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Abstract Description Logics (DLs) theoretically explore knowledge
representation and reasoning in concept languages. However, since they
are conceptually oriented, they are not equipped with rule-based reason-
ing mechanisms for assertional knowledge bases – specifically, rules and
facts in Logic Programming (LP), or the interaction of rules and facts
with terminological knowledge. To combine rule-based reasoning with
terminological knowledge, this paper presents a hybrid reasoning system
for DL knowledge bases (TBox and ABox) and first-order clause sets. The
primary result of this study involves the design of a sound and complete
resolution method for the composed knowledge bases, and this method
possesses features of an effective deduction procedure such as Robinson’s
Resolution Principle.
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§1 Introduction
Description logics are a theoretical foundation of knowledge representa-

tion and reasoning in concept languages. Deciding satisfiability and subsumption
of concepts4) constitutes standard reasoning in description logics. For many de-
scription logics, the standard reasoning can be completely implemented using

∗1 This is an extended version of the paper.21)
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tableau-like algorithms.18, 2) In order to practically apply knowledge bases, we
consider reasoning on rules and facts in logic programming26) together with ter-
minological knowledge. It is required that the reasoning algorithm deals with not
only the DL knowledge bases but also the clause sets in first-order logic (enable
the representation of rules and facts). To address this issue, the logic program-
ming languages CARIN-ALCNR25) and AL-log11) were proposed by combining
Horn clauses and description logics.

However, this combination with description logics is syntactically limited
where concept and role names (corresponding to unary and binary predicates)
cannot be used to represent the head of each Horn clause. That is, in Horn
clauses with DL concepts:

p1(�t1), . . . , pn(�tn) → q(�t),

the predicates p1, . . . , pn are either concept names, role names, or ordinary predi-
cates (n-ary predicates); however, the predicate q must be an ordinary predicate.
Although this limitation avoids the inference of disjunctive conclusions or nega-
tive conclusions from the head, we cannot completely obtain the expressiveness
of the combination of logic programming and description logics. For example,
let us consider the following Horn clauses:

Facts:

→ acted(John,Mary, e1)
→ died(Mary, e2)
→ after(e2, e1)

Rule:

acted(x, y, z1), died(y, z2), after(z2, z1),Human(x), Human(y) → killed(x, y)

where acted, died, and after are ordinary predicates, Human is a concept name
(as a unary predicate), and killed is a role name (as a binary predicate). This
rule implies that “if a human x acted against a human y at z1 and the human y

died at z2 after z1, then the fact that x killed y can be concluded.” Additionally,
we provide the following equations of DL concepts:

Murderer ≡ ∃killed.Human � Human

Human ≡ Male � Female

where Murderer, Human, Male, and Female are concept names and killed is a
role name. These equations indicate that “murderers are humans who have killed
humans” and “humans are male or female.” For the two types of logical form,
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if the head killed(t1, t2) as a role assertion is derived from the rule, the concept
equations imply Human(t2) and therefore Male � Female(t2) holds. However,
the disjunctive assertion Male�Female(t2) exceeds the expressiveness of Horn
clauses∗2

On the other hand, the following approaches to integrating logic pro-
gramming and description logics have been studied in the past. In order to in-
teroperate rules and ontologies in the Semantic Web, Grosof et al.15) defined an
expressive class as a combination of two paradigms (called Description Logic Pro-
gramming) by the intersection of the description logic SHOIQ and Horn logic
programs. With regard to abductive logic programming, Denecker’s group30, 8)

presented Open Logic Programming where predicates may be undefined (as ab-
ducible predicates). The undefined predicates and the completion semantics
of logic programs suitably yield a mapping from the description logic ALCN
to the logic programs. However, these two approaches do not provide reason-
ing on the composed knowledge bases that arise from the integration of rules
and complex concepts such as derivation of disjunctive conclusions or negative
conclusions. Heymans and Vermeir16, 17) presented Conceptual Logic Program-
ming as a language based on disjunctive logic programming. In this language,
the syntactic structure of each rule is restricted in order to obtain the tree
model property (whereas in the mapping from DL to LP, disjunctive/negative
conclusions are expressible). Consequently, the restricted logic programs make
the satisfiability checking decidable. Instead of the computational benefit, ev-
ery rule in the logic programs must have a tree-structure; however, the rule in
the above example does not have a tree-structure. This limited expressiveness
appears to be fatal to rule-based reasoning since the advantage of rules is to
represent implication forms including various combinations of many variables,
e.g., p1(x, y, z), p2(x, z), p3(y, x) → q(x, z).

In order to remedy the insufficient combination of logic programming
and description logics, we need to embed general clauses and DL concepts into
a rule-based reasoning system. Resolution proof systems28) for clausal forms in
first-order logic have been implemented well as rule-based reasoning methods for
knowledge bases, e.g., logic programming. As an unusual approach, a resolution
system for description logics was proposed by Areces et al,1) based on the modal

∗2 In Section 3.3, we will illustrate the derivation of such expressions in an extended knowl-
edge base. It should be noted that a concept name or role name can be used in the head
of each rule although this syntax is forbidden in CARIN-ALCNR25) and AL-log11).
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resolution system12)∗3.
In this paper, we present a hybrid resolution system for combining (i)

knowledge bases consisting of the TBox and ABox in the description logic ALC
and (ii) clause sets in first-order logic. This is the first refutation method for
knowledge bases composed of DLs and LP. In order for it to easily resolve both
ABox-statements and first-order clauses, we introduce a clausal form of DL
concepts (called clausal concepts) and compose this form and the first-order
clauses. We generalize a resolution method by unification of first-order terms
in assertions on clausal concepts and n-ary predicates and by incorporating the
following resolution rules:

1. Resolution principle and assertional rules for the composition of first-
order clauses and ABox-statements of clausal concepts

2. Terminological rules for concept definitions of clausal concepts (as TBox-
statements)

Technically, the important aspect is that each resolution rule must be designed in
order to refute clauses composed of DL assertions and first-order clauses (called
extended clauses); that is, its resolution step deletes an inconsistent pair (E,¬E)
of literals in extended clauses.

This paper is organized as follows: Section 2 presents a concept lan-
guage of the description logic ALC and first-order clauses with concept and role
names. Subsequently, we define an extended knowledge base including both log-
ical forms. In Section 3, we develop a hybrid resolution system for the extended
knowledge base where DL concepts are simplified to their clausal form (clausal
concepts). In Section 4, we prove the soundness and completeness of the hybrid
resolution system. Section 5 discusses the related work and finally Section 6
provides conclusions and discusses future work.

§2 Combining DL and First-Order Clauses
We define the syntax and semantics of the description logic ALC and

first-order clauses, and extend knowledge bases by including the two types of
logical forms.

2.1 Description Logic ALC
∗3 Moreover, a resolution system for non-classical logics was developed by Gabbay and

Reyle.14)



A Hybrid Reasoning System for Terminologies and First-Order Clauses in Knowledge Bases15

A concept language in the basic description logic ALC29) contains the set
C of concept names A including ⊥ and �, the set R of role names R, and the set
I of individual names a, b. The bottom concept ⊥ and the universal concept �
represent the empty set and the set of individuals, respectively. The concepts in
ALC (called ALC-concepts) are constructed from concept names A, role names
R, the connectives ¬,�,�, and the universal and existential quantifiers ∀,∃.

Definition 2.1

The set of ALC-concepts C,D is defined inductively as follows:

C,D −→ A | ¬C | C � D | C � D | ∀R.C | ∃R.C

As explained by Donini et al.,10) concepts are used to represent classes as sets
of individuals, and roles are used to specify their properties and attributes. Let
Male,Human be concept names, and let has-child be a role name. Then, for
instance, the ALC-concept ¬Male (negation of a concept) expresses “individ-
uals who are not male.” The ALC-concepts Male � Human (intersection of
concepts) and Male � Female (union of concepts) represent “individuals who
are male and human” and “individuals who are male or female,” respectively.
Moreover, ∃has-child.Male (existential quantification) represents “individuals
who have sons” and ∀has-child.Male (universal quantification) expresses “indi-
viduals whose children are all male.”

The meaning of ALC-concepts are formally given by an interpretation
in the following definition:

Definition 2.2

A DL interpretation is an ordered pair I = (ΔI , ·I) of a non-empty set ΔI

(called the universe of I) and an interpretation function ·I for C ∪R ∪ I where
AI ⊆ ΔI (in particular, ⊥I = ∅ and �I = ΔI), RI ⊆ ΔI × ΔI , and aI ∈ ΔI .
The DL interpretation I is expanded to ALC-concepts including connectives and
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quantifiers as follows:

(¬C)I = ΔI − CI

(C � D)I = CI ∩ DI

(C � D)I = CI ∪ DI

(∀R.C)I = {d1 ∈ ΔI | ∀d2[(d1, d2) ∈ RI implies d2 ∈ CI ]}

(∃R.C)I = {d1 ∈ ΔI | ∃d2[(d1, d2) ∈ RI and d2 ∈ CI ]}

This interpretation will be used to define the semantics of a first-order language
with concept and role names.

2.2 First-Order Clauses with Concept and Role Names
Description logics do not deal with reasoning for facts φ and rules

φ1, . . . , φn → φ0 where each φ and φi are atomic formulas. We employ general
clausal forms (not restricted to Horn clauses) in first-order logic to be embedded
in the knowledge base reasoning for description logics. For the compatibility with
concept languages, concept names and role names in ALC are used to denote
unary predicates and binary predicates, respectively, in a first-order language L
involving ordinary n-ary predicate names. Hence, the language L includes the
set P of n-ary predicate names p with C ∪R ⊆ P, the set F of n-ary function
names f (n ≥ 1), the set I of individual names a, b (as constant names), and the
set V of variables x, y.

Definition 2.3

The set of terms t (in language L) is defined inductively as follows:

1. Every individual name and variable are terms.
2. If f is an n-ary function name and t1, . . . , tn are terms, then f(t1, . . . , tn)

is a term.

Definition 2.4

The set of formulas (in language L) is defined inductively as follows:

1. If p ∈ P is an n-ary predicate name and t1, . . . , tn are terms, then
p(t1, . . . , tn) is an atomic formula (simply called atom).

2. If φ1, . . . , φn, φ′
1, . . . , φ′

m are atomic formulas, then φ1, . . . , φn → φ′
1,

. . . , φ′
m is a clausal form. In particular, it is called the empty clause if
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n = m = 0.

∀F is the universal closure of F , i.e., ∀x1 · · · ∀xnF where x1, . . . , xn are all the
free variables occurring in F . Hence, φ1, . . . , φn → φ′

1, . . . , φ′
m expresses the

universal closure ∀(¬φ1 ∨ · · · ∨ ¬φn ∨ φ′
1 ∨ · · · ∨ φ′

m) in the first-order logic.
It should be noted that this clausal form corresponds to the indefinite facts
and rules in disjunctive logic programming.27) Expressive logic programming is
required to deal with indefinite information of DL concepts (i.e. disjunctive
concepts). Let E be an expression. V ar(E) denotes the set of free variables
occurring in E. A substitution is a mapping θ from a finite subset of V into
the set of terms such that θ(x) �= x. The restriction of a substitution θ to a
set V of variables is defined by θ↑V = {(x, t) ∈ θ | x ∈ V }. The substitution
is expanded to terms and formulas in the usual manner of first-order logic. A
substitution θ to variables occurring in E is denoted by Eθ (called an instance of
E). An expression E is ground if it is without variables. ground(E) denotes the
set of all ground instances of E. Let ES be a set of expressions. ground(ES) =
∪Ei∈ESground(Ei). Let E1, E2 be expressions. A substitution θ is a unifier for
E1 and E2 if E1θ = E2θ. A most general unifier for E1 and E2 is expressed by
mgu(E1, E2).

2.3 Extended Knowledge Bases
We define a knowledge base consisting of the TBox and ABox and a

clause set. Let A be a concept name and C,D be ALC-concepts. We define
TBox T as a set of TBox-statements of the form C ≡ D. Note that we use
TBoxes that are acyclic and sets of concept definitions of the form A ≡ C. Let
a, b be individual names and R be a role name. An ABox A is a set of ABox-
statements of the forms C(a), R(a, b). Normally, a DL knowledge base is defined
as an ordered pair (T ,A) of a TBox T and an ABox A. We extend it to an
ordered tuple KB = (T ,A,P) by attaching a clause set P. TBox- and ABox-
statements and clausal forms are generally called knowledge base statements.
A knowledge base KB is said to be ground if all the clausal forms in KB are
ground.

Here, we interpret the first-order formulas including concept and role
names and variables. A DL interpretation I is extended with pI ⊆ (ΔI)n for
every n-ary predicate name p ∈ P and fI : (ΔI)n → ΔI for every n-ary function
name f ∈ F. A variable assignment is a mapping α from the set V of variables
into the universe ΔI . The variable assignment α[x/d] denotes (α−{(x, α(x))})∪
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{(x, d)}. An interpretation of a first-order language L with concept and role
names (called an FOL interpretation) is an ordered pair Iα = (I, α), where I
is a DL interpretation extended with pI ⊆ (ΔI)n and fI : (ΔI)n → ΔI ; and
α is a variable assignment. The interpretation tIα of terms t is defined by: (i)
xIα = α(x), (ii) aIα = aI , and (iii) (f(t1, . . . , tn))Iα = fI(tIα

1 , . . . , tIα
n ). The

satisfiability relation for knowledge base statements is given by the following
definition:

Definition 2.5

Let Iα = (I, α) be an FOL interpretation and E be a knowledge base statement.
The satisfiability relation Iα |= E is defined as follows:

1. Iα |= A ≡ C iff AI = CI

2. Iα |= C(a) iff aI ∈ CI

3. Iα |= R(a, b) iff (aI , bI) ∈ RI

4. Iα |= p(t1, . . . , tn) iff (tIα
1 , . . . , tIα

n ) ∈ pI

5. Iα |= ¬φ iff Iα �|= φ

6. Iα |= φ1, . . . , φn → φ′
1, . . . , φ′

m iff for any k elements d1, . . . , dk ∈ ΔI ,
{l ∈ {¬φ1, . . . ,¬φn, φ′

1, . . . , φ′
m} | Iα[x1/d1]···[xk/dk] |= l} �= ∅.

Although the clausal forms are related to the formalization of disjunctive logic
programming and nonmonotonic reasoning, we adhere to the declarative seman-
tics of first-order logic. More precisely, they are interpreted in the open-world
semantics and therefore its reasoning is monotonic. This is because description
logics assume that knowledge bases are incomplete. In contrast, (disjunctive)
logic programming assumes that absence of information is interpreted as neg-
ative information in the closed-world semantics, in which the knowledge bases
are complete and lead to nonmonotonic reasoning.

An FOL interpretation Iα satisfies a knowledge base KB (denoted Iα |=
KB) if Iα satisfies all the elements in KB = (T ,A,P). A knowledge base
statement E (resp. a knowledge base KB) is satisfiable if, for some Iα, Iα |= E

(resp. Iα |= KB). Otherwise, E (resp. KB) is unsatisfiable. A knowledge base
statement E is a consequence of KB (denoted KB |= E) if every model of KB

is a model of E.

§3 Hybrid Resolution
In this section, we develop a hybrid resolution system for extended

knowledge bases KB = (T ,A,P). By transforming ALC-concepts into a clausal
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form of ALC-concepts, this resolution system can be applied to both ALC-
concepts and first-order clauses in KB.

3.1 Clausal Concepts
We simplify the form of ALC-concepts by the following operations. Let

KB = (T ,A,P) be a knowledge base. First, we eliminate the symbols ¬¬,�,∃
from the ALC-concepts in TBox T and ABox A. Any concept is transformed
into an equivalent concept by applying the rewrite rules∗4:

¬¬C ≡ C

C � D ≡ ¬(¬C � ¬D)

∃R.C ≡ ¬∀R.¬C

If a left-hand side form occurs in concepts of T or A, then it is transformed to
its right-hand side form. This transformation is applied to all the elements in
T , A, and therefore T ′, A′ without ¬¬,�,∃ are derived.
Notations. L denotes a concept name A or its negation ¬A, and Q represents
∀R or ¬∀R. L is ¬A if L = A, or A if L = ¬A. Q.L or L is called a literal
concept, written as Q∗.L.

Next, concepts in the TBox T ′ and ABox A′ derived above are further
transformed by two operations. First, if a concept E contains a concept of the
form ¬(C�D) or ∀R.(C�D), then A ≡ C�D (where A is a new concept name)
is added to T ′, and C � D (in E) is replaced with A. Secondly, if a concept
E includes an expression of the form Q1.Q2.C, then A ≡ Q2.C is added to T ′,
and Q2.C (in E) is transformed to A. Repeating these operations results in a
concept of the form:

Q∗
1.L1 � · · · � Q∗

n.Ln.

We call this simplified concept a clausal concept. For example, the ALC-concept:

¬∀has-child.¬Female� ∀has-child.F emale � Human

is a clausal concept. Then, we obtain T ′′,A′′ by transforming all the elements
in T ′,A′ to equivalent clausal concepts.

∗4 In the work of Areces et al.,1) ¬¬,�,∃ are removed from the concepts. The transformation
in this paper is adjusted to obtain compatible expressions with clausal forms.
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Lemma 3.1

Let I be a DL interpretation. Let C ′ be a clausal concept transformed from a
concept C and let A1 ≡ C1, . . . , An ≡ Cn(n ≥ 0) be the TBox-statements added
by the transformation where each Ai is a new concept name. Then, there exists
a DL interpretation I ′ that is an extension of I to interpret A1, . . . , An, and
(C ′)I

′
= CI and AI′

1 = CI′
1 , . . . , AI′

n = CI′
n .

By this lemma, if a knowledge base KB = (T ,A,P) is satisfiable, then the
equivalent knowledge base KB′ = (T ′′,A′′,P) obtained by transforming T ,A is
satisfiable.

3.2 Hybrid Resolution System
Our hybrid resolution system contains three types of inference rules:

resolution principle, terminological rules, and assertional rules. The resolution
rules are applied to TBox- and ABox-statements of clausal concepts, first-order
clauses, and their composed expressions.

In resolution steps, we express clausal forms as sets of literals and ABox-
statements of clausal concepts as sets of assertions of literal concepts. Given a
clausal form φ1, . . . , φn → φ′

1, . . . , φ′
m, the set of the literals (called a clause) is

{¬φ1, . . . ,¬φn, φ′
1, . . . , φ′

m} where a literal is an atomic formula or its negation.
For an ABox-statement Q∗

1.L1�· · · �Q∗
n.Ln(a) of a clausal concept, we have the

set {Q∗
1.L1(a), · · · , Q∗

n.Ln(a)} of assertions of the literal concepts. It should be
noted that applying hybrid resolution rules to sets of literals and sets of assertions
of literal concepts leads to an expression composed of these sets. Let P +

i be a
concept of the form ∀R.A, ∀R.¬A or A, a role name R, or an n-ary predicate
p, and let �t be a sequence of terms t1, . . . , tk. The compositional expression is a
set of extended literals, called an extended clause:

{P +
1 (�t1), . . . , P +

n (�tn),¬P +
n+1(�tn+1), . . . ,¬P +

m(�tm)}.

This enables us to include an expressive assertion Q∗.L(t) of a literal concept Q∗.L
where t is a first-order term. Since the extended clauses exceed the expressiveness
of ordinary clausal forms, the definition of satisfiability has to be supplemented.
Therefore, the satisfiability of extended clauses Φ = {P +

1 (�t1), . . . , P +
n (�tn),¬P +

n+1

(�tn+1), . . . , P +
m(�tm)} is defined as follows:

1. Iα |= P +
i (�ti) iff (�ti)Iα ∈ (P +

i )I .
2. Iα |= ¬P +

i (�ti) iff Iα �|= P +
i (�ti).

3. Iα |= Φ with V ar(Φ) = {x1, . . . , xk} iff for any k elements d1, . . . , dk
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∈ ΔI , {E ∈ Φ | Iα[x1/d1]···[xk/dk] |= E} �= ∅.

Next, we proceed to the definition of hybrid resolution rules. The first
rule is an extension of the resolution principle to extended clauses.

Definition 3.1 (Resolution principle)

Let Φ1,Φ2 be extended clauses. The resolution principle for knowledge bases is
given as follows:

Φ1 ∪ {¬P +(�t)} {P +(�t′)} ∪ Φ2

(Φ1 ∪ Φ2)θ
(res)

where θ = mgu(�t, �t′).

Notations. Let Ψ be a clausal concept Q∗
1.L1 � · · · � Q∗

n.Ln. Ψ(t) represents
the sequence of assertions Q∗

1.L1(t), . . . , Q∗
n.Ln(t) of the literal concepts in Ψ.

We write LA for the concept name A or its negation ¬A. δ(E) denotes E0 if
E = ¬¬E0, or E otherwise. The function N(E) is 0 if the number of negation
symbols (¬) in E is even or 1 if it is odd. Moreover, we obtain the following
convenient notation:

{¬RQ(t, t′)} =

⎧⎨
⎩
{¬R(t, t′)} if Q = ∀R

∅ otherwise

We define terminological rules with regard to TBox-statements as fol-
lows:

Definition 3.2 (Terminological rules)

Let Φ be an extended clause and Ψ be a clausal concept. The terminological
rules for knowledge bases are given as follows:

Φ ∪ {¬A(t)} A ≡ Q∗.L � Ψ
Φ ∪ {δ(¬Q∗.L)(t)} (T1)

Φ ∪ {A(t)} A ≡ Q∗.L � Ψ
Φ ∪ {Q∗.L(t), Ψ(t)} (T2)

Φ ∪ {Q1.LA(t)} A ≡ Q∗
2.L2 � Ψ

Φ ∪ {δ(¬Q∗
2.L2)(t′)} ∪ {¬RQ1(t, t

′)}
(T3)

where N(Q1.LA) = 1∗5, and t′ = x (new variable) if Q1 = ∀R and t′ = c (new
constant) otherwise.
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Φ ∪ {Q1.LA(t)} A ≡ Q∗
2.L2 � Ψ

Φ ∪ {Q∗
2.L2(t′),Ψ(t′)} ∪ {¬RQ1(t, t

′)}
(T4)

where N(Q1.LA) = 0, and t′ = x (new variable) if Q1 = ∀R and t′ = c (new
constant) otherwise.

In the hybrid resolution system, assertions of literal concepts in extended
clauses are refuted by the following assertional rules:

Definition 3.3 (Assertional rules)

Let Φ1,Φ2 be extended clauses. The assertional rules for knowledge bases are
given as follows:

Φ1 ∪ {∀R.LA(t1)} {LA(t2)} ∪ Φ2

Φ1 ∪ Φ2 ∪ {¬R(t1, t2)}
(A1)

Φ1 ∪ {¬∀R.LA(t)} {LA(x)} ∪ Φ2

(Φ1 ∪ Φ2)θ
(A2)

where c is a new constant and θ = {x/c}.

Φ1 ∪ {∀R1.LA(t1)} {Q2.L
′
A(t2)} ∪ Φ2

Φ1 ∪ Φ2 ∪ {¬R1(t1, t)} ∪ {¬RQ2(t2, t)}
(A3)

where N(∀R1.LA) �= N(Q2.L
′
A), and t = x (new variable) if Q2 = ∀R and t = c

(new constant) otherwise.

Φ1 ∪ {¬∀R.L(t1)} {¬R(t2, t)} ∪ Φ2

(Φ1 ∪ Φ2)θ
(A4)

where c is a new constant or the constant introduced by an application of (T3),
(T4), (A2) or (A3) with its premise Φ1 ∪ {¬∀R.L(t1)}, and θ is a mgu of (t1, c)
and (t2, t).

In the form
E1 E2

E of hybrid resolution rules, E1, E2 are called the premises,
and E the conclusion. We assume that the premises E1, E2 do not have the
same variables, i.e., V ar(E1)∩ V ar(E2) = ∅. Compared with the DL resolution
system,1) our hybrid resolution system is extended to enhance the resolution for
(i) assertions of clausal concepts (in (A1), . . . , (A4) and (res)), (ii) TBox- and
ABox-statements (in (T1), . . . ,(T4)), and (iii) extended clauses represented by
clausal concepts, n-ary predicates, and first-order terms (in (res)), and with

∗5 Recall that we use Qi to denote ∀R or ¬∀R. Then, Q1.LA is of the form ∀R.¬A or ¬∀R.A
because N(Q1.LA) = 1.
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unification for first-order terms. The resolution principle (res) contains resolu-
tion for positive and negative literals and can be applied to ABox-statements
of clausal concepts and role names. In related work,1) concept definitions in
the TBox are unfolded in the ABox beforehand. In our case, the terminological
rules (T1), . . . ,(T4) generate inferences from concept definitions A ≡ C in the
TBox and assertions LA(t) or Q.LA(t) of the defined concept names A in the
extended clauses. The assertional rules (A1), . . . , (A3) eliminate an inconsistent
pair (A,¬A) of a concept name A and its negation ¬A in the premises. The
assertional rule (A4) is a resolution rule for a negative assertion ¬R(t1, t2) of a
role name R and assertions of the form ¬∀R.L(t1).

Definition 3.4 (Resolution)

Let KB be a knowledge base and E be a knowledge base statement. The deriv-
ability relation KB � E is defined by the following:

1. If E ∈ KB, then KB � E.
2. If KB � E1 and KB � E2, where E1, E2 are premises and E is the

conclusion in a hybrid resolution rule, then KB � E.

A derivation of E from KB is called a refutation if E = ∅. A knowledge base
KB is refutable if we have a refutation KB � ∅.

Definition 3.5 (Proper resolution)

A hybrid resolution rule is called proper if the following statements hold:

1. Its premises E1 and E2 contain an inconsistent pair of literals.
2. Its conclusion E is derived by deleting the inconsistent pair in E1 and

E2.
3. Its unification is most general if it exists.

Proposition 3.1

The resolution principle, the terminological rules, and the assertional rules for
extended knowledge bases are proper.

This proposition indicates that our hybrid resolution system possesses features of
an effective deduction procedure for combining the DL ALC and logic program-
ming. Namely, for refutation, it can eliminate redundant derivation steps since
every proper resolution rule is applied only to clauses including an inconsistent
pair of literals.
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3.3 An Example of Refutation
Let us examine an example of refutation by applying the hybrid resolu-

tion system. Consider the first-order language with

C = { Murderer, Human,Male, F emale }
R = { killed }
P = C ∪R ∪ { acted, died, after }
F = ∅
I = { John,Mary, e1, e2 }

and the two knowledge bases KB1 = (T1,A1,P1) and KB2 = (T1,A2,P1) with

TBox T1 = { Murderer ≡ ∃killed.Human � Human,

Human ≡ Male � Female }
ABox A1 = { Male(John), Female(Mary) }
ABox A2 = { Human(John), Human(Mary) }
Clause set P1 = { → acted(John,Mary, e1),

→ died(Mary, e2),
→ after(e2, e1),

acted(x, y, z1), died(y, z2), after(z2, z1),Human(x),
Human(y) → killed(x, y) }

In the TBox T1, the concept name Murderer is defined by the concept ∃killed.

Human � Human and the concept name Human is defined by the disjunctive
concept Male � Female. The ABox A1 asserts that John is male and Mary is
female, and the ABox A2 expresses the fact that John and Mary are humans. In
the clause set P1, the rule acted(x, y, z1), died(y, z2), after(z2, z1),Human(x),
Human(y) → killed(x, y) and the three facts acted(John,Mary, e1), died(Mary,

e2), and after(e2, e1) are described. Notice that this rule is not expressible in
the logic programming languages CARIN-ALCNR25) and AL-log,11) since the
role name killed occurs in the head of the rule.

Let us consider answering the following query in the knowledge bases
KB1, KB2.

?-Murderer(x).

which implies “is there a murderer x?” Before applying hybrid resolution rules,
we remove the connectives �,∃,¬¬ from TBox T1. Consequently, the following
TBox is obtained.
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TBox T ′
1 = { Human ≡ Male � Female,

Murderer ≡ ¬(∀killed.¬Human � ¬Human) }

Moreover, the concepts in TBox T ′
1 are transformed to equivalent clausal con-

cepts as follows:

TBox T ′′
1 = { Murderer ≡ ¬A1, A1 ≡ A2 � A3,

A2 ≡ ∀killed.¬Human, A3 ≡ ¬Human,
Human ≡ Male � Female }

The ABox-statements in A1,A2 and the clausal forms in P1 are transformed into
sets of assertions of literal concepts and sets of literals as follows:

ABox A′
1 = { {Male(John)}, {Female(Mary)} }

ABox A′
2 = { {Human(John)}, {Human(Mary)} }

Clause set P ′
1 = { {acted(John,Mary, e1)},

{died(Mary, e2)}, {after(e2, e1)},
{¬acted(x, y, z1),¬died(y, z2),¬after(z2, z1),

¬Human(x),¬Human(y), killed(x, y)} }

The answer to the query ?-Murderer(x) in the clause set P ′
1 is decided

by refutation for P ′
1 ∪ {G} with G = {¬Murderer(x)}. In Figure 1, (3) and (4)

demonstrate the derivation processes for KB′
1 ∪ {G} = (T ′′

1 ,A′
1,P ′

1 ∪ {G}) and
KB′

2 ∪ {G} = (T ′′
1 ,A′

2,P ′
1 ∪ {G}), respectively. These determine whether there

exists a term t such that Murderer(t) is valid in the knowledge bases KB′
1 =

(T ′′
1 ,A′

1,P ′
1) and KB′

2 = (T ′′
1 ,A′

2,P ′
1). In both cases, we can conclude that

Murderer(John) is true since the empty clause is derived with the substitution
θ = {x/John}, i.e., KB′

1 ∪ {G} and KB′
2 ∪ {G} are refutable.

§4 Soundness and Completeness of Resolution
In this section, we prove the soundness and completeness of the hybrid

resolution system. A hybrid resolution rule is called propositional if its mgu is
the identity substitution, i.e., θ is empty.

Definition 4.1 (Unrestricted resolution)

Let KB be a knowledge base and E be a knowledge base statement. An unre-
stricted derivability relation KB �u E is defined by the following:

1. If E ∈ KB, then KB �u E.
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2. If KB �u E1 and KB �u E2, where E1θ1, E2θ2 are premises and E is
the conclusion in a propositional hybrid resolution rule, then KB �u E.

An unrestricted derivation of E from KB is called an unrestricted refutation
if E = ∅. KB is unrestrictedly refutable if we have an unrestricted refutation
KB �u ∅.

Lemma 4.1

Let E1, E2 be the premises in a (propositional) hybrid resolution rule, and E be
its conclusion. If {E1, E2} is satisfiable, then E is satisfiable.

Theorem 4.1 (Soundness of (unrestricted) resolution)

Let KB be a knowledge base. If KB is refutable (KB � ∅) or unrestrictedly
refutable (KB �u ∅), then KB is unsatisfiable.

Proof. By Lemma 4.1, it is trivial.

In order to show the completeness of the hybrid resolution system, we
construct a canonical model obtained by a derivation tree that is based on the
method given in modal resolution,12) and then prove the completeness of unre-
stricted resolution and ground resolution and the lifting lemma.9) An extended
clause Φ is called a unit clause if it is a singleton, i.e., Φ = {φi} or {¬φi}. Let
KB be a ground knowledge base. We denote the set of ground instances of terms
occurring in KB as gterm(KB).

Definition 4.2 (Derivation trees)

Let KB = (T ,A,P) be a ground knowledge base and Cnew = {c1, . . . , cn} be
a set of new constants such that |Cnew| is more than the number of extended
literals of the form ¬∀R.L(t) in KB. A derivation tree for KB is a tree T such
that:

1. The root of T is A ∪ P.
2. Every node is a set of extended clauses.
3. Every leaf is a set of unit clauses.
4. (Type 1) If w is a node and w = w′ ∪ {Φ1 ∪ Φ2} with Φ1 �= Φ2 �= ∅,

then w1 = w′ ∪ {Φ1} and w2 = w′ ∪ {Φ2} are its children.
5. (Type 2-a) If w is a node and w = w′ ∪ {{∀R.L(t)} ∪ Φ}, then w′′ =

w′∪{{¬R(t, t1), L(t1)}∪Φ, . . . , {¬R(t, tn), L(tn)}∪Φ} is its child where
gterm(KB)∪ Cnew = {t1, . . . , tn}.
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6. (Type 2-b) If w is a node and w = w′ ∪ {{¬∀R.L(t)} ∪ Φ}, then w′′ =
w′ ∪ {{R(t, c)} ∪ Φ, {L(c)} ∪ Φ} is its child where c is a new constant
in Cnew.

7. (Type 3-a) If w is a node, w = w′ ∪ {{A(t)} ∪ Φ} and A ≡ Q∗
1.L1 �

· · · �Q∗
n.Ln ∈ T , then w′′ = w′ ∪{{Q∗

1.L1(t), . . . ,Q∗
n.Ln(t)}∪Φ} is its

child.
8. (Type 3-b) If w is a node, w = w′∪{{¬A(t)}∪Φ} and A ≡ Q∗

1.L1�· · ·�
Q∗

n.Ln ∈ T , then w′′ = w′ ∪ {{¬Q∗
1.L1(t)} ∪ Φ, . . . , {¬Q∗

n.Ln(t)} ∪ Φ}
is its child.

A node wi in T is called a node of (Type X) if it is a child in the rule of (Type
X).

A derivation tree T is said to be complete if there is no tree T ′ such that T is a
proper subtree of T ′.

Definition 4.3

Let T be a derivation tree for a ground knowledge base KB and w be a node in
T . The set of closed nodes is defined as follows:

1. If {φi}, {¬φi} ∈ w, then w is closed.
2. If all the children of w are closed, then w is closed.

A derivation tree is closed if its root is closed. A derivation tree T for KB is used
to prove the completeness of resolution. In a closed derivation tree, the type of
each node corresponds to resolution rules. If a node is of (Type 1), then its
children are refutable by applying the resolution principle. If a node is of (Type
2-a) or (Type 2-b), then its children are refutable by applying the assertional
rules (A1) – (A4) and the resolution principle. In addition, if a node is of (Type
3-a) or (Type 3-b), its children are refutable by applying the terminological
rules (T1) – (T4) and the resolution principle. This property will be shown in
Lemma 4.3.

Proposition 4.1

Let T be a complete derivation tree for a ground knowledge base KB. If T is
not closed, then (i) there is a subtree T ′ of T such that every node of T ′ is not
closed and every non-leaf node has exactly one child, and (ii) there is an FOL
interpretation Iα where:

1. For every node wi of T ′ and every extended clause Φ in wi, Iα |= Φ,
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2. For every E in the TBox T , Iα |= E.

Proof. Let T be not closed. A subtree T ′ of T is constructed by a sequence
w0, . . . , wn of nodes of T where w0 is the root and, for 1 ≤ i ≤ n, wi is a non-
closed child of wi−1. For the subtree T ′, let us define an FOL interpretation Iα

such that (i) Iα |= φk for every {φk} ∈ wn and (ii) AI = (Q∗
1.L1 � · · · �Q∗

n.Ln)I

for every concept name A with {LA(t)} �∈ wn and A ≡ Q∗
1.L1 � · · · � Q∗

n.Ln ∈
T . Let E be any A ≡ Q∗

1.L1 � · · · � Q∗
n.Ln ∈ T . Since T is complete, A

does not occur in the leaf wn by the definition of (Type 3-a) and (Type 3-b).
Hence, Iα |= E. Moreover, we want to prove Iα |= Φ for every Φ in any node
wi of T ′ by induction on the height m of the node wi. If m = 0, then the
node wi is the leaf wn and every Φ in wi is a unit clause {φk} or {¬φk}. So,
Iα |= Φ. If m > 0, then the node wi has a child node of (Type 1), (Type
2-a), (Type 2-b), (Type 3-a), or (Type 3-b). If wi has a child node wi+1 of
(Type 1), then wi = w′ ∪ {Φ1 ∪ Φ2}. So, wi+1 is w′ ∪ {Φ1} or w′ ∪ {Φ2}. By
the induction hypothesis, Iα |= Φ1 or Iα |= Φ2. Therefore, Iα |= Φ1 ∪ Φ2.
If wi has a child node wi+1 of (Type 2-a), then wi = w′ ∪ {{∀R.L(t)} ∪ Φ′}.
So, wi+1 = w′ ∪ {{¬R(t, t1), L(t1)} ∪ Φ′, . . . , {¬R(t, tn), L(tn)} ∪ Φ′}. By the
induction hypothesis, Iα |= {¬R(t, ti), L(ti)} ∪ Φ′ for all i ∈ {1, . . . , n}. Hence,
Iα |= {∀R.L(t)} ∪ Φ′. If wi has a child node wi+1 of (Type 3-a), then wi =
w′ ∪ {{A(t)} ∪ Φ′}. So, wi+1 = w′ ∪ {{Q∗

1.L1(t), . . . ,Q∗
n.Ln(t)} ∪ Φ′}. By

the induction hypothesis, Iα |= {Q∗
1.L1(t), . . . ,Q∗

n.Ln(t)} ∪ Φ′. By Iα |= A ≡
Q∗

1.L1 � · · · �Q∗
n.Ln, we have Iα |= {A(t)} ∪Φ′. Similarly, we can prove Iα |= Φ

in the case that wi has a child node of (Type 2-b) or (Type 3-b).

Lemma 4.2

Let T be a complete derivation tree for a ground knowledge base KB = (T ,A,P).
If T is not closed, then KB has a model.

Proof. Proposition 4.1 entails that there exists an FOL interpretation satisfying
the root A ∪ P of T and the TBox T .

Lemma 4.3

Let T be a complete derivation tree for a ground knowledge base KB. Every
closed node in T is refutable.

Proof. This lemma is proved by induction on the height n of any closed node
w. If n = 0, then {φi}, {¬φi} ∈ w. By the resolution rule (res), ∅ is derived.
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If n > 0, then we have to consider the nodes w of (Type 1), (Type 2-a), (Type
2-b), (Type 3-a), and (Type 3-b). (Type 1): if w = w′ ∪ {Φ1 ∪ Φ2}, then its
children w1 = w′ ∪ {Φ1} and w2 = w′ ∪ {Φ2} are refutable by the induction
hypothesis. By the refutation of w′ ∪ {Φ1}, there is a derivation of Φ2 from
w′ ∪ {Φ1 ∪ Φ2}. This and the refutation of w2 lead to a refutation of w. (Type
2-a): if w = w′ ∪ {{∀R.A(t)} ∪ Φ}, then, by the induction hypothesis, its child
w′′ = w′ ∪ {{¬R(t, t1), A(t1)} ∪ Φ, . . . , {¬R(t, tn), A(tn)} ∪ Φ} is refutable by
hybrid resolution rules. Hence, we have a refutation of w. Moreover, in the cases
of (Type 2-b), (Type 3-a), and (Type 3-b), we can show that w is refutable.

Theorem 4.2 (Completeness of ground resolution)

Let KB be a ground knowledge base. If KB is unsatisfiable, then KB is
refutable (KB � ∅).

Proof. Suppose that KB has no model. By Lemma 4.2, a complete derivation
tree of KB is closed. Therefore, KB is refutable by Lemma 4.3.

Let KB = (T ,A,P) be a knowledge base. We denote ground(KB) =
(T , A, ground(P)).

Lemma 4.4

Let KB be a knowledge base. KB is unsatisfiable if and only if ground(KB) is
unsatisfiable.

Proof. (⇐) Trivial. (⇒) We assume that ground(KB) has a model. Then,
there exists a Herbrand model IH such that IH |= ground(KB). Therefore,
IH |= KB follows.

Theorem 4.3 (Completeness of unrestricted resolution)

Let KB be a knowledge base. If KB is unsatisfiable, then KB is unrestrictedly
refutable (KB �u ∅).

Proof. Suppose KB = (T ,A,P) is unsatisfiable. By Lemma 4.4, ground(KB)
is unsatisfiable. By Theorem 4.2, there is a refutation proof tree of ground(KB)
by applying hybrid resolution rules. Every leaf in the refutation proof tree is
an element of ground(KB). So, it is possible to construct a general tree by
replacing every leaf with its corresponding general expression in KB. Notice
that every element in ground(KB) is an instance of the general expression in
KB. This general tree yields an unrestricted refutation of KB.
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Lemma 4.5 (Lifting)

Let KB be a knowledge base, E,E′ be extended clauses, and γ be a substitution.
If KB �u E, then KB � E′ with E = E′γ.

Proof. This lemma is shown by induction on the length n of KB �u E. If n = 0,
then E ∈ KB. Hence, KB � E. If n > 0, then there is an unrestricted resolvent
E of E1 and E2. Let βi denote a substitution. By the induction hypothesis, if
KB �u E1 and KB �u E2, then KB � E′

1 with E1 = E′
1β1 and KB � E′

2 with
E2 = E′

2β2. If one of the rules (T1), . . . , (T4), (A1), . . . , (A3) is applied as propo-
sitional, then the conclusion E′ such that E = E′β1↑V ar(E′

1) ◦ β2↑V ar(E′
2) can

be derived from E′
1 and E′

2. If one of the rules (res) and (A4) is applied as propo-
sitional, then there are its premises E1θ1 and E2θ2 deriving E = Φ1θ1 ∪ Φ2θ2.
Hence, by E′

1β1θ1 = E1θ1 and E′
2β2θ2 = E2θ2, there is a most general unifier θ

for terms in E′
1 and E′

2. Therefore, by (res) or (A4), KB � E′ such that E is
an instance of E′.

By the completeness of unrestricted resolution and the lifting lemma,
we can prove the completeness of resolution as follows:

Theorem 4.4 (Completeness of resolution)

Let KB be a knowledge base. If KB is unsatisfiable, then KB is refutable
(KB � ∅).

Proof. Suppose that KB has no model. By Theorem 4.3, KB is unrestrictedly
refutable. Therefore, by Lemma 4.5, KB is refutable.

§5 Related Work
Related to our work, two types of approaches to combining logic pro-

gramming and description logics have been provided. The first one extends
logic programming by separately incorporating DL knowledge bases. The sec-
ond one formally provides a mapping from description logics to logic programs.
Table 1 lists logic programming languages that have different expressiveness of
the combination of LP and DLs and its computation. The former three lan-
guages (including our work concerning the hybrid resolution) and the latter
three languages in Table 1 belong to the first and second types of approaches,
respectively.

In AL-log,11) the deductive database language Datalog was combined
with the description logic ALC. The extended language AL-log allows for rep-
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Table 1 Approaches to combining LP and DLs

expressiveness of the combination reasoning
rule disjunctive concept computation algorithms
structure conclusions inclusions

AL-log non-recursive concepts general decidable tableaux +
in bodies SLD

CARIN-ALCNR non-recursive concepts general decidable tableaux +
recursive and roles undecidable bottom-up

in bodies evaluation

Hybrid resolution disjunctive derivable terminology resolution
for ALC + clauses clauses

Description Logic limited decidable
Programs

Open Logic definite terminology SLDNFA
Programming clauses

Conceptual Logic trees expressible general decidable answer set
Programming operation

resenting constraints yi : Ci of ALC-concepts Ci in the bodies of Datalog clauses
as follows:

p1(�t1), . . . , pn(�tn) & y1 : C1, . . . , ym : Cm → q(�t).

This constrained LP preserves decidability of the query answering problem. As
a further extension to AL-log, Levy et al.25) developed the logic programming
language CARIN with description logic ALCNR where concept and role names
can appear as unary and binary predicates, respectively, in the bodies of Horn
rules. The reasoning problem for CARIN knowledge bases is still decidable if
Horn rules are non-recursive, and undecidable if they are recursive. In both
extended logic programs, any head of Horn rules is not expressed by a concept
name or role name. This limitation prevents disjunctive conclusions (and neg-
ative conclusions) derivable from unrestrictedly combining Horn rules and DL
knowledge bases. For example, p1(x), p2(y) → r(x, y) is forbidden if r is a role
name. The rule and the concept ∀r.C1 � C2(c1) gives rise to the disjunctive
conclusion C1(c2) ∨ C2(c2) if p1(c1) and p2(c2) are true.

Description Logic Programming (DLP)15) attempted to present an ex-



22 Ken KANEIWA

pressive class of FOL by fusing the description logic SHOIQ and Horn logic
programs. In other words, DLP accounts for a small combination of LP and
DLs, which is expected to clarify a tractable class of dealing with rules and
ontologies in the Semantic Web. In DLP, the rules and ontologies can be inter-
operated by mapping from DL to LP and from LP to DL. The following table
describes a correspondence between concept inclusions and Horn rules.

concept inclusions in DL Horn rules in LP

C1 � C2 � D C1(x), C2(x) → D(x)
C � D1 � D2 C(x) → D1(x) and C(x) → D2(x)
C1 � C2 � D C1(x) → D(x) and C2(x) → D(x)
C � ∀P.D C(x), P (x, y) → D(x)
∃P.C � D P (x, y), C(y) → D(x)

This cannot provide a mapping from concept inclusions of the forms D � C1�C2,
∀P.D � C, and D � ∃P.C to Horn rules.

Open Logic Programming (OLP) proposed by Denecker’s group30, 8) is
an extension of logic programming with undefined predicates. In OLP, primitive
concept names and role names in concept definitions can be mapped to unde-
fined predicates, and the open-world assumption is supported in the distinction
between defined and undefined predicates. By the completion of programs:

body1 ∨ · · · ∨ bodyn ↔ A(x),

one concept definition A ≡ C corresponds to the Horn rules body1 → A(x), . . . ,
bodyn → A(x) with the defined unary predicate A where body1 ∨ · · · ∨ bodyn is
equivalent to C(x).

Heymans and Vermeir16, 17) presented Conceptual Logic Programming
(CLP) to obtain a mapping from the description logic SHIQ∗ to logic pro-
grams. Although CLP is a restricted disjunctive logic programming, it can
simulate SHIQ∗-concepts, including the disjunctive concept D � C1 � C2 and
other complex concepts. However, in order to make the satisfiability checking
decidable, the syntactic structure of clausal rules are limited to and classified
into several types of rules: free rules, tree rules, and tree constraints. Free rules
are of the form p(�x) ∨ ¬p(�x) that do not reflect satisfiability, and tree rules and
tree constraints must have a tree-structure. Due to the syntactic restriction, the
following Horn rule (shown in the example of Section 1) cannot be expressed in
CLP:
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acted(x, y, z1), died(y, z2), after(z2, z1),Human(x), Human(y) → killed(x, y)

Furthermore, order-sorted logic13, 7) is a well-known approach to com-
bining rule-based reasoning with sort-hierarchy (as terminological knowledge).
Beierle’s group3) and Kaneiwa20, 23, 22) developed order-sorted systems with sort
predicates (denoting their corresponding unary predicates), in which sort-hierarchy
reflects clausal reasoning in terms of sort predicates. Bürckert5, 6) presented a res-
olution principle for clauses with constraints in which variables are constrained
by a restriction theory. He adopted a refutation proof method as its reasoning
algorithm; however, the testing of satisfiability for constraints was not realized
by the proof method.

On the basis of the related work, we have to emphasize the distinguishing
points of this paper. Instead of the decidability result of several approaches, our
work provides a fully expressive combination of the DL ALC and LP, such as
interoperation of the rule and complex concepts discussed in the example of
Section 1 and its effective reasoning method for refutation, i.e., being able to
refute clauses in the composed knowledge bases. In addition, for theoretically
illustrating the issue of decidability (or computation), our system encounters the
following difficulties:

• Expressiveness of useful rules exceeds tree-structures, while the other ap-
proaches and description logics have the tree model property to be decid-
able.

• A combination of expressive rules and existential and universal roles in
DL concepts gives rise to increasing complexity of reasoning.

Unlike decidable approaches, our example is represented by expressive rules (i.e.
non tree-structures), and Horrocks and Patel-Schneider19) indicated the expres-
sive power of rules (e.g., combining composed roles in rules and DL concepts
leads to undecidability) and its usefulness for applications in the Semantics Web.
In order to obtain a decidable combination of rules and DL concepts, we have
the following two strategies: (i) syntactically restricting roles occurring in rules
since rules are rather expressive (which can easily express transitive roles, inverse
roles, role value maps, etc.) and (ii) combining expressive rules with limited DL
constructors that can preserve the expressive power of rules. Based on the strate-
gies, further research is required to embody a useful and decidable combination
of expressive rules and DL concepts.

§6 Conclusion
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We have presented a rule-based reasoning system as an extension of the
DL resolution system1) where DL knowledge bases and first-order clause sets
are combined. From the viewpoint of knowledge representation, the extended
knowledge bases can treat practical and general data as follows:

• Facts and ABox-statements represent assertional knowledge in a context
(or a concrete situation).

• Rules are taken as general knowledge in a particular application domain.
• TBox-statements express terminological knowledge commonly employed

in several application domains.
We have designed a proper resolution method for capturing the two

types of logical forms in the DL ALC and logic programming. A resolution
rule is called proper if its two premises are composed into one conclusion by
deleting an inconsistent pair (φi,¬φi) of literals. Within this criterion, we have
obtained proper hybrid resolution rules, whereas some of the inference rules in
the DL resolution system1) were not proper. Although we have not discussed
the computation of our reasoning system, the proper resolution method can be
expected to provide an effective deduction procedure. For example, consider
the inconsistency of the assertions: ¬∀R1.¬A1(t1), ∀R1.¬A1(t1), ∀R2.A4(t2),
¬∀R2.¬A2(t2) ∨ ¬∀R2.¬A3(t2). As shown in Figure 2, the inconsistency can be
derived in two resolution steps because proper resolution rules are applied only to
clauses including an inconsistent pair of literals. However, tableau-like reasoning
(as the standard DL reasoning method) requires nine steps in the worst case
since redundant steps are derived. Alternatively, Kaneiwa and Tojo24) proposed
a resolution system with complex sort expressions; however, its language was
not able to represent and reason with respect to DL concepts.

This study leads to a further extension of rule-based reasoning with ter-
minological knowledge, by means of other approaches in logic programming and
automated reasoning (e.g., typed logic programming, nonmonotonic reasoning,
etc.) Furthermore, we have not addressed the combinations of first-order clauses
and other description logics, such as sublanguages of ALC (e.g., AL, ALU) and
superlanguages of ALC (e.g., ALCN ,18) ALCQI). These combinations are inter-
esting for considering the expressiveness of logic programming and description
logics.
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(1)

{aft(e2, e1)}
{act(x, M, e1)}

{die(M, e2)} {¬act(x, y, z1),¬die(y, z2),¬aft(z2, z1),¬Hum(x),¬Hum(y), kil(x, y)}
{¬act(x, M, e1),¬aft(z2, e1),¬Hum(x),¬Hum(M), kil(x, M)} (res)

{kil(J, M),¬aft(e2, e1),¬Hum(J),¬Hum(M)} (res)

{kil(J, M),¬Hum(J),¬Hum(M)} (res)

{F em(M)}
{Mal(J)}

Hum ≡ Mal � Fem

Hum ≡ Mal � Fem {kil(J,M),¬Mal(J),¬Hum(M)}
{kil(J,M),¬Mal(J),¬Hum(M)} (T1)

{kil(J,M),¬Mal(J),¬Fem(M)} (T1)

{kil(J,M),¬Fem(M)} (res)

{kil(J, M)} (res)

(2)
{¬Mur(x)} Mur ≡ ¬A1

{A1(x)} (T1)
A1 ≡ A2 � A3

{A2(x), A3(x)} (T2)
A2 ≡ ∀kil.¬Hum

{∀kil.¬Hum(x), A3(x)} (T2)
A3 ≡ ¬Hum

{∀kil.¬Hum(x),¬Hum(x)} (T2)

(3)
(2)
....

{∀kil.¬Hum(x),¬Hum(x)} Hum ≡ Mal � Fem

{¬Fem(v),¬kil(x, v),¬Hum(x)} (T2)

(1)
...
.

{kil(J, M)}
{¬Fem(M),¬Hum(J)} (T1) {F em(M)}

{¬Hum(J)} (res)

...

.
∅

(4) (2)
..
..

{∀kil.¬Hum(x),¬Hum(x)} {Hum(M )}
{¬kil(x,M),¬Hum(x)} (A1)

(1)
....

{kil(J,M)}
{¬Hum(J)} (res){Hum(J)}

∅ (res)

Fig. 1 Refutation from a knowledge base
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resolution:

¬∀R1.¬A1(t1)∀R1.¬A1(t1)

¬R1(t1, c) ¬∀R1.¬A1(t1)

∅

tableau-like reasoning:

¬∀R2.¬A2(t2) ∨ ¬∀R2.¬A3(t2)}

S3 = S2 ∪ {R2(t2, c1), A2(c1)}

(A3)

(A4)

S4 = S3 ∪ {A4(c1)}

S5 = S4 ∪ {R1(t1, c2),A1(c2)}

S6 = S5 ∪ {¬A1(c2)}

S′
3 = S2 ∪ {R2(t2, c3),A3(c3)}

S′
4 = S′

3 ∪ {A4(c3)}

S′
5 = S′

4 ∪ {R1(t1, c3), A1(c3)}

S′
6 = S′

5 ∪ {¬A1(c3)}

S1 = {¬∀R1.¬A1(t1), ∀R1.¬A1(t1), ∀R2.A4(t2),

S2 = S1 ∪ {¬∀R2.¬A2(t2)} S′
2 = S1 ∪ {¬∀R2.¬A3(t2)}

Fig. 2 Comparison between resolution and tableau-like reasoning


