERMLs .

Example 4.1

Consider the following label terms:

Johnc:humans, fatherf1(fatherf1(Tomc:humans))

The labels John and Tom are used as constants, the label father is as a unary
function, and the label human is as a sort.

Definition 4.3 (Label formulas)

The set FORM of label formulas is defined inductively by the following rule:

A ::= Lpn(tLs
1
, . . . , tLs

n
) | ¬A | A1 ∨ A2 | A1 ∧ A2 | ∃x: LsA | ∀x: LsA

where Lpn:Ls
1 × · · · × Ls

n ∈ D, and tLs
i
∈ TERMLs

i
for 1 ≤ i ≤ n.

Example 4.2

To construct an atomic formula, a label is employed as an n-ary predicate. For
example, the label father is a unary predicate in the following formula:

fatherp1(Johnc:humans)

whereas the same label is a unary function fatherf1 in Example 4.1.

4.2 Semantics
The semantics of a label-based language LLB is defined in the usual

manner of order-sorted logic. We interpret a label hierarchy LH in restricted

Resolution for Label-based Formulas in Hierarchical Representation 9

structures. Normally, a sort-hierarchy is interpreted by a subset relation of sorts.
In contrast, the interpretation of a label hierarchy implies many relationships
among constants, functions, predicates and sorts (i.e. subordinate relations over
S ∪ C ∪ F ∪ P). If a sublabel relation Li ≺ Lj holds in a label hierarchy
LH, then the labels Li, Lj can be regarded semantically as various symbols in
S∪C∪F∪P . This observation leads to simple sublabel relations and complicated
sublabel relations.

Simple sublabel relations are obtained by the same role symbols as fol-
lows:

(1) Ls
i ≺ Ls

j : a subsort relation as I(Ls
i) ⊆ I(Ls

j)
(2) Lpn

i ≺ Lpn
j : a subpredicate relation as I(Lpn

i) ⊆ I(Lpn
j)

where LX
i ≺ LY

j ⇔def there are LX
i , LY

j ∈ S ∪ C ∪ F ∪ P such that Li ≺ Lj ,
and I(LX

i) denotes an interpretation of symbol LX
i . A subsort relation Ls

i

≺ Ls
j of sorts (resp. a subpredicate relation Lpn

i ≺ Lpn
j of n-ary predicates)

can be interpreted by the subset relation of I(Ls
i) and I(Ls

j) (resp. I(Lpn
i)

and I(Lpn
j)). For example, let human ≺ animal and parent ≺ ancestor for

human, animal, ancestor, parent ∈ LB. Then, the simple sublabel relations
humans ≺ animals and parentp2 ≺ ancestorp2 are interpreted by I(humans) ⊆
I(animals) and I(parentp2) ⊆ I(ancestorp2). Furthermore, constants and func-
tions may have a semantic association with the same role symbols, but in this
paper we do not assume their sublabel relations.

Complicated sublabel relations combined by different role symbols are
conceivable as in the following:

(3) Lc
i ≺ Ls

j : a membership relation of constants and sorts as I(Lc
i) ∈ I(Ls

j)
(4) Lf

i ≺ Ls
j : a subset relation of the ranges of functions and sorts as

{u | (u1, . . . , un, u) ∈ I(Lfn
i)} ⊆ I(Ls

j)
(5) Ls

i ≺ Lp1
j : a subset relation of sorts and unary predicates as I(Ls

i) ⊆ I(Lp1
j)

In semantics, constant and function symbols are interpreted as mappings into
individuals, and sort symbols are interpreted as sets of individuals. Hence, each
constant (and function) must belong to the sorts denoted by the same label and
its superlabels. For all Lc

i ≺ Ls
j , the membership relation I(Lc

i) ∈ I(Ls
j) holds,

and for all Lf
i ≺ Ls

j , the subset relation {u | (u1, . . . , un, u) ∈ I(Lfn
i)} ⊆

I(Ls
j) holds. On the other hand, both unary predicates and sorts correspond

to sets of individuals, so that Ls
i ≺ Lp1

j is interpreted by the subset rela-

10 Ken KANEIWA

tion I(Ls
i) ⊆ I(Lp1

j). Analogously, the inverse Lp1
i ≺ Ls

j is interpreted as

I(Lp1
i) ⊆ I(Ls

j). For example, let John ≺ human and father ≺ animal

for John, father, human, animal ∈ LB. The complicated sublabel relations
Johnc ≺ animals, fatherf1 ≺ animals and humans ≺ animalp1 are respec-
tively interpreted by I(Johnc) ∈ I(animals), {u | (u1, u) ∈ I(fatherf1)} ⊆
I(animals) and I(humans) ⊆ I(animalp1).

Under these semantic specifications, we define restricted structures on a
labeled signature ΣLH as follows.

Definition 4.4 (ΣLH-structure)

Let ΣLH be a labeled signature. A sorted structure M is a pair (U, I) of a
nonempty set U and an interpretation function I for S ∪ C ∪ F ∪ P such that:

1. I(Ls) ⊆ U ,
2. I(Lc) ∈ I(Ls

0) with Lc:→ Ls
0 ∈ D,

3. I(Lfn): I(Ls
1)×· · ·×I(Ls

n) → I(Ls
0) with Lfn:Ls

1×· · ·×Ls
n → Ls

0 ∈ D,
4. I(Lpn) ⊆ I(Ls

1) × · · · × I(Ls
n) with Lpn:Ls

1 × · · · × Ls
n ∈ D.

A ΣLH-structure M is a sorted structure such that for all Li ≺ Lj ∈ D, the
following conditions hold:

1. I(Ls
i) ⊆ I(Ls

j) with Ls
i , L

s
j ∈ S,

2. I(Lpn
i) ⊆ I(Lpn

j) with Lpn
i , Lpn

j ∈ P ,
3. I(Lc

i) ∈ I(Ls
j) with Lc

i ∈ C and Ls
j ∈ S,

4. {u | (u1, . . . , un, u) ∈ I(Lfn
i)} ⊆ I(Ls

j) with Lfn
i ∈ F and Ls

j ∈ S,

5. I(Ls
i) ⊆ I(Lp1

j) with Ls
i ∈ S and Lp1

j ∈ P ,

6. I(Lp1
i) ⊆ I(Ls

j) with Lp1
i ∈ P and Ls

j ∈ S.

Remark. Although each ΣLH-structure satisfies the additional conditions for
the labeled signature ΣLH , the conditions are imposed only on the symbols in-
troduced in a label-based language LLB . For each label, any kinds of symbols
are not always introduced. For example, for the labels ancestor, animal ∈
LB, we can define ancestorp1, animalp1, ancestorp2 ∈ P but animalp2 �∈ P in
LLB . In this case, the sublabel relation ancestor ≺ animal imposes the condi-
tion I(ancestorp1) ⊆ I(animalp1) but does not the condition I(ancestorp2) ⊆
I(animalp2).

A variable assignment on a ΣLH-structure M = (U, I) is a mapping
α:V → U such that α(x:Ls

i) ∈ I(Ls
i) for all x:Ls

i ∈ V . The variable assignment

Resolution for Label-based Formulas in Hierarchical Representation 11

α[x:Ls/d] is defined as (α − {(x: Ls, α(x:Ls))}) ∪ {(x: Ls, d)}.

Definition 4.5 (ΣLH-interpretation)

A ΣLH-interpretation I is a pair (M, α) where M is a ΣLH-structure and α is a
variable assignment on M . The denotation [[]]α is defined by the following rules:

• [[x:Ls
0]]α = α(x:Ls

0),
• [[Lc:Ls

0]]α = I(Lc),
• [[Lfn(t1, . . . , tn):Ls

0]]α = I(Lfn)([[t1]]α, . . . , [[tn]]α).

Let I = (M, α) be a ΣLH-interpretation. The ΣLH -interpretation I[x:Ls/d]
denotes (M, α[x:Ls/d]).

Definition 4.6 (Satisfaction relation)

Let I = (M, α) be a ΣLH-interpretation and F be a label formula. The satis-
faction relation I |= F is defined by the following rules:

• I |= Lpn(t1, . . . , tn) iff ([[t1]]α, . . . , [[tn]]α) ∈ I(Lpn),
• I |= ¬A iff I �|= A,
• I |= A ∧ B iff I |= A and I |= B,
• I |= A ∨ B iff I |= A or I |= B,
• I |= A ⇒ B iff I �|= A or I |= B,
• I |= ∀x: LsA iff for all d ∈ I(Ls), I[x:Ls/d] |= A,
• I |= ∃x: LsA iff for some d ∈ I(Ls), I[x:Ls/d] |= A.

Let F be a label formula and Γ be a set of label formulas. F is ΣLH -satisfiable if
there exists a ΣLH-interpretation I such that I |= F (I is called a ΣLH-model
of F). Γ is ΣLH-satisfiable if there exists a ΣLH -interpretation I such that for
all F ∈ Γ, I |= F (I is called a ΣLH-model of Γ).

§5 Inference system

5.1 Deduction rules
We consider reasoning for clausal label formulas with a label hierarchy

LH. Let li be an atomic formula or the negation of an atomic formula. The
clausal form l1 ∨ · · · ∨ ln (n ≥ 0) (called a label clause) expresses the label
formula of the universal closure ∀x1 · · · ∀xm(l1 ∨ · · · ∨ ln) where x1, . . . , xm are
all the variables occurring in l1 ∨ · · · ∨ ln. The empty clause (n = 0) is denoted
by �. We here show enriched deduction for label clauses that conforms to the
interpretation of the simple and complicated sublabel relations we explained in

12 Ken KANEIWA

Section 4.2. Let C be a label clause and µ̄ be a sequence t1, . . . , tn of label terms.
For a label hierarchy LH, we have the following deduction rules:

(1)
Lpn

i (µ̄)
Lpn

j (µ̄)
if Lpn

i ≺ Lpn
j (2)

C[x:Ls
j]

C[tLs
i
]

if Ls
i ≺ Ls

j

(3)
C[x:Ls

j]

C[Lc
i :L

s
k]

if Lc
i ≺ Ls

j , Lc
i ≺ Ls

k and Ls
k �≺ Lc

i

(4)
Lp1

j (x: Ls
i)

if Ls
i ≺ Lp1

j

(5)
C[x:Ls

j]

C[Lfn
i (µ̄):Ls

k]
if Lfn

i ≺ Ls
j , Lfn

i ≺ Ls
k and Ls

k �≺ Lfn
i

where LX
i ≺ LY

j ⇔def there are LX
i , LY

j ∈ S ∪ C ∪ F ∪ P such that Li ≺ Lj ,
and C[t] denotes a label clause C where a term t occurs.

5.2 Labeled substitution and resolution rules
To conform to a practical viewpoint, we will adopt a refutation proof

method obtained by resolution for clausal forms. As a variant of the deduction
system, we develop a resolution system for label clauses, containing sorted and
labeled substitutions and hierarchical resolution rules.

The subsort relation Ls
i <s Ls

j results in deduction rule (2), which can
be implemented by sorted substitutions in the resolution system.

Definition 5.1 (Sorted substitution)

A sorted substitution is a mapping θ from a finite set of sorted variables to
TERM such that θ(x: Ls

i) �= x:Ls
i and θ(x: Ls

i) ∈ TERMLs
i
.

Deduction rules (3) and (5) according to the complicated sublabel rela-
tions Lc

i ≺ Ls
j and Lfn

i ≺ Ls
j (explained in Section 4.2) carry out the replacements

of x:Ls
j into Lc

i :L
s
k and Lfn

i (µ̄):Ls
k. To incorporate these replacements into res-

olution, we define a labeled substitution by extending the sorted substitution.

Definition 5.2 (Labeled substitution)

A labeled substitution is a mapping θ+ from a finite set of sorted variables to
TERM such that for each variable x:Ls

j ∈ Dom(θ), the following condition holds:
• θ+(x: Ls

j) = Lc
i :L

s where Li ≺ Lj ,

• θ+(x: Ls
j) = Lfn

i (µ̄):Ls where Li ≺ Lj , or

Resolution for Label-based Formulas in Hierarchical Representation 13

• θ+(x: Ls
j) = θ(x: Ls

j) where θ is a sorted substitution.

A labeled substitution θ+ is expanded to label terms and formulas E, denoted
by Eθ+. Let E,E′ be expressions. A labeled substitution θ+ is a unifier for E

and E′ if Eθ+ = E′θ+. A unifier θ+ for E and E′ is most general (denoted
by mgu) if for every unifier θ+

i for E and E′ there exists a labeled substitution
γ such that θ+ = θ+

i γ. In order to find a unique mgu, we assume that every
sort-hierarchy is a lower semi-lattice, i.e., there exists the greatest lower bound
for any two sorts. Even if a sort-hierarchy is not a lower semi-lattice, we can
reconstruct it to be the structure, as discussed by Cohn.6)

Deduction rule (1) captures the interpretation of a subpredicate relation
Lpn

i ≺ Lpn
j of n-ary predicates, and deduction rule (4) actualizes that a subset

relation Ls
i ≺ Lp1

j of sorts and unary predicates makes Lp1
j (x: Ls

i) valid. These
deduction rules are embedded in the hierarchical resolution rules we will present
as below.

Definition 5.3 (Hierarchical resolution rules)

Let t, ti, t
′
i be label terms, A,A′ be atomic label formulas and C,C ′ be label

clauses. The resolution system for LLB includes the following hierarchical reso-
lution rules:

Resolution principle

¬A ∨ C A′ ∨ C ′

(C ∨ C ′)θ+

where θ+ is a mgu for A and A′.

Sublabel rule

¬Lpn
j (t1, . . . , tm) ∨ C Lpn

i (t′1, . . . , t
′
m) ∨ C ′ Li ≺ Lj

(C ∨ C ′)θ+

where θ+ is a mgu for (t1, . . . , tm) and (t′1, . . . , t
′
m).

Elimination rule

¬Lp1
j (t) ∨ C Li ≺ Lj

Cθ+

where tθ+ ∈ TERMLs
i
, or tθ+ = Lc

i :L
s or Lfn

i (µ̄):Ls.

14 Ken KANEIWA

Reflexivity rule

L ≺ L

Transitivity rule

Li ≺ L L ≺ Lj

Li ≺ Lj

The hierarchical resolution rules are similar to the subsort resolution
rule and the elimination rule (in Section 2), since our resolution system is an
extension of the sorted resolution system with sort predicates.4) In other words,
ordinary sorted resolution systems correspond to the hierarchical resolution sys-
tem without the sublabel rule, the elimination rule and labeled substitutions.
Moreover, the sorted resolution system with sort predicates corresponds to the
hierarchical resolution system without the sublabel rule for n-ary predicates
(n > 1) and labeled substitutions.

The hierarchical resolution system is applied to a knowledge base con-
sisting of a labeled signature and a set of label clauses.

Definition 5.4 (Knowledge base)

Let LH be a label hierarchy. A knowledge base KB is a pair (ΣLH ,Γ) where
ΣLH is a labeled signature with LH and Γ is a nonempty finite set {C1, C2, . . .}
of label clauses except for the empty clause.

We write KB |= C if, for every ΣLH-model I of Γ in KB, I |= C.

Definition 5.5 (Consistency)

Let KB = (ΣLH ,Γ) be a knowledge base. We write KB �LH C if C is derivable
from Γ in KB by applying hierarchical resolution rules. A knowledge base KB

is inconsistent if KB �LH �, and it is consistent otherwise.

The hierarchical relationships among labels generate new logical con-
clusions and inconsistent formulas, which are not treated in ordinary sorted
inference systems.

Proposition 5.1

Let ΣLH be a labeled signature and KB = (ΣLH,Γ) be a knowledge base. KB

is inconsistent if and only if there exists at least one of the following inconsistent
sets {A1θ

+, . . . , Anθ+} with KB �LH A1, . . . ,KB �LH An:

Resolution for Label-based Formulas in Hierarchical Representation 15

{A, ¬A},
{¬Lp1(t)} with t ∈ TERMLs ,
{Lpn

i (µ̄), ¬Lpn
j (µ̄)},

{¬Lp1
j (Lc

i :L
s)},

{¬Lp1
j (Lfn

i (t1, . . . , tn):Ls)}

where Li ≺ Lj ∈ LH.

Proof. (⇐) For each inconsistent set, the empty clause can be derived by the
resolution system. (⇒) Any knowledge base KB does not contain the empty
clause. So, in order to derive the empty clause, at least one resolution rule
must be applied to KB. The resolution principle is applied when the in-
consistent set {A,¬A} exists. The sublabel rule can derive the empty clause
if there exists the set {Lpn

i (µ̄),¬Lpn
j (µ̄)}. For an application of the elimina-

tion rule, we can conclude that there is either {¬Lp1(t)}, {¬Lp1
j (Lc

i :L
s)} or

{¬Lp1
j (Lfn

i (t1, . . . , tn):Ls)}.

Proposition 5.2

Let ΣLH be a labeled signature, θ+ be a labeled substitution, C be a label clause
and I be a ΣLH-interpretation. If I |= C, then I |= Cθ+.

Proof. Let x1:Ls
1, . . . , xn:Ls

n be all the free variables occurring in C, and define
θ+↑V S = {(v:Ls, t) ∈ θ+ | v:Ls ∈ Dom(θ+) ∩ V S}. For xj :Ls

j �∈ Dom(θ+),
Cθ+↑{xj:Ls

j} = C holds. For xj :Ls
j ∈ Dom(θ+), we have to check the three

cases: (i) θ+(xj:Ls
j) = θ(xj:Ls

j), (ii) θ+(xj:Ls
j) = Lc

i :L
s with Li ≺ Lj and (iii)

θ+(xj :Ls
j) = Lfn

i (µ̄):Ls with Li ≺ Lj . For (i), I |= Cθ↑{xj:Ls
j} follows since θ

is a sorted substitution. (ii) if θ+(xj :Ls
j) = Lc

i :L
s, then the condition I(Lc

i) ∈
I(Ls

j) in the ΣLH-structure entails I |= Cθ+ ↑ {xj:Ls
j}. (iii) if θ+(xj:Ls

j) =

Lf
i (µ̄):Ls, then I |= Cθ+ ↑{xj:Ls

j} by the condition {u | (u1, . . . , un, u) ∈
I(Lfn

i)} ⊆ I(Ls
j) in the ΣLH -structure. Therefore, we can derive I |= Cθ+.

Theorem 5.1

Let ΣLH be a labeled signature, C be a label clause and KB be a knowledge
base. If KB �LH C, then KB |= C.

Proof. We verify it for applying (i) sublabel rule and (ii) elimination rule. For (i),
suppose I |= ¬Lpn

j (µ̄)∨C and I |= Lpn
i (µ̄′)∨C ′. Let θ+ be a mgu for µ̄ and µ̄′.

By Proposition 5.2, we have I |= ¬Lpn
j (µ̄θ+) ∨ Cθ+ and I |= Lpn

i (µ̄′θ+) ∨ C ′θ+

16 Ken KANEIWA

¬hum(y:hum) ∨ ¬anc(y:hum) fat(J :hum)
fat ≺ par par ≺ anc

fat ≺ anc

¬hum(J :hum) J ≺ hum
�

¬luc(y:hum) ∨ ¬fat(y:hum) ¬won(x) ∨ luc(x)
¬won(y:hum) ∨ ¬fat(y:hum) won(fat(T :hum))

¬fat(fat(T :hum)) fat ≺ fat
�

¬luc(y:hum) ∨ ¬mot(y:hum) ¬won(x) ∨ luc(x)
¬won(y:hum) ∨ ¬mot(y:hum) won(fat(T :hum))

¬mot(fat(T :hum))
fail

Fig. 3 Resolution steps for a knowledge base

with µ̄θ+ = µ̄′θ+. Li ≺ Lj entails I(Lpn
i) ⊆ I(Lpn

j), and so I |= (C ∨C ′)θ+. (ii)

let I |= ¬Lp1
j (t)∨ C. The conditions of the ΣLH-structure imply I |= Lp1

j (tθ+),

and then I �|= ¬Lp1
j (tθ+). Hence, I |= Cθ+.

Theorem 5.2

Let ΣLH be a labeled signature and KB be a knowledge base. If KB has a
ΣLH-model, then KB is consistent.

Proof. Suppose that KB has a ΣLH -model. Let us assume that KB is inconsis-
tent. According to Proposition 5.1, there is an inconsistent set {A1θ

+, . . . , Anθ+}
such that KB �LH A1, . . . ,KB �LH An. Theorem 5.1 and Proposition 5.2 lead
to KB |= A1θ

+, . . . ,KB |= Anθ+. However, the inconsistent set has no ΣLH-
model. This is a contradiction. Therefore, KB is consistent.

Corollary 5.1

Let ΣLH be a labeled signature and KB be a knowledge base. If KB �LH �,
then KB has no ΣLH-model.

Proof. This can be straightforwardly proved by Theorem 5.2.

5.3 An example of resolution
We give an example of resolution with respect to the terminological

hierarchy shown in Fig. 2. Let the label hierarchy LH = (LB,≺) with

Resolution for Label-based Formulas in Hierarchical Representation 17

ancestor ≺ animal, descendant ≺ animal, parent ≺ ancestor,
child ≺ descendant, son ≺ child, daughter ≺ child,
father ≺ parent, mother ≺ parent, human ≺ animal,
John ≺ human, Tom ≺ human,

and let the labeled signature ΣLH = (S,C, F1, P1 ∪ P2,D) where

S = { animal, ancestor, descendant, human, parent, child,

father,mother, son, daughter },
C = { John, Tom },
F1 = { father,mother },
P1 = { animal, ancestor, descendant, human, parent, child,

father,mother, son, daughter },
P2 = { ancestor, descendant, parent, child, father,mother,

son, daughter },
D = { John:→ human, Tom:→ human,

father:human → human, father:human,

human:�, won in a lottery:�, lucky:�, · · · }.

Let the knowledge base KB = (ΣLH ,Γ) where

Γ = { father(John:human),
won in a lottery(father(Tom:human)),
won in a lottery(x) ⇒ lucky(x) }.

The first and second facts state that John is a father and Tom’s father won in a
lottery, and the rule means that if x won in a lottery, then x was lucky. For the
knowledge base KB, consider the following queries:

?-human(y:human) ∧ ancestor(y:human),
?-lucky(y:human) ∧ father(y:human),
?-lucky(y:human) ∧ mother(y:human).

In order to decide the answer (yes or no) of each query in KB, the resolution
system attempts to derive the empty clause from the negation of the query and
the knowledge base KB. By applying hierarchical resolution rules, the derivation
processes are given as in Fig. 3. The derivations for the first and second queries
are successful, but the derivation for the final query fails.

§6 Conclusions

18 Ken KANEIWA

This paper investigates general representation and reasoning for the hi-
erarchies composed by different kinds of first-order symbols. We have presented
a label-based language as an extended order-sorted logic which provides the
label-based expressions: a label hierarchy, label terms and label formulas. In
the semantic connections of various symbols in the language, a label hierarchy
can be commonly employed to express not only a sort-hierarchy but also hi-
erarchies of different types of subordinate relations. To develop its reasoning
system, we have defined labeled substitutions and hierarchical resolution rules
that are extensions of sorted substitutions and sorted resolution rules respec-
tively. Beierle et al. enhanced the reasoning power of an order-sorted resolution
system by adding inference rules of sort predicates. Along the way, we have
achieved a further refinement of the sorted resolution system in the label-based
language.

We will need to redesign the hierarchical resolution rules in order to
make the system complete. The derivability of the system is still insufficient to
correspond to the class of ΣLH-structures.

Acknowledgment
We thank the anonymous referees for many useful suggestions on this

paper. This research has been partially supported by the Kayamori Foundation
of Informational Science Advancement and the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for Scientific Research (14780311).

References
1) H. Äıt-Kaci and R. Nasr. LOGIN: A logic programming language with built-in

inheritance. Journal of Logic Programming, pages 185–215, 1986.

2) H. Äıt-Kaci and A. Podelski. Towards a meaning of LIFE. Journal of Logic
Programming, pages 195–234, 1993.

3) F. Baader, H.-J. Bürckert, J. Heinsohn, J. Müller, B. Hollunder, B. Nebel,
W. Nutt, and H.-J. Profitlich. Terminological knowledge representation: A
proposal for a terminological logic. DFKI Technical Memo TM-90-04, Deutsches
Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, 1990.

4) C. Beierle, U. Hedtsück, U. Pletat, P.H. Schmitt, and J. Siekmann. An
order-sorted logic for knowledge representation systems. Artificial Intelligence,
55:149–191, 1992.

5) A. G. Cohn. A more expressive formulation of many sorted logic. Journal of
Automated Reasoning, 3:113–200, 1987.

6) A. G. Cohn. Taxonomic reasoning with many sorted logics. Artificial Intelli-
gence Review, 3:89–128, 1989.

Resolution for Label-based Formulas in Hierarchical Representation 19

7) I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble, F. van
Harmelen, M. Klein, S. Staab, R. Studer, and E. Motta. OIL: The Ontology In-
ference Layer. Technical Report IR-479, Vrije Universiteit Amsterdam”Sciences,
2000.

8) I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description
logic. In Proceedings of the Seventeenth International Joint Conference on Ar-
tificial Intelligence, 2001.

9) K. Nitta, et al. Knowledge representation of new HELIC-II. In Workshop on
Legal Application of Logic Programming,ICLP ’94, 1994.

10) K. Kaneiwa and S. Tojo. Event, property, and hierarchy in order-sorted logic.
In Proceedings of the 1999 Int. Conf. on Logic Programming, pages 94–108. The
MIT Press, 1999.

11) K. Kaneiwa and S. Tojo. An order-sorted resolution with implicitly negative
sorts. In Proceedings of the 2001 Int. Conf. on Logic Programming, pages 300–
314. Springer-Verlag, 2001. LNCS 2237.

12) M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and
frame-based languages. J. ACM, 42(4):741–843, 1995.

13) M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48:1–26, 1991.

14) R. Socher-Ambrosius and P. Johann. Deduction Systems. Springer-Verlag,
1996.

15) C. Walther. A mechanical solution of schuber’s steamroller by many-sorted
resolution. Artificial Intelligence, 26(2):217–224, 1985.

16) C. Walther. Many-sorted unification. Journal of the Association for Computing
Machinery, 35:1, 1988.

17) T. Weibel. An order-sorted resolution in theory and practice. Theoretical
Computer Science, 185(2):393–410, 1997.

18) K. Yokota. Quixote:A Constraint Based Approach to a Deductive Object-
Oriented Database. PhD thesis, Kyoto University, 1994.

