Paraconsistent Computation Tree Logic*1 1

Paraconsistent Computation Tree Logic*!

Ken KANEIWA

Department of Electrical Engineering and Computer Science,
Twate University
4-8-5 Ueda, Morioka, Iwate 020-8551, JAPAN

kaneiwa@cis.iwate-u.ac. jp

Norihiro KAMIDE

Waseda Institute for Advanced Study, Waseda University
1-6-1 Nishi Waseda, Shinjuku-ku, Tokyo 169-8050, JAPAN

drnkamide08@kpd.biglobe.ne. jp

Abstract 1t is known that paraconsistent logical systems are more ap-
propriate for inconsistency-tolerant and uncertainty reasoning than other
types of logical systems. In this paper, a paraconsistent computation
tree logic, PCTL, is obtained by adding paraconsistent negation to the
standard computation tree logic CTL. PCTL can be used to appropri-
ately formalize inconsistency-tolerant temporal reasoning. A theorem for
embedding PCTL into CTL is proved. The validity, satisfiability, and
model-checking problems of PCTL are shown to be decidable. The em-
bedding and decidability results indicate that we can reuse the existing
CTL-based algorithms for validity, satisfiability, and model-checking. An
illustrative example of medical reasoning involving the use of PCTL is
presented.

Keywords: Paraconsistent Logic, Computation Tree Logic, Decidability, Med-

ical Reasoning.

*I This paper is a modified extension of the conference presentation.'®

2 Norihiro KAMIDE

81 Introduction

Logical systems have been investigated as useful tools in the areas of

18,1918, 20 Computation tree logic

artificial intelligence and computer science.
(CTL)" is known to be one of the most useful temporal logics for verifying
concurrent systems by model checking,” since some CTL-based model checking
algorithms are more efficient than other types of algorithms. However, the use of

b2

CTL is not suitable for verifying “inconsistent” concurrent systems since CTL is
based on classical logic. Handling inconsistencies in concurrent systems requires
the use of a paraconsistent logic* ** as a base logic for CTL.

One of the most useful paraconsistent logics is Nelson’s four-valued para-

consistent logic N4 (or also called N7)," *

which includes a paraconsistent
negation connective. The logic N4 and its variants have been studied by many
researchers.”® *? N4 has been extensively studied since it has the property of
paraconsistency.” * *» Roughly, a satisfaction relation = is said to be paracon-
sistent with respect to a negation connective ~ if the following condition holds:
Ja, B, not-[M, s = (a A ~a)—], where s is a state of a Kripke structure M. In
contrast to N4, classical logic has no paraconsistency because the formula of the
form (a A ~a)—f is valid in classical logic.

It is known that paraconsistent logical systems are more appropriate
for inconsistency-tolerant and uncertainty reasoning than other types of logi-
cal systems.> ® ** *%?% For example, it is undesirable that (s(z) A ~s(z))—d(z)
is satisfied for any symptom s and disease d where ~s(x) means “a person x
does not have a symptom s” and d(x) means “a person x suffers from a disease
d.” An inconsistent scenario expressed, for example, as melancholia(john) A
~melancholia(john) will inevitably occur, because “melancholia” is an uncer-
tain concept and the fact “John has melancholia” may be determined to be true
or false by different pathologists with different perspectives. In this case, the un-
desirable formula (melancholia(john) A ~melancholia(john)) —cancer(john)
is valid in classical logic (i.e., an inconsistency has undesirable consequences),
while it is not valid in paraconsistent logics (i.e., these logics are inconsistency-
tolerant).

Inconsistencies often appear and are inevitable when specifying large,
complex systems in some CTL-based frameworks. N4 is then useful and ap-
propriate as a base logic for CTL. Moreover, N4 has notable two satisfaction
relations =" (verification) and =" (refutation) in the Kripke semantics. By

using these satisfaction relations, the ideas of “verification (or justification)”

Paraconsistent Computation Tree Logic*? 3

and “refutation (or falsification)” can be simultaneously incorporated into the
system. Therefore, the combination of CTL and N4 is regarded as a natural
candidate for obtaining a useful paraconsistent temporal logic.

In this paper, a new paraconsistent computation tree logic called PCTL
is introduced by combining CTL and N4. While the idea of combining CTL and
N4 is new, the idea of introducing a paraconsistent computation tree logic is
not. For example, a multi-valued computation tree logic xCTL was introduced
by Easterbrook and Chechik,” and a quasi-classical temporal logic QCTL was
developed by Chen and Wu.* Thus, PCTL is introduced as an alternative to
these logics, and N4 replaces the base paraconsistent logic.

As mentioned above, the application for which paraconsistent logics
show the greatest promise may be medical informatics. Indeed, it has been
pointed out that paraconsistent logics are useful for medical reasoning.® ** Some
paraconsistent computation tree logics, including PCTL, may be more useful in
medical informatics because the notion of time is necessary in order to appropri-
ately formalize realistic medical reasoning. Against this background, we present
an illustrative example of medical reasoning. The proposed illustrative exam-
ple can also be adapted to other paraconsistent computation tree logics such as
xCTL and QCTL.

The results of this paper are summarized as follows. In Section 2, PCTL
is introduced as a combination of CTL and N4. In Section 3, a theorem for
embedding PCTL into CTL is proved. The validity, satisfiability, and model-
checking problems of PCTL are shown to be decidable. The embedding and
decidability results show that we can reuse the existing CTL-based algorithms
in validity, satisfiability, and model-checking problems.” This is an advantage of
PCTL. It is thus shown that PCTL is useful as an executable logic for temporal
reasoning with paraconsistency. In Section 4, an illustrative example of medical
reasoning involving the use of PCTL is presented. In this example, an ambigu-
ous concept “healthy” is suitably handled by using paraconsistent negation. In
Section 5, a comparison between PCTL and other proposed logics such as yCTL
and QCTL is given, and Section 6 concludes this paper.

82 Paraconsistent computation tree logic
Formulas of PCTL are constructed from countably many atomic for-
mulas, — (implication) A (conjunction), V (disjunction), — (classical negation),

~ (paraconsistent negation), X (next), G (globally), F (eventually), U (until),

4 Norihiro KAMIDE

R (release), A (all computation paths), and E (some computation path). The
symbols X, G, F, U, and R are called temporal operators, and the symbols A and
E are called path quantifiers. The symbol ATOM is used to denote the set of
atomic formulas. An expression A = B is used to denote the syntactical identity
between A and B.

Definition 2.1
Formulas « are defined by the following grammar, assuming p € ATOM:

az=pla—a|lara|aVa|-a|~a | AXa | EXa | AGa | EGa |
AFa | EFa | A(aUa) | E(aUa) | A(aRa) | E(aRa).

Note that pairs of symbols like AG and EU are indivisible, and that the
symbols X, G, F, U, and R cannot occur without being preceded by an A or an
E. Similarly, every A or E must have one of X, G, F, U, and R to accompany
it. Remark that all the connectives displayed above are needed to obtain an
embedding theorem of PCTL into CTL.

Definition 2.2
A paraconsistent Kripke structure is a structure (S, Sy, R, L, L) such that

S is the set of states,
So is a set of initial states and Sy C S,
R is a binary relation on S which satisfies the condition: Vs € § s’ €
S [(s,s") € R],

4. L% and L~ are functions from S to the power set of a nonempty subset
AT of ATOM.

A path in a paraconsistent Kripke structure is an infinite sequence of

states, T = sq, 51, S2, ... such that Vi > 0 [(s;, s;1+1) € R].

The logic PCTL is then defined as a paraconsistent Kripke structure
with two satisfaction relations =" and =". The intuitive meanings of ="
and =" are “verification (or justification)” and “refutation (or falsification),”

respectively.””

Definition 2.3
Let AT be a nonempty subset of ATOM. Satisfaction relations =* and =~ on a
paraconsistent Kripke structure M = (S, Sy, R, L*, L™) are defined inductively

as follows (s represents a state in S):

Paraconsistent Computation Tree Logic*1

© X N oW

11.

12.

13.

14.

15.

16.

17.
18.
19.
20.
21.
22.
23.
24.

for any p € AT, M,s =1 piff pe LT (s),

M,s EY aj—ag iff M,s =1 oy implies M,s =" as,

M,s =Y ay ANag iff M,s =" a; and M,s =T as,

M,s =" oy Vayiff M,skE=" oy or M,s =1 as,

M,s ' =ay iff not-[M,s =1 ay],

M,s Y ~aiff M,s =" a,

M,s E" AXa iff Vs; € S [(s,s1) € R implies M,s1 T af,

M,s ET EXaiff 3s; €S [(s,81) € Rand M, s, T o,

M, s =" AGa iff for all paths m = sg, 51, 82, ..., where s = sg, and all
states s; along 7w, we have M, s; |:+ a,

M,s =" EGa iff there is a path 7 = sq, 51, S2, ..., where s = s, and
for all states s; along 7, we have M, s; =1 «,

M, s =" AFa iff for all paths 7 = s, 51, 52, ..., where s = s¢, there is
a state s; along 7 such that M, s;)=+ «,

M,s =1 EFa iff there is a path m = s¢, 81, 82, ..., where s = sp, and
for some state s; along 7, we have M, s; =* «,

M,s =1 A(a;Uay) iff for all paths m = s, 51, S2, ..., where s = s,
there is a state s;, along 7 such that [(M, s, =1 az) and Vj (0<j <k
implies M,s; =T a1)],

M, s =" E(a;Uay) iff there is a path © = s¢, s1, 82, ..., where s = s,
and for some state s;, along 7, we have [(M,s, =1 ay) and Vj (0 <
j < k implies M, s; =T a1)],

M,s =" A(a;Ray) iff for all paths 7 = sg, s1, 82, ..., where s = s,
and all states s; along 7, we have [Vi < j not-[M,s; =1 aj] implies
M, s;j =" aq],

M, s =" E(a;Rag) iff there is a path 7 = s¢, 1, 82, ..., where s = s,
and for all states s; along 7, we have [Vi < j not-[M,s; =1 a;] implies
M, s;):+ O‘2]’

for any p € AT, M,s =" piff pe L™ (s),

M,s =" ay—ag iff M,s =" a; and M, s =~ as,

M,sE" ag Aag iff M s~ a3 or M,s = as,

M,sE- aqgVag ift M,s == oy and M,s E~ as,

M,s =" —ay iff M, s =1 a,

M,s =" ~aq iff M,s =T ay,

M,s =~ AXaiff 3s1 €5 [(s,81) € Rand M,s1 =~ «,

M,s =7 EXa iff Vs; € S [(s,s1) € R implies M,s1 =~ af,

6 Norihiro KAMIDE

25. M,s == AGa iff there is a path © = sq, s1, $2, ..., where s = s, and
for some state s; along 7, we have M, s; =~ a,

26. M,s £~ EGa iff for all paths m = sg, 51, S, ..., where s = sq, there is
a state s; along 7 such that M,s; = «,

27. M,s =~ AFa iff there is a path © = sg, s1, S2, ..., where s = s, and
for all states s; along m, we have M,s; =~ «a,

28. M,s =~ EFa iff for all paths 7 = sq, 51, S2, ..., where s = s¢, and all
states s; along 7, we have M,s; £~ a,

29. M,s E~ A(a1Uay) iff there is a path m = s, s1, S, ..., where s = sp,
and for all states s; along 7, we have [Vi < j not-[M,s; =~ «1] implies
M,s; =~ asl,

30. M,s = E(ayUap) iff for all paths 7 = sg, s1, 2, ..., where s = s,
and for all states s; along 7, we have [Vi < j not-[M, s; =" aq] implies
M,s; E~ asl,

3l. M,sE" A(aiRay) iff there is a path m = s, s1, 52, ..., where s = s,
and for some state si along 7, we have [(M,sx E~ «a3) and Vj (0 <
J < k implies M, s; =~ a1)],

32. M,s E7 E(«1Rap) iff for all paths m = s, $1, S2, ..., where s = s,
there is a state sy along m such that [(M, sy E~ a2) and V5 (0 <j <k
implies M, s; =~ a1)].

Remark that the conditions 5 and 21 in Definition 2.3 correspond to
the axiom scheme ~—a <+ « which is used as an axiom for some constructive
logics with strong negation. We can adopt the following condition instead of the

condition 21 in Definition 2.3:
21". M,s E~ —aq iff not-[M,s E~ aq]

which is symmetric to the condition 5 in Definition 2.3. The conditions 5 and
21’ correspond to the axiom scheme ~—a <+ =~cq. The logic which is obtained
from PCTL by replacing 21 by 21 is called here PCTL’. The (corresponding)
embedding and decidability theorems for PCTL’ can also be obtained by using
the same way as that for PCTL.

Definition 2.4

A formula « is valid (satisfiable) in PCTL if and only if M,s =" « holds for
any (some) paraconsistent Kripke structure M = (S, Sy, R, L, L™), any (some)
s € 9, and any (some) satisfaction relations =" and =~ on M.

Paraconsistent Computation Tree Logic*1 7

Definition 2.5

Let M be a paraconsistent Kripke structure (S, Sg, R, L™, L™) for PCTL, and
=1 and =" be satisfaction relations on M. Then, the positive and negative
model checking problems for PCTL are respectively defined by: for any formula
a, find the sets {s € S | M,s =t a} and {s€ S | M,s =~ a}.

Note that the positive model checking problem for PCTL corresponds to
the standard “verification-based” model checking problem for CTL, and that the
negative model checking problem for PCTL corresponds to the dual of positive
one, i.e., it is regarded as a “refutation-based” model checking problem. Remark
that both the positive and negative model checking should simultaneously be
performed, i.e., only one of them cannot be performed.

An expression « +» (3 is used to represent (a—f) A (8—a).

Proposition 2.6
The following formulas concerning paraconsistent negation are valid in PCTL:

for any formulas o and 3,

1. ~~a e a,

2. ~(aNp) e ~aV~pB,

3. ~(aVp) e ~an~pb,

4. ~(a—=p) < ah~p,

5. ~oa & a,

6. ~AXa ¢ EX~a,

7. ~EXa < AX~a,

8. ~AGa «+ EF~q,

9. ~EGa + AF~aq,

10. ~AFa < EG~a,

11. ~EFa < AGr~a,

12. ~A(aUB) & E((~a)R(~8)),
13. ~E(aUB) ¢ A((~a)R(~B)),
14, ~A(aRA) ¢ E((~a)U(~B)),
15. ~E(aRpB) <> A((~a)U(~p))

Proof. We show some cases. Suppose that M = (S, Sy, R, L™, L™) is an arbi-
trary paraconsistent Kripke structure, and that =" and |=~ are any satisfaction
relations on M.

(5): We show only that ~—a—« is valid in PCTL. Let s be an arbitrary

8 Norihiro KAMIDE

element of S. Then, to show M,s = ~—a—a, we have to show that M,s =7
~-a implies M, s =" a. Suppose M, =" ~=a. Then, we obtain the required
fact as follows: M,s =1 ~=a iff M,s =~ ~a iff M,s =" a.

(12): We show only that ~A(aUS)—E((~a)R(~f)) is valid in PCTL.
Let s be an arbitrary element of S. Then, we show that M, s =T ~A(aUB)—
E((~a)R(~f)). To show this, we need to show that M, s =" ~A(aUB) implies
M,s =1 E((~a)R(~B)). Suppose M,s =1 ~A(aUpB), ie., M,s =~ A(aUp).

Then, we obtain the required fact as follows:

M,s =~ A(aUB)

iff there is a path m = s¢, 51, 52,..., where s = 50, and for all states s;
along 7, we have [Vi < j not-[M, s, =" o] implies M, s; =~]

iff there is a path m = sg, 51, 52, ..., where s = sg, and for all states s;
along 7, we have [Vi < j not-[N,s; =" ~a] implies N, s; =1 ~f]

iff M, s = B((~a)R(~B)).

In the following, we explain that (1) PCTL is regarded as a four-valued
logic, and (2) PCTL is a paraconsistent logic (see more information on paracon-
sistent logics® **).

For each s € S and each formula «, we can take one of the following
four cases: (1) « is verified at s, i.e., M,s =T a, (2) « is falsified at s, i.e.,
M,s =" «, (3) a is both verified and falsified at s, and (4) « is neither verified
nor falsified at s. Thus, PCTL is regarded as a four-valued logic.

Assume a paraconsistent Kripke structure M = (S, So, R, Lt L™) such
that p € LT (s), p € L™ (s) and ¢ ¢ L*(s) for any distinct atomic formulas p
and q. Then, M,s =" (p A ~p)—q does not hold, and hence =" in PCTL is
paraconsistent with respect to ~.

In order to define a translation of PCTL into CTL, a Kripke structure
for CTL is defined below.

Definition 2.7 (CTL)
A Kripke structure for CTL is a structure (S, Sp, R, L) such that

1. S is the set of states,
2. Sp is a set of initial states and Sy C 5,
3. R is a binary relation on S which satisfies the condition: Vs € S 35’ €

Paraconsistent Computation Tree Logic*? 9

S [(s,s') € R],
4. L is a function from S to the power set of a nonempty subset AT of
ATOM.

A satisfaction relation |= on a Kripke structure M = (S, Sp, R, L) for CTL is
defined by the same conditions 1-5 and 7-16 as in Definition 2.3 (by deleting
the superscript +). The validity, satisfiability, and model-checking problems for
CTL are defined similarly as those for PCTL.

Remark that =1 of PCTL includes |= of CTL, and hence PCTL is an

extension of CTL.

83 Embedding and decidability

In the following, we introduce a translation of PCTL into CTL, and by
using this translation, we show an embedding theorem of PCTL into CTL. A
similar translation has been used by Gurevich,'® Rautenberg,’® and Vorob’ev>”
1, 22)

to embed Nelson’s three-valued constructive logic into intuitionistic logic.

Definition 3.1
Let AT be a non-empty subset of ATOM, and AT’ be the set {p' | p € AT}
of atomic formulas. The language £~ (the set of formulas) of PCTL is defined
using AT, ~, =, = AV, X, F, G, U, R, A, and E. The language £ of CTL is
obtained from £~ by adding AT and deleting ~.

A mapping f from £~ to L is defined inductively by:

for any p € AT, f(p) :=p and f(~p) :=p' € AT,

f(a # ﬁ) = f(O‘) f f(/B) where f € {/\7\/7—>}a
f(ta) := 4f(a) where § € {—, AX, EX, AG,EG, AF,EF},

1.

2.

4. f(A(aUp))) := A(f()Uf(B)),
5. f(E(aUB))) :=E(f(a)Uf(B)),
6. f(A(aRp))) == A(f()R[(B)),
7. J(E(eRB))) == E(f(a)Rf(B)),
8. [flrra) = fla),

9. fl~(a=pB)) = fla) A f(~B),
10. f(~(aAB)) = f(~a)V f(~B),
1L f(~(aV B)) = f(~a) A f(~B),
12, f(~ma) = f(a),

13. f(~AXa) := EXf(~a),

10 Norihiro KAMIDE

14. f(~EXa) := AXf(~a),
15. f(~AGa) := EFf(~a),
16. f(~EGa) := AFf(~a),
17. f(~AFa) := EGf(~a),
18. f(~EFa) := AGf(~a),
19. f(~(A(aUB))) := E(f(~a)Rf(~B)),
20. f(~(E(aUB))) := A(f(~a)R[f(~B)),
21. f(~(A(aRp))) :== E(f(~a)Uf(~B)),
22. f(~(E(aRp))) := A(f(~a)Uf(~B)).

Lemma 3.2

Let f be the mapping defined in Definition 3.1. For any paraconsistent Kripke
structure M := (S, Sy, R, LT, L) for PCTL, and any satisfaction relations ="
and =" on M, we can counstruct a Kripke structure N := (S, Sy, R, L) for CTL
and a satisfaction relation = on N such that for any formula « in £~ and any

state s in S,

1. M,sE"aiff N,s = f(a),
2. M,s=" aiff N,s | f(~a).

Proof. Let AT be a nonempty subset of ATOM, and AT’ be the set {p’ | p €
AT} of atomic formulas. Suppose that M is a paraconsistent Kripke structure
(S,So, R, L™, L™) such that

L* and L~ are functions from S to the power set of AT.
Suppose that N is a Kripke structure M := (S, Sy, R, L) such that

L is a function from S to the power set of AT U AT,
Suppose moreover that for any s € S and any p € AT,

1. peLf(s)iff pe L(s),

2. pe L (s)iff p’ € L(s).

The lemma is then proved by (simultaneous) induction on the complexity

e Base step:

Case a = p € AT: For (1), we obtain: M,s =" p iff p € LT(s) iff
p€ L(s) iff N,s =piff N,s = f(p) (by the definition of f). For (2), we obtain:
M,s =~ piff p € L™(s) iff p’ € L(s) iff N,s = p' iff N,s E f(~p) (by the
definition of f).

Paraconsistent Computation Tree Logic*! 11

e Induction step: We show some cases.

Case a = B A~: For (1), we obtain: M,s =" BA~ iff M,s =1 3 and
M,s =1 v iff N,s = f(B) and N,s = f(v) (by induction hypothesis for 1) iff
N,sl=f(B)Nf(y) it N, s = f(BA7y) (by the definition of f). For (2), we obtain:
M,s =" BA~yiff M,sl=" Bor M,s =" viff N;s = f(~B) or N,s = f(~7)
(by induction hypothesis for 2) iff N, s = f(~8) V f(~7) iff N,s E f(~(BA7))
(by the definition of f).

Case a = B—y: For (1), we obtain: M,s =" B—~ iff M,s =" B
implies M,s =1 v iff N,s = f(8) implies N, s = f(v) (by induction hypothesis
for 1) iff N,s = f(B)—f(v) iff N,s = f(8—) (by the definition of f). For (2),
we obtain: M,s =~ B—y iff M,s =7 f and M,s =~ v iff N,s = f(B) and
N,s = f(~7) (by induction hypothesis for 1 and 2) iff N,s = f(8) A f(~) iff
N,s = f(~(8—7)) (by the definition of f).

Case a = —83: For (1), we obtain: M,s =1 =8 iff not-[M,s =+ 3] iff
not-[N,s = f(B)] (by induction hypothesis fotr 1) iff N,s = —f(8) iff N,s |
f(=B) (by the definition of f). For (2), we obtain: M,s =~ =g iff M, s =1 3 iff
N, s = f(B) (by induction hypothesis for 1) iff N, s |= f(~=0) (by the definition
of f).

Case a = ~fB: For (1), we obtain: M,s =" ~3 iff M,s =~ j iff
N,s = f(~p) (by induction hypothesis for 2). For (2), we obtain: M,s =~ ~f
iff M,s =" B iff N,s = f(8) (by induction hypothesis for 1) iff N, s = f(~~f3)
(by the definition of f).

Case a = AXf: For (1), we obtain: M,s =" AXB iff Vs; € S [(s,51) €
R implies M, s, =" f] iff Vs; € S [(s,51) € R implies N, s; = f(38)] (by induc-
tion hypothesis for 1) iff N, s = AXf(B) iff N, s | f(AXS) (by the definition of
f). For (2), we obtain: M,s =~ AXg iff 3s; € S [(s,$1) € R and M, s1 =~ f]
iff 3s; € S [(s,51) € R and N, s1 | f(~p)] (by induction hypothesis for 2) iff
N,s = EXf(~p) ifft N,s = f(~AXS) (by the definition of f).

Case o = AGS: For (1), we obtain:

M,s =1 AGB

iff for all paths m = sg, s1, s2, ..., where s = sg, and all states s; along ,
we have M, s; =1 3

iff for all paths m = sq, s1, 2, ..., where s = sg, and all states s; along ,

we have N, s; = f(8) (by induction hypothesis for 1)
iff N, s = AGF(8)
iff N,sE f(AGp) (by the definition of f).

12 Norihiro KAMIDE

For (2), we obtain:

M,s =~ AGp

iff there is a path m = sg, $1, 3, ..., where s = s, for some state s; along
7, we have M, s; =~ 8

iff there is a path m = s, s1, 3, ..., where s = s, for some state s; along

7, we have N, s; = f(~f) (by induction hypothesis for 2)
iff N, s = BFf(~p)
iff N,s | f(~AGp)) (by the definition of f).

Case a = A(BU~x): For (1), we obtain:

M,s =" A(BUy)

iff for all paths m = s¢, s1, S2, ..., where s = sq, there is a state s; along 7
such that [M, sy T v and Vj[i < j < k implies M, s; T j]
iff for all paths m = s, s1, S2, ..., where s = s, there is a state s; along

m such that [N, s, = f(v) and Vj[i < j < k implies N, s; = f(5)] (by
induction hypothesis for 1)

iff N,s = A(f(B)Uf(7))
iff N,sE f(A(BU7)) (by the definition of f).

For (2), we obtain:

M, s =" A(BUy)

iff there is a path m = s¢, 51, 52,..., where s = 50, and for all states s;
along 7, we have [Vi < j not-[M,s; =~ f] implies M,s; =~ 7]

iff there is a path m = sg, s1, 52, ..., where s = sg, and for all states s;
along 7, we have [Vi < j not-[N,s; = f(~f)] implies N,s; = f(~7)]
(by induction hypothesis for 2)

iff N, s = B(f(~B)RS(~)

ifft N,sE f(~(A(SU%))) (by the definition of f).

Lemma 3.3

Let f be the mapping defined in Definition 3.1. For any Kripke structure N :=
(S, S0, R, L) for CTL, and any satisfaction relation = on N, we can construct
a paraconsistent Kripke structure M := (S, Sy, R, L*, L) for PCTL and satis-
faction relations =" and =" on M such that for any formula « in £~ and any

state s in S,

Paraconsistent Computation Tree Logic*? 13

1. N,sk f(o)iff M,s =1 o,
2. N,skE f(~a)iff M,s E~ a.

Proof. Similar to the proof of Lemma 3.2. |

Theorem 3.4 (Embedding)
Let f be the mapping defined in Definition 3.1. For any formula «, « is valid in
PCTL iff f(«) is valid in CTL.

Proof. By Lemmas 3.2 and 3.3. |

Theorem 3.5 (Decidability)
The model-checking, validity, and satisfiability problems for PCTL are decidable.

Proof. By the mapping f defined in Definition 3.1, a formula « of PCTL can
finitely be transformed into the corresponding formula f(«) of CTL. By Lem-
mas 3.2 and 3.3 and Theorem 3.4, the model checking, validity, and satisfiability
problems for PCTL can be transformed into those of CTL. Since the model
checking, validity, and satisfiability problems for CTL are decidable, the prob-
lems for PCTL are also decidable. |

Since the mapping f from PCTL into CTL is a polynomial-time reduc-
tion, the complexity results for PCTL are the same as those for CTL, i.e., the
validity, satisfiability, and model-checking problems for PCTL are EXPTIME-
complete, deterministic EXPTIME-complete, and deterministic PTIME-complete,

respectively.

84 Illustrative Examples

Paraconsistent logic and temporal logic are known to be useful in med-
ical informatics. We now consider examples of state structures for representing
the health of non-smokers and smokers, as shown in Figure 1. In the state
structure, the medical state of a person is described in a decision diagram where
branching-tree structures and negative connectives from PCTL are employed.
In this example, a paraconsistent negation ~« in PCTL is used to express the
negation of ambiguous concepts. For instance, if we cannot determine whether
someone is healthy, the ambiguous concept healthy can be represented by as-

serting the inconsistent formula

healthy A ~healthy.

14 Norihiro KAMIDE

medicalCheckup healthy

—hasCancer
cured

—smoking

~healthy cancerIncrease died

hasCancer

hasCancer hasCancer

smoking l T continuing continuing

VA

healthy
~healthy

medicalCheckup hasCancer
—has ce

Fig. 1 State structure for representing the health of smokers and non-smokers

This is well formalized because (healthy A ~healthy)— L is not valid in para-
consistent logic. On the other hand, we can decide whether someone is smok-
ing; the decision is represented by smoking or —smoking, where (smoking A
—smoking)— L is valid in classical logic.

In the state structure of Figure 1, the initial state implies that a person
is not smoking (—smoking is true). The system can move to the other state
to indicate that the person is smoking (smoking is true). When a person un-
dergoes a medical checkup, his or her state changes to one of the two states.
Even if no cancer is detected in a smoker during the medical checkup, he or
she is both healthy and not healthy, i.e., both healthy and ~healthy are true
because smoking is detrimental to health. If cancer is detected (hasCancer is
true) in a non-smoker (or smoker), then ~healthy is true. This means that the
person is not healthy, but he or she may return to good health if the cancer does
not increase. In these states, ~healthy represents ambiguous negative informa-
tion that can be true at the same time as healthy, which represents positive
information

Moreover, when the cancer increases, the diagnosis reveals worse cancer.
If the cancer is cured, the patient will be healthy. Otherwise, if the cancer is not
controlled, the patient will die.

We define a Kripke structure M = (S, Sy, R, L™, L™) that corresponds

to the medical state structure as follows:

Paraconsistent Computation Tree Logic*? 15

S = {50751752753784785786}7
So = {s0},
R = {(807 81)7 (807 82)7 (807 83)7 (517 80)7 (817 83>7 (817 84)7 (527 83)7 (837 82)7

@

. L™ (s5) = {cancerIncrease, hasCancer},
10. LT (s¢) = {died, hasCancer},
11. L™ (sg) = L™ (s1) =L (s2) = L™ (s5) = L™ (s¢) = 0,
12. L™ (s3) = L™ (s4) = {healthy}.

We can verify the existence of a path that represents the required infor-
mation in the structure M. For example, we can verify the following statement:
“Is there a state in which a person is both healthy and not healthy?” This

statement is expressed as:
EF (healthy A ~healthy).

The above statement is true because we have a path so—s1—s4 where healthy €
L7 (s4) and healthy € L™ (s4).

In addition, the statement that “Is there a state in which a dead person
will not be alive again?” can be expressed as:

EF(died N “EF—died).

This statement is verified as true because there is a path sg—s3—s5—sg with
died € L1 (sg) but there is no path from sg to another state (i.e., there is no
state & such that sg—x).

In order to justify the usefulness of PCTL, two negative expressions can

be differently interpreted as follows:

—healthy (definitely unhealthy)
~healthy (not healthy)

The first statement indicates that a person is definitely unhealthy that is incon-
sistent with his or her healthy. The second statement means that we can say
that a person is not healthy but he or she may be healthy.

The interpretation of the two negations leads to some useful verification

examples for more complex statements. For example, the statement that “Is

16 Norihiro KAMIDE

there a state in which a person is not definitely unhealthy?” can be expressed

as:
EF—-—healthy.

This statement is verified as true because there is a path from sg to two states
s € {s9,54} such that M,s =" ——healthy. It is derived from that M,s =+
—healthy iff healthy € L™ (s). Moreover, the statement that “Is there a state in

which it is not true that a person is not healthy?” can be expressed as:
EF-~healthy.

This statement is verified as true because there is a path sg—so with M, so)=+
—~healthy (iff M, sy =T ~healthy iff M, sy [~ healthy iff healthy ¢ L™ (s2)).

Importantly, the statement that “a person is not definitely unhealthy”
holds in state s4 but the statement that “it is not true that a person is not
healthy” does not hold in state s;. The two negations can be used to control

inconsistencies and paraconsistencies in the examples.

85 Related works

We now describe and compare some previous studies. Some CTL-based
paraconsistent temporal logics and their variants have been studied by several
researchers.® * % '

An application of multi-valued, paraconsistent model-checking for re-
quirements elicitation in software engineering was studied by Easterbrook and
Chechik” based on the multi-valued computation tree logic (YCTL) with the al-
gebraic structures called quasi-Boolean logics. The Kripke structures for this
framework were based on a multi-valued transition relation and a multi-valued
valuation (labeling) function. The multi-valued valuation function was a very
general setting because it can express n-valued truth values for any natural num-
ber n. The present framework, i.e., the N4-based framework, may be treated as
a special case of the multi-valued framework since the two valuation functions
used in this paper, which are inductively extended to =" and =", can be trans-
formed into a four-valued valuation function. PCTL is not in a general setting
as in xCTL, but it is simpler than xCTL, since it does not use any additional
algebraic structures like the quasi-Boolean logics.

The xCTL model-checking framework was extended by Chechik and
MacCaull® to include reasoning in logics with non-classical negation (in partic-

ular, intuitionistic, minimal, and Galois negations). An automatic verification

Paraconsistent Computation Tree Logic*? 17

procedure for the cases in which the number of truth values is finite was devel-
oped on the basis of these logics. Some temporal operators in these logics were
defined on the basis of yCTL, and they were shown to be computable using
fixpoints.

A quasi-classical temporal logic QCTL was studied by Chen and Wu®
in order to formalize reasoning on concurrent systems containing inconsistent
information. In the work, paraKripke structures were introduced for QCTL,
and a proof system that was sound and complete with respect to paraKripke
structures was presented. In QCTL, a set of positive and negative objects,
which is constructed from a set of atomic formulas, is used; in other words,
a positive object +p and a negative object —p are obtained from an atomic
formula p. Moreover, two satisfaction relations (a strong satisfiability relation
s and a weak satisfiability relation |=t,,) are used for QCTL. The positive and
negative objects +p and —p in QCTL roughly correspond to p and ~p in PCTL,
respectively. However, = and =4, in QCTL do not correspond to = and =~
in PCTL. Further, in QCTL, some clauses and quasi-clauses are used to define
semantics, but this is not the case in PCTL.

In a previous study,' we introduced a paraconsistent four-valued “full”
computation tree logic 4CTL* and a paraconsistent four-valued “locative full”
computation tree logic 4LCTL*. Some bisimulation theorems for these logics and
a theorem for embedding 4CTL* into CTL* were presented. However, the proof
of the theorem for embedding 4CTL* into CTL* was rather complex and tedious
since in the proof, the Kripke semantics (of 4CTL*) with =1 and =~ must be
translated into a Kripke semantics with a single satisfaction relation. Namely,
the proof in the study'® needed two steps. Firstly, a single satisfaction semantics,
which has only one satisfaction relation |=, was introduced. = includes the

following clauses:

M77T'ZNN51 lﬁ M77T':ﬁl7
M, = ~(By A By) it M, = ~py or M, |= ~f,,
M, 7 = ~Gg, iff 3k >0 [M, 7" = ~pB]

where 7 represents a path (i.e., a sequences of states) and 3, 8, represent path
formulas in 4CTL*. Then, an equivalence between this semantics with = and
the dual satisfaction semantics with both =1 and =" was proved by induction
on formulas. Secondly, a theorem for embedding 4CTL* into CTL* was proved
based on |=. By the equivalence theorem and the embedding theorem w.r.t. |,
we finally obtained the required embedding theorem w.r.t. =1 and =~. The

18 Norihiro KAMIDE

present proof of the theorem for embedding PCTL into CTL is simpler and easier
than that of the theorem for embedding 4CTL* into CTL*, since the redundant
step for providing a single satisfaction semantics and for showing an equivalence
theorem between = and (=1, =) is not required in this proof.

From an implementation point of view, PCTL is more useful and effi-
cient than 4CTL* because of the complexity results of PCTL and 4CTL*. The
validity, satisfiability, and model-checking problems for PCTL are EXPTIME-
complete, deterministic EXPTIME-complete and deterministic PTIME-complete,
respectively. However, the validity, satisfiability, and model-checking problems
for 4CTL* are 2EXPTIME-complete, deterministic 2EXPTIME-complete and
PSPACE-complete, respectively. This computational difference makes an essen-
tial impact on an implementation of reasoning algorithms. Therefore, PCTL
is regarded as a computational improvement on 4CTL*. That is, PCTL can
use an efficient CTL-based model-checking algorithm but 4CTL* cannot use the
algorithm because 4CTL* is CTL*-based. To our best knowledge, well-used
model-checkers (e.g., NuSMV) are limited to CTL-based.

Some many-valued (including paraconsistent 4-valued) model-checkers
have been studied by Gurfinkel et al.*® '™ In software model checking, typical
model checkers are used for refutation as well as verification because of their
high bug-finding abilities. A software model checker Yasm'> '" which is based
on xYCTL is the first approach to combine verification and refutation based on
the abstraction technique GEGAR.® Since PCTL is regarded as a refined special
case of YCTL, the use of two satisfaction relations =1 and =~ in PCTL entails

a theoretical justification for combining verification and refutation.

86 Concluding remarks

In this paper, a new paraconsistent computation tree logic, PCTL, was
introduced by combining CTL and Nelson’s paraconsistent logic N4. This logic
could be used appropriately in medical reasoning to deal with inconsistent data
and uncertain concepts. The theorem for embedding PCTL into CTL was
proved. The validity, satisfiability, and model-checking problems of PCTL were
shown to be decidable. The embedding and decidability results indicate that
we can reuse the existing CTL-based algorithms to test the validity, satisfia-
bility, and model-checking. Thus, it was shown that PCTL can be used as an
executable logic to represent temporal reasoning on paraconsistency. As a fu-

ture task, we believe that over- and under-approximating abstractions can be

Paraconsistent Computation Tree Logic*? 19

appropriately combined using a PCTL-based model-checker with =1 and =~.9
We also believe that PCTL can be extensively used for inconsistency-tolerant
and uncertainty reasoning, since N4 and its variants are known to be very use-
ful for a wide range of applications such as logic programming and knowledge
representations.' 1% 13- 2% 28)

Although another important property called paracompleteness™ '™ is not
discussed so far, the paraconsistent negation connective ~ in PCTL is also para-
complete. The paracompleteness is regarded as the dual notion of paraconsis-
tency: a paracomplete negation ~ is a unary operator that does not satisfy the
law of excluded middle o V ~a. In (extensions of) standard classical proposi-
tional logic, o V =« is valid. This means that the information represented by
the classical negation connective — is complete information: every formula « is
either true or not true in a model. Representing only complete information is
plausible in classical mathematics, which is a discipline handling eternal truth
and falsehood. The statements of classical mathematics do not change their
truth value in the course of time. The assumption of complete information is,
however, inadequate when it comes to representing the information available to
real world agents. We wish to explore the consequences of incomplete informa-
tion about computer and information systems, and then it is desirable to avail
of a paracomplete negation connective.

A limitation or demerit of extending CTL with paraconsistency and
paracompleteness may be that to construct a good proof (or deductive) system
(e.g., Gentzen-type sequent calculus) for such a logic is difficult. In order to
avoid such a difficulty, we need other base temporal logics such as linear-time
temporal logic (LTL).>

We conclude with some remarks on alternatives to PCTL. In a Kripke
structure (S, So, R, L™, L), imposing the condition Vs € S [LT(s)N LT (s) = 0)]
is equivalent to the asserting that the underlying logic is a non-paraconsistent
three-valued logic. Now, the logic obtained by imposing the condition on PCTL
is called 3CTL. Although 3CTL is not paraconsistent, the corresponding embed-
ding and decidability results can be obtained in a similar manner. The results
for PCTL and 3CTL can also be adapted and applied to LTL. Our framework
for paraconsistent negation may thus be applicable to a wide range of temporal

and non-classical logics.

20 Norihiro KAMIDE

Acknowledgment This research was supported in part by the
Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young
Scientists (B), No.17700164 and No.20700015, and was also supported by the

Alexander von Humboldt Foundation.

References

1) A. Almukdad and D. Nelson, Constructible falsity and inexact predicates,
Journal of Symbolic Logic 49, pp. 231-233, 1984.

2) J.-Y. Béziau, The future of paraconsistent logic, Logical Studies 2, Online
available, 1999.

3) M. Chechik and W. MacCaull, CTL model-checking over logics with non-
classical negations, Proceedings of the 33rd IEEE International Conference on
Multi-valued logics (ISMVL’03), pp. 293-300, 2003.

4) D. Chen and J. Wu, Reasoning about inconsistent concurrent systems: A non-
classical temporal logic, Lecture Notes in Computer Science 3831, pp. 207-217,
2006.

5) E.M. Clarke and E.A. Emerson, Design and synthesis of synchronization skele-
tons using branching time temporal logic, Lecture Notes in Computer Science
131, pp. 52-71, 1981.

6) E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, Counterexample-
guided abstraction refinement for symbolic model checking, Journal of the ACM
50 (5), pp. 752-794, 2003.

7) E.M. Clarke, O. Grumberg, and D.A. Peled, Model checking, The MIT Press,
1999.

8) N.C.A. da Costa, J. Béziau and O.A. Bueno, Aspects of paraconsistent logic,
Bulletin of the IGPL 3 (4), 597-614, 1995.

9) S. Easterbrook, and M. Chechik, A framework for multi-valued reasoning
over inconsistent viewpoints, Proceedings of the 23rd International Conference
on Software Engineering (ICSE 2001), pp. 411-420, 2001.

10) A. Gurfinkel, O. Wei, and M. Chechik, Yasm: a software model-checker for
verification and refutation, Proceedings of the 18th International Conference,
Computer Aided Verification (CAV’06), Lecture Notes in Computer Science
4144, pp. 170-174, 2006.

11) A. Gurfinkel, and M. Chechik, Why wast a perfectly good abstraction?, Pro-
ceedings of the 12th International Conference, Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS’06), Lecture Notes in Computer
Science 3920, pp. 212-226, 2006.

12) Y. Gurevich, Intuitionistic logic with strong negation, Studia Logica 36, pp.
49-59, 1977.

13) N. Kamide, Linear and affine logics with temporal, spatial and epistemic
operators, Theoretical Computer Science 353 (1-3), pp. 165-207, 2006.

14) N. Kamide, Extended full computation-tree logics for paraconsistent model
checking, Logic and Logical Philosophy 15 (3), pp. 251-276, 2006.

Paraconsistent Computation Tree Logic*! 21

15) N. Kamide, A uniform proof-theoretic foundation for abstract paraconsistent
logic programming, Journal of Functional and Logic Programming, pp. 1-36,
2007.

16) N. Kamide and K. Kaneiwa, Paraconsistent negation and classical negation
in computation tree logic, Proceedings of the 2nd International Conference on
Agents and Artificial Intelligence (ICAART 2010), Vol. 1. AI, pp. 464-469,
INSTICC Press, 2010.

17) N. Kamide and H. Wansing. Combining linear-time temporal logic with con-
structiveness and paraconsistency, Journal of Applied Logic, 8:33-61, 2010.

18) K. Kaneiwa, Order-sorted logic programming with predicate hierarchy, Arti-
ficial Intelligence 158 (2), pp. 155-188, 2004.

19) K. Kaneiwa, Description logics with contraries, contradictories, and subcon-
traries, New Generation Computing 25 (4), pp. 443-468, 2007.

20) K. Kaneiwa and K. Satoh, On the complexities of consistency checking for
restricted UML class diagrams, Theoretical Computer Science 411(2), pp. 301—
323, 2010.

21) T. Murata, V.S. Subrahmanian and T. Wakayama, A Petri net model for
reasoning in the presence of inconsistency, IEEE Transactions on Knowledge
and Data Engineering 3 (3), pp. 281-292, 1991.

22) D. Nelson, Constructible falsity, Journal of Symbolic Logic, 14, pp. 16-26,
1949.

23) S.P. Odintsov and H. Wansing, Inconsistency-tolerant description logic: Moti-
vation and basic systems, In: V.F. Hendricks and J. Malinowski, Editors, Trends
in Logic: 50 Years of Studia Logica, Kluwer Academic Publishers, Dordrecht,
pp. 301-335, 2003.

24) G. Priest and R. Routley, Introduction: paraconsistent logics, Studia Logica,
43, pp. 3-16, 1982.

25) A. Pnueli, The temporal logic of programs, Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pp. 46-57, 1977.

26) W. Rautenberg, Klassische und nicht-klassische Aussagenlogik, Vieweg,
Braunschweig, 1979.

27) N.N. Vorob’ev, A constructive propositional calculus with strong negation (in
Russian), Doklady Akademii Nauk SSR 85, pp. 465—468, 1952.

28) G. Wagner, Logic programming with strong negation and inexact predicates,
Journal of Logic and Computation 1 (6), pp. 835-859, 1991.

29) H. Wansing, The logic of information structures, Lecture Notes in Artificial
Intelligence 681, 163 pages, 1993.

