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Abstract It is known that paraconsistent logical systems are more ap-

propriate for inconsistency-tolerant and uncertainty reasoning than other

types of logical systems. In this paper, a paraconsistent computation

tree logic, PCTL, is obtained by adding paraconsistent negation to the

standard computation tree logic CTL. PCTL can be used to appropri-

ately formalize inconsistency-tolerant temporal reasoning. A theorem for

embedding PCTL into CTL is proved. The validity, satisfiability, and

model-checking problems of PCTL are shown to be decidable. The em-

bedding and decidability results indicate that we can reuse the existing

CTL-based algorithms for validity, satisfiability, and model-checking. An

illustrative example of medical reasoning involving the use of PCTL is

presented.
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§1 Introduction
Logical systems have been investigated as useful tools in the areas of

artificial intelligence and computer science.13, 19, 18, 20) Computation tree logic

(CTL)5) is known to be one of the most useful temporal logics for verifying

concurrent systems by model checking,7) since some CTL-based model checking

algorithms are more efficient than other types of algorithms. However, the use of

CTL is not suitable for verifying “inconsistent” concurrent systems since CTL is

based on classical logic. Handling inconsistencies in concurrent systems requires

the use of a paraconsistent logic2, 24) as a base logic for CTL.

One of the most useful paraconsistent logics is Nelson’s four-valued para-

consistent logic N4 (or also called N−),1, 22) which includes a paraconsistent

negation connective. The logic N4 and its variants have been studied by many

researchers.28, 29) N4 has been extensively studied since it has the property of

paraconsistency.2, 8, 24) Roughly, a satisfaction relation |= is said to be paracon-

sistent with respect to a negation connective ∼ if the following condition holds:

∃α, β, not-[M, s |= (α∧∼α)→β], where s is a state of a Kripke structure M . In

contrast to N4, classical logic has no paraconsistency because the formula of the

form (α ∧ ∼α)→β is valid in classical logic.

It is known that paraconsistent logical systems are more appropriate

for inconsistency-tolerant and uncertainty reasoning than other types of logi-

cal systems.2, 8, 24, 28, 29) For example, it is undesirable that (s(x)∧∼s(x))→d(x)

is satisfied for any symptom s and disease d where ∼s(x) means “a person x

does not have a symptom s” and d(x) means “a person x suffers from a disease

d.” An inconsistent scenario expressed, for example, as melancholia(john) ∧
∼melancholia(john) will inevitably occur, because “melancholia” is an uncer-

tain concept and the fact “John has melancholia” may be determined to be true

or false by different pathologists with different perspectives. In this case, the un-

desirable formula (melancholia(john) ∧ ∼melancholia(john)) →cancer(john)

is valid in classical logic (i.e., an inconsistency has undesirable consequences),

while it is not valid in paraconsistent logics (i.e., these logics are inconsistency-

tolerant).

Inconsistencies often appear and are inevitable when specifying large,

complex systems in some CTL-based frameworks. N4 is then useful and ap-

propriate as a base logic for CTL. Moreover, N4 has notable two satisfaction

relations |=+ (verification) and |=− (refutation) in the Kripke semantics. By

using these satisfaction relations, the ideas of “verification (or justification)”
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and “refutation (or falsification)” can be simultaneously incorporated into the

system. Therefore, the combination of CTL and N4 is regarded as a natural

candidate for obtaining a useful paraconsistent temporal logic.

In this paper, a new paraconsistent computation tree logic called PCTL

is introduced by combining CTL and N4. While the idea of combining CTL and

N4 is new, the idea of introducing a paraconsistent computation tree logic is

not. For example, a multi-valued computation tree logic χCTL was introduced

by Easterbrook and Chechik,9) and a quasi-classical temporal logic QCTL was

developed by Chen and Wu.4) Thus, PCTL is introduced as an alternative to

these logics, and N4 replaces the base paraconsistent logic.

As mentioned above, the application for which paraconsistent logics

show the greatest promise may be medical informatics. Indeed, it has been

pointed out that paraconsistent logics are useful for medical reasoning.8, 21) Some

paraconsistent computation tree logics, including PCTL, may be more useful in

medical informatics because the notion of time is necessary in order to appropri-

ately formalize realistic medical reasoning. Against this background, we present

an illustrative example of medical reasoning. The proposed illustrative exam-

ple can also be adapted to other paraconsistent computation tree logics such as

χCTL and QCTL.

The results of this paper are summarized as follows. In Section 2, PCTL

is introduced as a combination of CTL and N4. In Section 3, a theorem for

embedding PCTL into CTL is proved. The validity, satisfiability, and model-

checking problems of PCTL are shown to be decidable. The embedding and

decidability results show that we can reuse the existing CTL-based algorithms

in validity, satisfiability, and model-checking problems.7) This is an advantage of

PCTL. It is thus shown that PCTL is useful as an executable logic for temporal

reasoning with paraconsistency. In Section 4, an illustrative example of medical

reasoning involving the use of PCTL is presented. In this example, an ambigu-

ous concept “healthy” is suitably handled by using paraconsistent negation. In

Section 5, a comparison between PCTL and other proposed logics such as χCTL

and QCTL is given, and Section 6 concludes this paper.

§2 Paraconsistent computation tree logic
Formulas of PCTL are constructed from countably many atomic for-

mulas, → (implication) ∧ (conjunction), ∨ (disjunction), ¬ (classical negation),

∼ (paraconsistent negation), X (next), G (globally), F (eventually), U (until),
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R (release), A (all computation paths), and E (some computation path). The

symbols X, G, F, U, and R are called temporal operators, and the symbols A and

E are called path quantifiers. The symbol ATOM is used to denote the set of

atomic formulas. An expression A ≡ B is used to denote the syntactical identity

between A and B.

Definition 2.1

Formulas α are defined by the following grammar, assuming p ∈ ATOM:

α ::= p | α→α | α∧α | α∨α | ¬α | ∼α | AXα | EXα | AGα | EGα |
AFα | EFα | A(αUα) | E(αUα) | A(αRα) | E(αRα).

Note that pairs of symbols like AG and EU are indivisible, and that the

symbols X,G,F,U, and R cannot occur without being preceded by an A or an

E. Similarly, every A or E must have one of X, G, F, U, and R to accompany

it. Remark that all the connectives displayed above are needed to obtain an

embedding theorem of PCTL into CTL.

Definition 2.2

A paraconsistent Kripke structure is a structure 〈S, S0, R, L+, L−〉 such that

1. S is the set of states,

2. S0 is a set of initial states and S0 ⊆ S,

3. R is a binary relation on S which satisfies the condition: ∀s ∈ S ∃s′ ∈
S [(s, s′) ∈ R],

4. L+ and L− are functions from S to the power set of a nonempty subset

AT of ATOM.

A path in a paraconsistent Kripke structure is an infinite sequence of

states, π = s0, s1, s2, ... such that ∀i ≥ 0 [(si, si+1) ∈ R].

The logic PCTL is then defined as a paraconsistent Kripke structure

with two satisfaction relations |=+ and |=−. The intuitive meanings of |=+

and |=− are “verification (or justification)” and “refutation (or falsification),”

respectively.29)

Definition 2.3

Let AT be a nonempty subset of ATOM. Satisfaction relations |=+ and |=− on a

paraconsistent Kripke structure M = 〈S, S0, R, L+, L−〉 are defined inductively

as follows (s represents a state in S):
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1. for any p ∈ AT, M, s |=+ p iff p ∈ L+(s),

2. M, s |=+ α1→α2 iff M, s |=+ α1 implies M, s |=+ α2,

3. M, s |=+ α1 ∧ α2 iff M, s |=+ α1 and M, s |=+ α2,

4. M, s |=+ α1 ∨ α2 iff M, s |=+ α1 or M, s |=+ α2,

5. M, s |=+ ¬α1 iff not-[M, s |=+ α1],

6. M, s |=+ ∼α iff M, s |=− α,

7. M, s |=+ AXα iff ∀s1 ∈ S [(s, s1) ∈ R implies M, s1 |=+ α],

8. M, s |=+ EXα iff ∃s1 ∈ S [(s, s1) ∈ R and M, s1 |=+ α],

9. M, s |=+ AGα iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0, and all

states si along π, we have M, si |=+ α,

10. M, s |=+ EGα iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0, and

for all states si along π, we have M, si |=+ α,

11. M, s |=+ AFα iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0, there is

a state si along π such that M, si |=+ α,

12. M, s |=+ EFα iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0, and

for some state si along π, we have M, si |=+ α,

13. M, s |=+ A(α1Uα2) iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0,

there is a state sk along π such that [(M, sk |=+ α2) and ∀j (0 ≤ j < k

implies M, sj |=+ α1)],

14. M, s |=+ E(α1Uα2) iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0,

and for some state sk along π, we have [(M, sk |=+ α2) and ∀j (0 ≤
j < k implies M, sj |=+ α1)],

15. M, s |=+ A(α1Rα2) iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0,

and all states sj along π, we have [∀i < j not-[M, si |=+ α1] implies

M, sj |=+ α2],

16. M, s |=+ E(α1Rα2) iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0,

and for all states sj along π, we have [∀i < j not-[M, si |=+ α1] implies

M, sj |=+ α2],

17. for any p ∈ AT, M, s |=− p iff p ∈ L−(s),
18. M, s |=− α1→α2 iff M, s |=+ α1 and M, s |=− α2,

19. M, s |=− α1 ∧ α2 iff M, s |=− α1 or M, s |=− α2,

20. M, s |=− α1 ∨ α2 iff M, s |=− α1 and M, s |=− α2,

21. M, s |=− ¬α1 iff M, s |=+ α1,

22. M, s |=− ∼α1 iff M, s |=+ α1,

23. M, s |=− AXα iff ∃s1 ∈ S [(s, s1) ∈ R and M, s1 |=− α],

24. M, s |=− EXα iff ∀s1 ∈ S [(s, s1) ∈ R implies M, s1 |=− α],
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25. M, s |=− AGα iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0, and

for some state si along π, we have M, si |=− α,

26. M, s |=− EGα iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0, there is

a state si along π such that M, si |=− α,

27. M, s |=− AFα iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0, and

for all states si along π, we have M, si |=− α,

28. M, s |=− EFα iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0, and all

states si along π, we have M, si |=− α,

29. M, s |=− A(α1Uα2) iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0,

and for all states sj along π, we have [∀i < j not-[M, si |=− α1] implies

M, sj |=− α2],

30. M, s |=− E(α1Uα2) iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0,

and for all states sj along π, we have [∀i < j not-[M, si |=− α1] implies

M, sj |=− α2],

31. M, s |=− A(α1Rα2) iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0,

and for some state sk along π, we have [(M, sk |=− α2) and ∀j (0 ≤
j < k implies M, sj |=− α1)],

32. M, s |=− E(α1Rα2) iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0,

there is a state sk along π such that [(M, sk |=− α2) and ∀j (0 ≤ j < k

implies M, sj |=− α1)].

Remark that the conditions 5 and 21 in Definition 2.3 correspond to

the axiom scheme ∼¬α ↔ α which is used as an axiom for some constructive

logics with strong negation. We can adopt the following condition instead of the

condition 21 in Definition 2.3:

21′. M, s |=− ¬α1 iff not-[M, s |=− α1]

which is symmetric to the condition 5 in Definition 2.3. The conditions 5 and

21′ correspond to the axiom scheme ∼¬α ↔ ¬∼α. The logic which is obtained

from PCTL by replacing 21 by 21′ is called here PCTL′. The (corresponding)

embedding and decidability theorems for PCTL′ can also be obtained by using

the same way as that for PCTL.

Definition 2.4

A formula α is valid (satisfiable) in PCTL if and only if M, s |=+ α holds for

any (some) paraconsistent Kripke structure M = 〈S, S0, R, L+, L−〉, any (some)

s ∈ S, and any (some) satisfaction relations |=+ and |=− on M .
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Definition 2.5

Let M be a paraconsistent Kripke structure 〈S, S0, R, L+, L−〉 for PCTL, and

|=+ and |=− be satisfaction relations on M . Then, the positive and negative

model checking problems for PCTL are respectively defined by: for any formula

α, find the sets {s ∈ S | M, s |=+ α} and {s ∈ S | M, s |=− α}.

Note that the positive model checking problem for PCTL corresponds to

the standard “verification-based” model checking problem for CTL, and that the

negative model checking problem for PCTL corresponds to the dual of positive

one, i.e., it is regarded as a “refutation-based” model checking problem. Remark

that both the positive and negative model checking should simultaneously be

performed, i.e., only one of them cannot be performed.

An expression α ↔ β is used to represent (α→β) ∧ (β→α).

Proposition 2.6

The following formulas concerning paraconsistent negation are valid in PCTL:

for any formulas α and β,

1. ∼∼α ↔ α,

2. ∼(α ∧ β) ↔ ∼α ∨ ∼β,

3. ∼(α ∨ β) ↔ ∼α ∧ ∼β,

4. ∼(α→β) ↔ α ∧ ∼β,

5. ∼¬α ↔ α,

6. ∼AXα ↔ EX∼α,

7. ∼EXα ↔ AX∼α,

8. ∼AGα ↔ EF∼α,

9. ∼EGα ↔ AF∼α,

10. ∼AFα ↔ EG∼α,

11. ∼EFα ↔ AG∼α,

12. ∼A(αUβ) ↔ E((∼α)R(∼β)),

13. ∼E(αUβ) ↔ A((∼α)R(∼β)),

14. ∼A(αRβ) ↔ E((∼α)U(∼β)),

15. ∼E(αRβ) ↔ A((∼α)U(∼β)).

Proof. We show some cases. Suppose that M = 〈S, S0, R, L+, L−〉 is an arbi-

trary paraconsistent Kripke structure, and that |=+ and |=− are any satisfaction

relations on M .

(5): We show only that ∼¬α→α is valid in PCTL. Let s be an arbitrary
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element of S. Then, to show M, s |=+ ∼¬α→α, we have to show that M, s |=+

∼¬α implies M, s |=+ α. Suppose M, |=+ ∼¬α. Then, we obtain the required

fact as follows: M, s |=+ ∼¬α iff M, s |=− ¬α iff M, s |=+ α.

(12): We show only that ∼A(αUβ)→E((∼α)R(∼β)) is valid in PCTL.

Let s be an arbitrary element of S. Then, we show that M, s |=+ ∼A(αUβ)→
E((∼α)R(∼β)). To show this, we need to show that M, s |=+ ∼A(αUβ) implies

M, s |=+ E((∼α)R(∼β)). Suppose M, s |=+ ∼A(αUβ), i.e., M, s |=− A(αUβ).

Then, we obtain the required fact as follows:

M, s |=− A(αUβ)

iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0, and for all states sj

along π, we have [∀i < j not-[M, si |=− α] implies M, sj |=− β]

iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0, and for all states sj

along π, we have [∀i < j not-[N, si |=+ ∼α] implies N, sj |=+ ∼β]

iff M, s |=+ E((∼α)R(∼β)).

In the following, we explain that (1) PCTL is regarded as a four-valued

logic, and (2) PCTL is a paraconsistent logic (see more information on paracon-

sistent logics2, 24)).

For each s ∈ S and each formula α, we can take one of the following

four cases: (1) α is verified at s, i.e., M, s |=+ α, (2) α is falsified at s, i.e.,

M, s |=− α, (3) α is both verified and falsified at s, and (4) α is neither verified

nor falsified at s. Thus, PCTL is regarded as a four-valued logic.

Assume a paraconsistent Kripke structure M = 〈S, S0, R, L+, L−〉 such
that p ∈ L+(s), p ∈ L−(s) and q /∈ L+(s) for any distinct atomic formulas p

and q. Then, M, s |=+ (p ∧ ∼p)→q does not hold, and hence |=+ in PCTL is

paraconsistent with respect to ∼.

In order to define a translation of PCTL into CTL, a Kripke structure

for CTL is defined below.

Definition 2.7 (CTL)

A Kripke structure for CTL is a structure 〈S, S0, R, L〉 such that

1. S is the set of states,

2. S0 is a set of initial states and S0 ⊆ S,

3. R is a binary relation on S which satisfies the condition: ∀s ∈ S ∃s′ ∈
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S [(s, s′) ∈ R],

4. L is a function from S to the power set of a nonempty subset AT of

ATOM.

A satisfaction relation |= on a Kripke structure M = 〈S, S0, R, L〉 for CTL is

defined by the same conditions 1–5 and 7–16 as in Definition 2.3 (by deleting

the superscript +). The validity, satisfiability, and model-checking problems for

CTL are defined similarly as those for PCTL.

Remark that |=+ of PCTL includes |= of CTL, and hence PCTL is an

extension of CTL.

§3 Embedding and decidability
In the following, we introduce a translation of PCTL into CTL, and by

using this translation, we show an embedding theorem of PCTL into CTL. A

similar translation has been used by Gurevich,12) Rautenberg,26) and Vorob’ev27)

to embed Nelson’s three-valued constructive logic1, 22) into intuitionistic logic.

Definition 3.1

Let AT be a non-empty subset of ATOM, and AT′ be the set {p′ | p ∈ AT}
of atomic formulas. The language L∼ (the set of formulas) of PCTL is defined

using AT, ∼, ¬,→,∧,∨, X, F, G, U, R, A, and E. The language L of CTL is

obtained from L∼ by adding AT′ and deleting ∼.

A mapping f from L∼ to L is defined inductively by:

1. for any p ∈ AT, f(p) := p and f(∼p) := p′ ∈ AT′,
2. f(α � β) := f(α) � f(β) where � ∈ {∧,∨,→},
3. f(�α) := �f(α) where � ∈ {¬,AX,EX,AG,EG,AF,EF},
4. f(A(αUβ))) := A(f(α)Uf(β)),

5. f(E(αUβ))) := E(f(α)Uf(β)),

6. f(A(αRβ))) := A(f(α)Rf(β)),

7. f(E(αRβ))) := E(f(α)Rf(β)),

8. f(∼∼α) := f(α),

9. f(∼(α→β)) := f(α) ∧ f(∼β),

10. f(∼(α ∧ β)) := f(∼α) ∨ f(∼β),

11. f(∼(α ∨ β)) := f(∼α) ∧ f(∼β),

12. f(∼¬α) := f(α),

13. f(∼AXα) := EXf(∼α),
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14. f(∼EXα) := AXf(∼α),

15. f(∼AGα) := EFf(∼α),

16. f(∼EGα) := AFf(∼α),

17. f(∼AFα) := EGf(∼α),

18. f(∼EFα) := AGf(∼α),

19. f(∼(A(αUβ))) := E(f(∼α)Rf(∼β)),

20. f(∼(E(αUβ))) := A(f(∼α)Rf(∼β)),

21. f(∼(A(αRβ))) := E(f(∼α)Uf(∼β)),

22. f(∼(E(αRβ))) := A(f(∼α)Uf(∼β)).

Lemma 3.2

Let f be the mapping defined in Definition 3.1. For any paraconsistent Kripke

structure M := 〈S, S0, R, L+, L−〉 for PCTL, and any satisfaction relations |=+

and |=− on M , we can construct a Kripke structure N := 〈S, S0, R, L〉 for CTL
and a satisfaction relation |= on N such that for any formula α in L∼ and any

state s in S,

1. M, s |=+ α iff N, s |= f(α),

2. M, s |=− α iff N, s |= f(∼α).

Proof. Let AT be a nonempty subset of ATOM, and AT′ be the set {p′ | p ∈
AT} of atomic formulas. Suppose that M is a paraconsistent Kripke structure

〈S, S0, R, L+, L−〉 such that

L+ and L− are functions from S to the power set of AT.

Suppose that N is a Kripke structure M := 〈S, S0, R, L〉 such that

L is a function from S to the power set of AT ∪AT′.

Suppose moreover that for any s ∈ S and any p ∈ AT,

1. p ∈ L+(s) iff p ∈ L(s),

2. p ∈ L−(s) iff p′ ∈ L(s).

The lemma is then proved by (simultaneous) induction on the complexity

of α.

• Base step:

Case α ≡ p ∈ AT: For (1), we obtain: M, s |=+ p iff p ∈ L+(s) iff

p ∈ L(s) iff N, s |= p iff N, s |= f(p) (by the definition of f). For (2), we obtain:

M, s |=− p iff p ∈ L−(s) iff p′ ∈ L(s) iff N, s |= p′ iff N, s |= f(∼p) (by the

definition of f).
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• Induction step: We show some cases.

Case α ≡ β ∧ γ: For (1), we obtain: M, s |=+ β ∧ γ iff M, s |=+ β and

M, s |=+ γ iff N, s |= f(β) and N, s |= f(γ) (by induction hypothesis for 1) iff

N, s |= f(β)∧f(γ) iff N, s |= f(β∧γ) (by the definition of f). For (2), we obtain:

M, s |=− β ∧ γ iff M, s |=− β or M, s |=− γ iff N, s |= f(∼β) or N, s |= f(∼γ)

(by induction hypothesis for 2) iff N, s |= f(∼β)∨ f(∼γ) iff N, s |= f(∼(β ∧ γ))

(by the definition of f).

Case α ≡ β→γ: For (1), we obtain: M, s |=+ β→γ iff M, s |=+ β

implies M, s |=+ γ iff N, s |= f(β) implies N, s |= f(γ) (by induction hypothesis

for 1) iff N, s |= f(β)→f(γ) iff N, s |= f(β→γ) (by the definition of f). For (2),

we obtain: M, s |=− β→γ iff M, s |=+ β and M, s |=− γ iff N, s |= f(β) and

N, s |= f(∼γ) (by induction hypothesis for 1 and 2) iff N, s |= f(β) ∧ f(∼γ) iff

N, s |= f(∼(β→γ)) (by the definition of f).

Case α ≡ ¬β: For (1), we obtain: M, s |=+ ¬β iff not-[M, s |=+ β] iff

not-[N, s |= f(β)] (by induction hypothesis fotr 1) iff N, s |= ¬f(β) iff N, s |=
f(¬β) (by the definition of f). For (2), we obtain: M, s |=− ¬β iff M, s |=+ β iff

N, s |= f(β) (by induction hypothesis for 1) iff N, s |= f(∼¬β) (by the definition

of f).

Case α ≡ ∼β: For (1), we obtain: M, s |=+ ∼β iff M, s |=− β iff

N, s |= f(∼β) (by induction hypothesis for 2). For (2), we obtain: M, s |=− ∼β

iff M, s |=+ β iff N, s |= f(β) (by induction hypothesis for 1) iff N, s |= f(∼∼β)

(by the definition of f).

Case α ≡ AXβ: For (1), we obtain: M, s |=+ AXβ iff ∀s1 ∈ S [(s, s1) ∈
R implies M, s1 |=+ β] iff ∀s1 ∈ S [(s, s1) ∈ R implies N, s1 |= f(β)] (by induc-

tion hypothesis for 1) iff N, s |= AXf(β) iff N, s |= f(AXβ) (by the definition of

f). For (2), we obtain: M, s |=− AXβ iff ∃s1 ∈ S [(s, s1) ∈ R and M, s1 |=− β]

iff ∃s1 ∈ S [(s, s1) ∈ R and N, s1 |= f(∼β)] (by induction hypothesis for 2) iff

N, s |= EXf(∼β) iff N, s |= f(∼AXβ) (by the definition of f).

Case α ≡ AGβ: For (1), we obtain:

M, s |=+ AGβ

iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0, and all states si along π,

we have M, si |=+ β

iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0, and all states si along π,

we have N, si |= f(β) (by induction hypothesis for 1)

iff N, s |= AGf(β)

iff N, s |= f(AGβ) (by the definition of f).
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For (2), we obtain:

M, s |=− AGβ

iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0, for some state si along

π, we have M, si |=− β

iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0, for some state si along

π, we have N, si |= f(∼β) (by induction hypothesis for 2)

iff N, s |= EFf(∼β)

iff N, s |= f(∼AGβ)) (by the definition of f).

Case α ≡ A(βUγ): For (1), we obtain:

M, s |=+ A(βUγ)

iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0, there is a state sk along π

such that [M, sk |=+ γ and ∀j[i ≤ j < k implies M, sj |=+ β]

iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0, there is a state sk along

π such that [N, sk |= f(γ) and ∀j[i ≤ j < k implies N, sj |= f(β)] (by

induction hypothesis for 1)

iff N, s |= A(f(β)Uf(γ))

iff N, s |= f(A(βUγ)) (by the definition of f).

For (2), we obtain:

M, s |=− A(βUγ)

iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0, and for all states sj

along π, we have [∀i < j not-[M, si |=− β] implies M, sj |=− γ]

iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0, and for all states sj

along π, we have [∀i < j not-[N, si |= f(∼β)] implies N, sj |= f(∼γ)]

(by induction hypothesis for 2)

iff N, s |= E(f(∼β)Rf(∼γ))

iff N, s |= f(∼(A(βUγ))) (by the definition of f).

Lemma 3.3

Let f be the mapping defined in Definition 3.1. For any Kripke structure N :=

〈S, S0, R, L〉 for CTL, and any satisfaction relation |= on N , we can construct

a paraconsistent Kripke structure M := 〈S, S0, R, L+, L−〉 for PCTL and satis-

faction relations |=+ and |=− on M such that for any formula α in L∼ and any

state s in S,



Paraconsistent Computation Tree Logic∗1 13

1. N, s |= f(α) iff M, s |=+ α,

2. N, s |= f(∼α) iff M, s |=− α.

Proof. Similar to the proof of Lemma 3.2.

Theorem 3.4 (Embedding)

Let f be the mapping defined in Definition 3.1. For any formula α, α is valid in

PCTL iff f(α) is valid in CTL.

Proof. By Lemmas 3.2 and 3.3.

Theorem 3.5 (Decidability)

The model-checking, validity, and satisfiability problems for PCTL are decidable.

Proof. By the mapping f defined in Definition 3.1, a formula α of PCTL can

finitely be transformed into the corresponding formula f(α) of CTL. By Lem-

mas 3.2 and 3.3 and Theorem 3.4, the model checking, validity, and satisfiability

problems for PCTL can be transformed into those of CTL. Since the model

checking, validity, and satisfiability problems for CTL are decidable, the prob-

lems for PCTL are also decidable.

Since the mapping f from PCTL into CTL is a polynomial-time reduc-

tion, the complexity results for PCTL are the same as those for CTL, i.e., the

validity, satisfiability, and model-checking problems for PCTL are EXPTIME-

complete, deterministic EXPTIME-complete, and deterministic PTIME-complete,

respectively.

§4 Illustrative Examples
Paraconsistent logic and temporal logic are known to be useful in med-

ical informatics. We now consider examples of state structures for representing

the health of non-smokers and smokers, as shown in Figure 1. In the state

structure, the medical state of a person is described in a decision diagram where

branching-tree structures and negative connectives from PCTL are employed.

In this example, a paraconsistent negation ∼α in PCTL is used to express the

negation of ambiguous concepts. For instance, if we cannot determine whether

someone is healthy, the ambiguous concept healthy can be represented by as-

serting the inconsistent formula

healthy ∧ ∼healthy.
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healthy

¬smoking

smoking

∼healthy

∼healthy

healthy

cured

diedcancerIncrease

hasCancer

medicalCheckup

medicalCheckup

continuing continuing

¬hasCancer

¬hasCancer

hasCancer hasCancer

Fig. 1 State structure for representing the health of smokers and non-smokers

This is well formalized because (healthy ∧ ∼healthy)→⊥ is not valid in para-

consistent logic. On the other hand, we can decide whether someone is smok-

ing; the decision is represented by smoking or ¬smoking, where (smoking ∧
¬smoking)→⊥ is valid in classical logic.

In the state structure of Figure 1, the initial state implies that a person

is not smoking (¬smoking is true). The system can move to the other state

to indicate that the person is smoking (smoking is true). When a person un-

dergoes a medical checkup, his or her state changes to one of the two states.

Even if no cancer is detected in a smoker during the medical checkup, he or

she is both healthy and not healthy, i.e., both healthy and ∼healthy are true

because smoking is detrimental to health. If cancer is detected (hasCancer is

true) in a non-smoker (or smoker), then ∼healthy is true. This means that the

person is not healthy, but he or she may return to good health if the cancer does

not increase. In these states, ∼healthy represents ambiguous negative informa-

tion that can be true at the same time as healthy, which represents positive

information

Moreover, when the cancer increases, the diagnosis reveals worse cancer.

If the cancer is cured, the patient will be healthy. Otherwise, if the cancer is not

controlled, the patient will die.

We define a Kripke structure M = 〈S, S0, R, L+, L−〉 that corresponds

to the medical state structure as follows:
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1. S = {s0, s1, s2, s3, s4, s5, s6},
2. S0 = {s0},
3. R = {(s0, s1), (s0, s2), (s0, s3), (s1, s0), (s1, s3), (s1, s4), (s2, s3), (s3, s2),

(s3, s4), (s3, s5), (s4, s3), (s5, s2), (s5, s6)},
4. L+(s0) = ∅,
5. L+(s1) = {smoking},
6. L+(s2) = {healthy},
7. L+(s3) = {hasCancer},
8. L+(s4) = {healthy},
9. L+(s5) = {cancerIncrease, hasCancer},
10. L+(s6) = {died, hasCancer},
11. L−(s0) = L−(s1) = L−(s2) = L−(s5) = L−(s6) = ∅,
12. L−(s3) = L−(s4) = {healthy}.

We can verify the existence of a path that represents the required infor-

mation in the structure M . For example, we can verify the following statement:

“Is there a state in which a person is both healthy and not healthy?” This

statement is expressed as:

EF(healthy ∧ ∼healthy).

The above statement is true because we have a path s0→s1→s4 where healthy ∈
L+(s4) and healthy ∈ L−(s4).

In addition, the statement that “Is there a state in which a dead person

will not be alive again?” can be expressed as:

EF(died ∧ ¬EF¬died).
This statement is verified as true because there is a path s0→s3→s5→s6 with

died ∈ L+(s6) but there is no path from s6 to another state (i.e., there is no

state x such that s6→x).

In order to justify the usefulness of PCTL, two negative expressions can

be differently interpreted as follows:

¬healthy (definitely unhealthy)

∼healthy (not healthy)

The first statement indicates that a person is definitely unhealthy that is incon-

sistent with his or her healthy. The second statement means that we can say

that a person is not healthy but he or she may be healthy.

The interpretation of the two negations leads to some useful verification

examples for more complex statements. For example, the statement that “Is
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there a state in which a person is not definitely unhealthy?” can be expressed

as:

EF¬¬healthy.
This statement is verified as true because there is a path from s0 to two states

s ∈ {s2, s4} such that M, s |=+ ¬¬healthy. It is derived from that M, s �|=+

¬healthy iff healthy ∈ L−(s). Moreover, the statement that “Is there a state in

which it is not true that a person is not healthy?” can be expressed as:

EF¬∼healthy.

This statement is verified as true because there is a path s0→s2 with M, s2 |=+

¬∼healthy (iff M, s2 �|=+ ∼healthy iff M, s2 �|=− healthy iff healthy �∈ L−(s2)).
Importantly, the statement that “a person is not definitely unhealthy”

holds in state s4 but the statement that “it is not true that a person is not

healthy” does not hold in state s4. The two negations can be used to control

inconsistencies and paraconsistencies in the examples.

§5 Related works
We now describe and compare some previous studies. Some CTL-based

paraconsistent temporal logics and their variants have been studied by several

researchers.3, 4, 9, 14)

An application of multi-valued, paraconsistent model-checking for re-

quirements elicitation in software engineering was studied by Easterbrook and

Chechik9) based on the multi-valued computation tree logic (χCTL) with the al-

gebraic structures called quasi-Boolean logics. The Kripke structures for this

framework were based on a multi-valued transition relation and a multi-valued

valuation (labeling) function. The multi-valued valuation function was a very

general setting because it can express n-valued truth values for any natural num-

ber n. The present framework, i.e., the N4-based framework, may be treated as

a special case of the multi-valued framework since the two valuation functions

used in this paper, which are inductively extended to |=+ and |=−, can be trans-

formed into a four-valued valuation function. PCTL is not in a general setting

as in χCTL, but it is simpler than χCTL, since it does not use any additional

algebraic structures like the quasi-Boolean logics.

The χCTL model-checking framework was extended by Chechik and

MacCaull3) to include reasoning in logics with non-classical negation (in partic-

ular, intuitionistic, minimal, and Galois negations). An automatic verification
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procedure for the cases in which the number of truth values is finite was devel-

oped on the basis of these logics. Some temporal operators in these logics were

defined on the basis of χCTL, and they were shown to be computable using

fixpoints.

A quasi-classical temporal logic QCTL was studied by Chen and Wu4)

in order to formalize reasoning on concurrent systems containing inconsistent

information. In the work, paraKripke structures were introduced for QCTL,

and a proof system that was sound and complete with respect to paraKripke

structures was presented. In QCTL, a set of positive and negative objects,

which is constructed from a set of atomic formulas, is used; in other words,

a positive object +p and a negative object −p are obtained from an atomic

formula p. Moreover, two satisfaction relations (a strong satisfiability relation

|=ts and a weak satisfiability relation |=tw) are used for QCTL. The positive and

negative objects +p and −p in QCTL roughly correspond to p and ∼p in PCTL,

respectively. However, |=ts and |=tw in QCTL do not correspond to |=+ and |=−

in PCTL. Further, in QCTL, some clauses and quasi-clauses are used to define

semantics, but this is not the case in PCTL.

In a previous study,14) we introduced a paraconsistent four-valued “full”

computation tree logic 4CTL* and a paraconsistent four-valued “locative full”

computation tree logic 4LCTL*. Some bisimulation theorems for these logics and

a theorem for embedding 4CTL* into CTL* were presented. However, the proof

of the theorem for embedding 4CTL* into CTL* was rather complex and tedious

since in the proof, the Kripke semantics (of 4CTL*) with |=+ and |=− must be

translated into a Kripke semantics with a single satisfaction relation. Namely,

the proof in the study14) needed two steps. Firstly, a single satisfaction semantics,

which has only one satisfaction relation |=, was introduced. |= includes the

following clauses:

M,π |= ∼∼β1 iff M,π |= β1,

M,π |= ∼(β1 ∧ β2) iff M,π |= ∼β1 or M,π |= ∼β2,

M,π |= ∼Gβ1 iff ∃k ≥ 0 [M,πk |= ∼β1]

where π represents a path (i.e., a sequences of states) and β1, β2 represent path

formulas in 4CTL∗. Then, an equivalence between this semantics with |= and

the dual satisfaction semantics with both |=+ and |=− was proved by induction

on formulas. Secondly, a theorem for embedding 4CTL∗ into CTL∗ was proved

based on |=. By the equivalence theorem and the embedding theorem w.r.t. |=,

we finally obtained the required embedding theorem w.r.t. |=+ and |=−. The
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present proof of the theorem for embedding PCTL into CTL is simpler and easier

than that of the theorem for embedding 4CTL* into CTL*, since the redundant

step for providing a single satisfaction semantics and for showing an equivalence

theorem between |= and (|=+, |=−) is not required in this proof.

From an implementation point of view, PCTL is more useful and effi-

cient than 4CTL* because of the complexity results of PCTL and 4CTL*. The

validity, satisfiability, and model-checking problems for PCTL are EXPTIME-

complete, deterministic EXPTIME-complete and deterministic PTIME-complete,

respectively. However, the validity, satisfiability, and model-checking problems

for 4CTL* are 2EXPTIME-complete, deterministic 2EXPTIME-complete and

PSPACE-complete, respectively. This computational difference makes an essen-

tial impact on an implementation of reasoning algorithms. Therefore, PCTL

is regarded as a computational improvement on 4CTL*. That is, PCTL can

use an efficient CTL-based model-checking algorithm but 4CTL* cannot use the

algorithm because 4CTL* is CTL*-based. To our best knowledge, well-used

model-checkers (e.g., NuSMV) are limited to CTL-based.

Some many-valued (including paraconsistent 4-valued) model-checkers

have been studied by Gurfinkel et al.10, 11) In software model checking, typical

model checkers are used for refutation as well as verification because of their

high bug-finding abilities. A software model checker Yasm10, 11) which is based

on χCTL is the first approach to combine verification and refutation based on

the abstraction technique GEGAR.6) Since PCTL is regarded as a refined special

case of χCTL, the use of two satisfaction relations |=+ and |=− in PCTL entails

a theoretical justification for combining verification and refutation.

§6 Concluding remarks
In this paper, a new paraconsistent computation tree logic, PCTL, was

introduced by combining CTL and Nelson’s paraconsistent logic N4. This logic

could be used appropriately in medical reasoning to deal with inconsistent data

and uncertain concepts. The theorem for embedding PCTL into CTL was

proved. The validity, satisfiability, and model-checking problems of PCTL were

shown to be decidable. The embedding and decidability results indicate that

we can reuse the existing CTL-based algorithms to test the validity, satisfia-

bility, and model-checking. Thus, it was shown that PCTL can be used as an

executable logic to represent temporal reasoning on paraconsistency. As a fu-

ture task, we believe that over- and under-approximating abstractions can be
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appropriately combined using a PCTL-based model-checker with |=+ and |=−.6)

We also believe that PCTL can be extensively used for inconsistency-tolerant

and uncertainty reasoning, since N4 and its variants are known to be very use-

ful for a wide range of applications such as logic programming and knowledge

representations.19, 15, 13, 23, 28)

Although another important property called paracompleteness2, 17) is not

discussed so far, the paraconsistent negation connective ∼ in PCTL is also para-

complete. The paracompleteness is regarded as the dual notion of paraconsis-

tency: a paracomplete negation ∼ is a unary operator that does not satisfy the

law of excluded middle α ∨ ∼α. In (extensions of) standard classical proposi-

tional logic, α ∨ ¬α is valid. This means that the information represented by

the classical negation connective ¬ is complete information: every formula α is

either true or not true in a model. Representing only complete information is

plausible in classical mathematics, which is a discipline handling eternal truth

and falsehood. The statements of classical mathematics do not change their

truth value in the course of time. The assumption of complete information is,

however, inadequate when it comes to representing the information available to

real world agents. We wish to explore the consequences of incomplete informa-

tion about computer and information systems, and then it is desirable to avail

of a paracomplete negation connective.

A limitation or demerit of extending CTL with paraconsistency and

paracompleteness may be that to construct a good proof (or deductive) system

(e.g., Gentzen-type sequent calculus) for such a logic is difficult. In order to

avoid such a difficulty, we need other base temporal logics such as linear-time

temporal logic (LTL).25)

We conclude with some remarks on alternatives to PCTL. In a Kripke

structure 〈S, S0, R, L+, L−〉, imposing the condition ∀s ∈ S [L+(s)∩L+(s) = ∅]
is equivalent to the asserting that the underlying logic is a non-paraconsistent

three-valued logic. Now, the logic obtained by imposing the condition on PCTL

is called 3CTL. Although 3CTL is not paraconsistent, the corresponding embed-

ding and decidability results can be obtained in a similar manner. The results

for PCTL and 3CTL can also be adapted and applied to LTL. Our framework

for paraconsistent negation may thus be applicable to a wide range of temporal

and non-classical logics.
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