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Abstract

An order-sorted logic can be regarded as a generalized first-order predicate logic that includes many
and ordered sorts (i.e. a sort-hierarchy). In the fields of knowledge representation and AI, this logic with
sort-hierarchy has been used to design a logic-based language appropriate for representing taxonomic
knowledge. By incorporating the sort-hierarchy, order-sorted resolution and sorted logic programming
have been formalized that provide efficient reasoning mechanisms with structural representation. In
this work, Beierle et al. developed an order-sorted logic to couple separated taxonomic knowledge and
assertional knowledge. Namely, its language allows us to make use of sorts to denote not only the types
of terms but also unary predicates (called sort predicates). In this paper, we propose a sorted logic
programming language with sort predicates in order to improve the practicability of the logic proposed
by Beierle et al. The linear resolution is obtained by adding inference relative to sort predicates and
subsort relations. In the semantics, the terms and formulas that follow the sorted signature extended
with sort predicates are interpreted over its corresponding Σ+-structures. Finally, we build the Herbrand
models of programs containing sort predicates, and thus prove the soundness and completeness of this
logic programming.

order-sorted logic, sort predicate, logic programming, knowledge base system

1 Introduction

Knowledge representation languages based on logic leads to sound inference systems because of their rigorous
syntax, semantics and inference machinery. However, predicate logic used commonly as a tool of knowledge
representation is not sufficient for representing structural knowledge, not only ‘flat’ knowledge [4]. In order to
solve the lack of expressivity without losing the theoretical foundation, various logic languages [1, 2, 13, 11, 12]
with class-hierarchies (or sort-hierarchies) have been proposed. These are called hybrid languages that
include two kinds of knowledge representation: taxonomical knowledge and assertional knowledge. Using
these languages, we can describe a sort-hierarchy as taxonomical knowledge, the elements of which are used
to declare the sorts of variables, functions and predicates in formulas as assertional knowledge. Among such
hybrid languages, Frisch’s sorted logic [6] contains a sort theory, which is a set of unary predicate formulas,
to handle sort information (e.g. a sort-hierarchy).

In the area of mathematical logic, many-sorted logic [8] has been studied as first-order predicate logic
generalized by introducing many sorts. In particular, it is said to be order-sorted logic [15] if sorts are ordered.
These sorted logics provide theoretical foundations for knowledge base systems with class-hierarchies. Table 1
arranges sorted logics and their inference systems for general/Horn clauses, in which sorted logics are classified
as one-sorted, many-sorted and order-sorted. One-sorted logic corresponds to first-order predicate logic for
which efficient inference systems have been proposed, e.g., resolution principle and logic programming. Also
many-/order-sorted logics have their resolution systems [18, 19, 16, 20] and logic programming [9, 7].

On the other hand, Beierle et al. [3] presented a practical order-sorted logic that was inspired by hybrid
knowledge base systems. In knowledge representation, sort symbols are used to build a sort-hierarchy and
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Table 1: Studies of sorted logics

Sorted logics Sort expression Inference for clauses Inference for Horn clauses

first-order predicate logic one sort resolution logic programming

many-sorted logic many sorts sorted unification + resolution sorted logic programming
order-sorted logic　 ordered sorts

sorted logic with sort predicates [3] a sort-hierarchy and inference rules for sort predicates +
sort predicates sorted unification + resolution

Figure 1: The use of sort predicates in a knowledge base

s1

s2 s3

s4 s5 s6

p1(x: s1) ∨ p2(y: s2)

p1(c: s1)

s1(c2: s2) ∨ p1(c3: s1)

s4(c4: s1)

A sort-hierarchy A knowledge base

to denote the sorts of variables, functions and predicates. Moreover, since sorts are semantically equivalent
to unary predicates, it is required that each sort is used as a predicate. However, sorts and predicates are
syntactically unrelated to each other, and then ordinary sorted inference systems can not deal with sorts
as predicates. Therefore, by introducing unary predicates (called sort predicates) corresponding to sorts
and new inference rules, the authors enabled an order-sorted logic to combine sorts in a sort-hierarchy with
assertional knowledge in a knowledge base (as shown in Figure 1). x: s expresses a variable of sort s, and c: s
denotes a constant of sort s. For any predicate p, p(x: s) expresses that x of sort s is in p. Furthermore, s(t)
where s is a sort predicate denotes that a term t is in s. In addition to the extension of the language, they
introduced new inference rules for knowledge base reasoning that were based on the subsort relation s 1 ≤ s2
regarded as the implication s1(x)→ s2(x). Let C,C1, C2 be clauses, s, s1, s2 sorts or sort predicates, t, t1, t2
sorted terms and sort(t) the sort of term t. With sorted substitution and unification the two inference rules 1

shown in [3] are given by the following.

¬s1(t1) ∨ C1 s2(t2) ∨ C2

(C1 ∨ C2)θ
(subsort)

where s2 ≤ s1 and t1θ = t2θ.

¬s(t)∨ C
Cθ

(sort predicate)

where sort(tθ) ≤ s. The first is an inference rule with respect to subsorts, and the second is an elimination
rule of sort predicates the assertions of which are false. These rules generate reasoning for sorts in assertional
knowledge. However, in order to supply a foundation to implement knowledge representation languages, it
is needed that more effective reasoning mechanisms are formalized such as linear resolution for Horn clauses
in the sorted logic.

1These rules are obtained by simplifying the inference rules proposed in [3]. But the original rules include them and guarantee
the soundness.
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In this paper, we present logic programming equipped with ordered sorts and sort predicates, and prove
the soundness and completeness of the linear resolution. For this purpose, we need to incorporate the
following into the logic programming language:

• Horn clausal forms with sort predicates

• An inference rule into which the resolution rules in [3] are integrated

• Linear resolution for goal clauses

• Herbrand Σ+-models of programs with sort predicates

The first is to employ restricted clausal forms, which are Horn clausal forms L← L 1 ∧ . . . ∧ Ln, a finite
set of which is called a program. The second and third are to integrate the resolution rules for dealing with
sort predicates into a resolution rule, and to define its linear resolution. One of the resolution rules is deleted
by identifying a goal (which we call a successful goal) that indicates a contradiction (not only the empty
clause), instead of applying the rule. In the forth, we define Σ +-interpretations of a sort-hierarchy and sort
predicates in the semantics. By the interpretations, we construct Herbrand Σ +-models of programs with
sort predicates and then prove the soundness and completeness of the linear resolution.

This paper is organized as follows. Section 2 introduces an order-sorted language with sort predicates,
sorted signatures and structures. In Section 3, we define logic programming in the language introduced in
Section 2 that is based on resolution rules for dealing with sort predicates. We prove the soundness and
completeness of the linear resolution in Section 4. Finally, Section 5 gives our conclusion.

2 An order-sorted language with sort predicates

2.1 Syntax

First, we define the syntax of an order-sorted language with sort predicates. In the syntax, Horn clausal
forms are defined as the formulas of the language.

Definition 2.1 The alphabet of an order-sorted language L with sort predicates contains the following sym-
bols.

(1) S: an infinite set of sort symbols s1, s2, . . . including the greatest sort �

(2) Fn: an infinite set of n-ary (n ≥ 0) function symbols f1, f2, . . .

(3) Pn: an infinite set of n-ary (n ≥ 0) predicate symbols p1, p2, . . .

(4) Vs: an infinite set of variables x: s, y: s, z: s, . . . of sort s

(5) ←, (, ): the connective and auxiliary symbols

For all sorts s ∈ S−{�}, the predicates ps, called sort predicates, indexed by the sorts s are introduced,
in which sort predicates are unary predicates, i.e., p s ∈ P1. The set of sort predicates is denoted by
PS = {ps | s ∈ S − {�}}. We assume that the language L contains sort predicates.

Definition 2.2 (Signatures) A signature of L with sort predicates is a tuple Σ = (S,Ω,≤) such that:

(1) (S,≤) is a partially ordered set of sorts.

(2) If f ∈ Fn, then f : s1 × · · · × sn → s ∈ Ω.

(3) If p ∈ Pn, then p: s1 × · · · × sn ∈ Ω. In particular, for all sort predicates ps ∈ PS, ps:� ∈ Ω.

Next, given a signature Σ of language L we define expressions: terms, atomic formulas (atoms), goals
and clauses.
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Definition 2.3 (Terms) The set Ts of terms of sort s is defined by the following.

(1) If x: s ∈ Vs, then x: s ∈ Ts.

(2) If t1 ∈ Ts1 , . . . , tn ∈ Tsn
, f ∈ Fn and f : s1 × · · · × sn → s ∈ Ω, then f(t1, . . . , tn): s ∈ Ts.

(3) If t ∈ Ts′ and s′ ≤ s, then t ∈ Ts.

The set of terms of all sorts is denoted by T =
⋃

s∈S Ts. The set of variables of all sorts is denoted by
V =

⋃
s∈S Vs. The function sort:T → S that assigns to each term its sort is defined by: (i) sort(x: s) = s

and (ii) if f ∈ Fn and f : s1 × · · · × sn → s ∈ Ω, then sort(f(t1, . . . , tn): s) = s.

Definition 2.4 The function V ar:T → 2V is defined by the following.

(1) V ar(x: s) = {x: s},

(2) V ar(c: s) = ∅ for c ∈ F0, and

(3) V ar(f(t1, . . . , tn): s) =
⋃

1≤i≤n V ar(ti) for f ∈ Fn(n ≥ 1).

T0 = {t ∈ T |V ar(t) = ∅} is the set of terms without variables. The terms t ∈ T 0 without variables are called
ground terms. Moreover, the set of ground terms of sort s is denoted by T 0,s = T0 ∩ Ts.

Definition 2.5 Given a signature Σ, the set A of atoms, the set G of goals and the set C of clauses are
defined by the following.

(1) If t1 ∈ Ts1 , . . . , tn ∈ Tsn
, p ∈ Pn and p: s1 × · · · × sn ∈ Ω, then p(t1, . . . , tn) ∈ A.

(2) If L1, . . . , Ln ∈ A (n ≥ 0), then {L1, . . . , Ln} ∈ G.

(3) If G ∈ G and L ∈ A, then L← G ∈ C.

An atom ps(t) with ps ∈ PS is denoted by s(t) when this will not cause confusion. In (2) of Definition 2.5,
G = {L1, . . . Ln} is said to be the empty goal (denoted G = �) if n = 0. The clauses L← G are denoted by
L← if G is the empty goal.

Example 2.1 Consider the signature Σ = (S,Ω,≤∗) of language L, where ≤∗ is the reflexive and transitive
closure of ≤, consisting of

S = { man, student,male student, person,� },
≤ = { (man, person), (student, person),

(male student,man),
(male student, student), (person,�) },

Ω = {ps:� | s ∈ S} ∪
{ studying: person, john:→ man }.

We give an example of clauses as follows.

male student(john:man)←,
studying(x: person)← {student(x: person)}.

Definition 2.6 The function EV ar:A ∪ G ∪ C → 2V is defined by the following.

(1) EV ar(p(t1, . . . , tn)) = V ar(t1) ∪ · · · ∪ V ar (tn)

(2) EV ar({L1, . . . , Ln}) = EV ar(L1) ∪ · · · ∪ EV ar(Ln)

(3) EV ar(L← G) = EV ar(L) ∪ EV ar(G)
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2.2 Semantics

Definition 2.7 (Σ-structures) Given a signature Σ, a Σ-structure M is a pair (U, I) such that:

• U is a non-empty set.

• I is a function where

– if s ∈ S, then I(s) ⊆ U (In particular, I(�) = U),

– if si ≤ sj, then I(si) ⊆ I(sj),

– if f ∈ Fn and f : s1 × · · · × sn → s ∈ Ω, then I(f): I(s1)× · · · × I(sn)→ I(s), and

– if p ∈ Pn and p: s1 × · · · × sn ∈ Ω, then I(p) ⊆ I(s1)× · · · × I(sn).

A Σ-structure M = (U, I) is said to be a Σ+-structure if the following conditions hold.

• If s ∈ S, then I(s) ⊆ I(ps).

• If si ≤ sj , then I(psi
) ⊆ I(psj

).

The first condition means that the interpretation of sort s affects the interpretation of sort predicate p s.
This leads to that if d ∈ I(s), then d ∈ I(ps). It is required that all sort predicates semantically satisfy at
least the condition. Additionally, we can impose the strong condition I(s) = I(p s). But to avoid reducing
the class of models, the weak condition I(s) ⊆ I(p s) is chosen.

Given a function f , Dom(f) denotes the domain of f . Let V ′ be a subset of V . A variable assignment
on a Σ-structure M = (U, I) is a function α:V ′ → U where for all x: s ∈ V ′, α(x: s) ∈ I(s). α is simply
called a variable assignment if Dom(α) = V . Otherwise (i.e. Dom(α) = V ), it is called a partial variable
assignment. The composition of a variable assignment α and a partial variable assignment β is defined by
αβ = α−{(x: s, α(x: s)) | x: s ∈ Dom(β)}∪β. A Σ-interpretation I is a pair (M,α) of a Σ-structure M and
a variable assignment α. The interpretation (M,αβ) is denoted by Iβ.

Definition 2.8 Given a Σ-interpretation I = (M,α), the denotation [[ ]]α:T → U is defined by the following.

• [[x: s]]α = α(x: s)

• [[c: s]]α = I(c)

• [[f(t1, . . . , tn): s]]α = I(f)([[t1]]α, . . . , [[tn]]α)

By the definition above, we define a satisfiability relation I |= E where I is a Σ-interpretation and E is
a formula.

Definition 2.9 Let I = (M,α) be a Σ-interpretation. The Σ-satisfiability relation |=Σ⊆ I × (A∪G ∪ C) is
defined inductively as follows.

• I |=Σ p(t1, . . . , tn) iff ([[t1]]α, . . . , [[tn]]α) ∈ I(p).

• I |=Σ {L1, . . . , Ln} iff I |=Σ L1, . . . , I |=Σ Ln.

• I |=Σ L ← G iff for any partial variable assignment γ such that Dom(γ) = EV ar(L ← G), if
Iγ |=Σ G, then Iγ |=Σ L.

Let I be a Σ-interpretation. I is said to be a Σ-model of Γ (denoted I |= Σ Γ) if for every formula A ∈ Γ,
I |=Σ A. Γ is said to be Σ-satisfiable if Γ has a Σ-model. Otherwise, it said to be Σ-unsatisfiable. A is a
consequence of Γ in the class of Σ-structures (denoted Γ |= Σ A) if every Σ-model of Γ is a Σ-model of A. In
particular, {B} |=Σ A is denoted by B |=Σ A. A Σ-interpretation I = (M,α) is a Σ+-interpretation if M
is a Σ+-structure. Its satisfiability relation is called a Σ+-satisfiability relation |=Σ+ . Likewise, Σ+-models,
Σ+-satisfiability, Σ+-unsatisfiability and consequences in the class of Σ+-structures can be defined.
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3 Logic Programming

Definition 3.1 (Program) Let Σ be a signature. A program is a finite set PΣ ⊆ C of clauses.

Definition 3.2 (Sorted substitution) A sorted substitution is a partial function θ:V → T such that:

• θ(x: s) ∈ Ts − {x: s},

• Dom(θ) ⊆ V is finite.

By the first condition, a sorted substitution is restricted to a mapping from sorted variables x: s to sorted
terms t (∈ Ts), where Ts includes terms of the sort s of the variable x: s and its subsorts2. Each sorted
substitution can be represented by a finite set {x1: s1/t1, . . . , xn: sn/tn}.

Let θ be a sorted substitution. θ is called a sorted ground substitution if for every variable x: s ∈ Dom(θ),
θ(x: s) is a ground term, i.e., V ar(θ(x: s)) = ∅. Let V ′ be a subset of V . The restriction of a sorted
substitution θ to V ′ is defined by θ ↑ V ′ = {x: s/θ(x: s) | x: s ∈ V ′ ∩ Dom(θ)}. θ is a sorted ground
substitution for V ′ if V ′ ⊆ Dom(θ) and θ↑V ′ is a sorted ground substitution. The identity substitution the
domain of which is empty is denoted by ε.

The sorted substitution is extended to the expressions: terms, atoms, goals and clauses.

Definition 3.3 　 Let E ∈ T ∪ A ∪ G ∪ C. Eθ is defined by the following.

• x: sθ = θ(x: s) if x: s ∈ Dom(θ),

• x: sθ = x: s if x: s ∈ Dom(θ),

• f(t1, . . . , tn)θ = f(t1θ, . . . , tnθ),

• p(t1, . . . , tn)θ = p(t1θ, . . . , tnθ),

• {L1, . . . , Ln}θ = {L1θ, . . . , Lnθ},

• (L← G)θ = Lθ← Gθ.

Let θ1, θ2 be sorted substitutions. The composition θ 1θ2 of substitutions θ1 and θ2 is defined by
(x: s)θ1θ2 = ((x: s)θ1)θ2. θ2 is more general than θ1 if there exists a substitution γ such that θ 1 = θ2γ.
Let E1, E2 ∈ T ∪A∪G ∪C. A sorted substitution θ is a unifier of E1 and E2 if E1θ = E2θ. A unifier θ of E1

and E2 is a most general unifier (mgu) if it is more general than every unifier of E1 and E2. In this paper,
in order to decide a unique most general unifier, we assume that given sort-hierarchies are meet-semilattices.
Namely, for any two sorts in a sort-hierarchy, there exists the greatest lower bound. If a sort-hierarchy is
not a meet-semilattice, then a meet-semilattice constructed from it (as shown in [4]) can be obtained.

Lemma 3.1 Let I be a Σ-interpretation, L← G a clause and θ a sorted substitution. If I |=Σ L← G, then
I |=Σ (L← G)θ.

Proof. Suppose I |=Σ L ← G where I = (M,α) is a Σ-interpretation. By Definition 2.9, for any partial
variable assignment β such that Dom(β) = EV ar(L← G), if Iβ |=Σ G, then Iβ |=Σ L. On the other hand,
let γ be a partial variable assignment defined by Dom(γ) = EV ar((L← G)θ) and let β(x: s) = [[θ(x: s)]] αγ .
Then, Iβ |=Σ L← G iff Iγ |=Σ (L← G)θ. Hence we have I |=Σ (L← G)θ.

Let θ be a sorted substitution and C a clause. Cθ is called an instance of C. The set of all ground
instances of C is denoted by ground(C). We write ground(∆) for

⋃
c∈∆ ground(C).

Let PΣ be a program and G a goal. Linear resolution is a proof method obtained through applications
of the following inference rule to a goal G and clauses in PΣ.

2By Definition 2.3, Ts denotes the set of terms of sort s and its subsorts.
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Definition 3.4 (Cut rule) Let L′ ← G′ ∈ PΣ. If θ is a unifier of L ∈ G and L′, then (G−{L})θ∪G′θ is
a subgoal of G with respect to L and L′ ← G′, written by

G
θ−→R1 (G− {L})θ ∪G′θ

Furthermore, sort predicates allow us to introduce two inference rules that are based on the inference
rules of [3] explained in Section 1. The linear resolution version of the rules is given by the following.

Definition 3.5 (Subsort rule) Let s(t) ∈ G and s′(t′)← G′ ∈ PΣ. If s′ ≤ s and θ is a unifier of t and t′,
then (G− {s(t)})θ ∪G′θ is a subgoal of G with respect to s(t) and s′(t′)← G′, written by

G
θ−→R2 (G− {s(t)})θ ∪G′θ

Definition 3.6 (Sort predicate rule) If s(t) ∈ G and sort(tθ) ≤ s, then (G− {s(t)})θ is a subgoal of G
with respect to s(t), written by

G
θ−→R3 (G− {s(t)})θ

However, ordinary logic programming has only one inference rule, while the three inference rules above
prevent the simplified proof procedure. Thus, we present an inference rule to be integrated. To eliminate
the need to use the sort predicate rule, we newly define a successful goal as follows.

Definition 3.7 (Successful goals) Let G ∈ G be a goal. G is called a successful goal if every L ∈ G is an
atom L = s(t) with a sort predicates and there exists an instance t′ of t such that sort(t′) ≤ s. The empty
goal or a successful goal is denoted by ⊥.

Instead of applying the sort predicate rule that eliminates an atom with a sort predicate, the atom is left
in a goal. For example, if the subgoal

{s1(t1), s2(t2)}

where sort(t1) ≤ s1 and sort(t2) ≤ s2 is derived, then this goal is recognized as the success of linear
resolution, and then continuing the derivation is forbidden.

In addition, in order to integrate the cut rule and the subsort rule, the function

〈L〉 = {L} ∪ {s′(t) | L ≡ s(t) and s′ ≤ s}

is defined. Using this, the cut rule is redesigned to incorporate the subsort rule as follows.

Definition 3.8 (Extended resolution rule) Let L ∈ G and L′ ← G′ ∈ PΣ. If θ is a unifier of L0 ∈ 〈L〉
and L′, then (G− {L})θ ∪G′θ is a subgoal of G with respect to L and L′ ← G′, written by

G
θ−→R4 (G− {L})θ ∪G′θ

In the following, we define an (unrestricted) derivation of linear resolution obtained by the extended
resolution rule.

Definition 3.9 (Linear Resolution) Let PΣ be a program. A finite sequence

PΣ:G0
θ1−→R4 G1

θ2−→R4 · · ·
θn−→R4 Gn

is called an unrestricted derivation from G0 in a program PΣ (n ≥ 0). The unrestricted derivation is denoted
by PΣ:G0

θ−→→ Gn where θ = θ1 · · · θn. For 1 ≤ i ≤ n, the restriction θi↑EV ar(Gi−1) of substitution θi to
each goal Gi−1 is denoted by θi↑. We use the notation θ↑= θ1

↑· · · θn↑.
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An unrestricted derivation is called a derivation if its unifiers are most general. A derivation P Σ:G0
θ−→→ Gn

is called successful if Gn is a successful goal, i.e., PΣ:G0
θ−→→ ⊥. The composition (θ1 · · · θn)↑EV ar(G0) of

the substitutions for the variables in the initial goal G 0 is called a computed answer substitution.

Example 3.1 We give an example of a derivation over the signature Σ = (S,Ω,≤∗) of Example 2.1. Let
PΣ be a program given by the following clause set.

PΣ = { male student(john:man)←,
studying(x: person)← {student(x: person)} }.

A derivation of the goal {studying(john:man)} is successful as follows.

PΣ : {studying(john:man)} θ−→R4

{student(john:man)} ε−→R4 ⊥

where θ = {x: person/john:man}. The first application of the extended resolution rule is a derivation
step for the clause studying(x: person)← {student(x: person)} from the goal {studying(john:man)}, and
the second application is a derivation for the subsort relation male student ≤ student and the clause
male student(john:man)← from the goal {student(john:man)}.

4 The Completeness of Linear Resolution

In order to show the completeness of linear resolution 3, we attach two conditions to derivations defined in
Section 3. (1) we assign for each different clause in a program a different variable; And, that these assigned
variables are also different to variables assigned to a goal. (2) released variables are never reintroduced.

Lemma 4.1 Let I be a Σ-interpretation and L an atom. If I |=Σ L←, then I |=Σ L.

Proof. Suppose I |=Σ L ← where I = (M,α) is a Σ-interpretation. By Definition 2.9, for any partial
variable assignment β such that Dom(β) = EV ar(L ←), we have Iβ |=Σ L. Let β(x: s) = α(x: s). Then,
Iβ |=Σ L iff I |=Σ L. Therefore, I |=Σ L can be derived.

Theorem 4.1 (Soundness) Let PΣ be a program and G a goal. If PΣ:G θ−→→ ⊥, then PΣ |=Σ+ Gθ.

Proof. By induction on the length n of linear resolution: If n = 1, then there exists a derivation P Σ:G(=
L) θ−→R4 ⊥. By Definition 3.8, for a clause L′ ←∈ PΣ, we have a unifier θ of L0 ∈ 〈L〉 and L′. Let I be a
Σ+model of PΣ. By Lemma 3.1, I |=Σ+ (L′ ←)θ. We consider two cases. (i) L0 = L. I |=Σ+ (L←)θ since
L0θ = L′θ. (ii) L0 = s′(t). L = s(t), L′ = s′(t′) and s′ ≤ s. Then I |=Σ+ (s′(t′) ←)θ (by L0θ = L′θ) and
I(s′) ⊆ I(s) imply I |=Σ+ (s(t)←)θ. By Lemma 4.1, I |=Σ+ Lθ holds.

If n > 1, then there exists a derivation

PΣ:G θ1−→R4 (G− {L})θ1 ∪G′θ1
θ2−→R4 G2

θ3−→R4 · · ·
θn−→R4 ⊥

where L′ ← G′ ∈ PΣ and L0θ1 = L′θ1(L0 ∈ 〈L〉). By induction hypothesis, I |=Σ+ ((G− {L})θ1 ∪G′θ1)θ′

where θ′ = θ2 · · · θn. This and I |=Σ+ (L′ ← G′)θ1θ′ show that: (i) if L0 = L, then I |=Σ+ (L ←)θ1θ′ (by
Lθ1 = L′θ1). (ii) if L0 = s′(t), then L = s(t), L′ = s′(t′) and s′ ≤ s. So I |=Σ+ (s(t)←)θ1θ

′ is inferred from
I |=Σ+ (s′(t′)←)θ1 (by L0θ1 = L′θ1) and I(s′) ⊆ I(s). Hence, we obtain I |=Σ+ Lθ1θ

′ by Lemma 4.1.
We define a Herbrand structure for the order-sorted language to prove the completeness of linear resolu-

tion.
3The paper [17] shows that the completeness theorem for logic programming in [14] contains an incorrect state for substitu-

tions. Thus, we prove the completeness by the method as in [5].
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Definition 4.1 A Herbrand structure MH = (IH , UH) is a structure such that:

(1) UH = T0,

(2) IH(s) = T0,s,

(3) if c ∈ F0 and c:→ s ∈ Ω, then IH(c) = c: s,

(4) if f ∈ Fn and f : s1 × · · · × sn → s ∈ Ω, then IH (f)(t1, . . . , tn) = f(IH(t1), . . . , IH(tn)): s, and

(5) if p ∈ Pn and p: s1 × · · · × sn ∈ Ω, then IH(p) ⊆ IH(s1)× · · · × IH(sn).

A Herbrand interpretation IH is an interpretation such that its structure is a Herbrand structure. By
T0,s ⊆ T0,s′ for s ≤ s′, it is clear that all Herbrand structures are Σ-structures.

Lemma 4.2 Let IH be a Herbrand interpretation and L ← G a clause. IH |=Σ L ← G if and only if
IH |=Σ ground(L← G).

Proof.
(⇒) Let IH |=Σ L← G. By Lemma 3.1, for every instance of L← G, IH |=Σ (L← G)θ(∈ ground(L← G)).
(⇐) Suppose IH |=Σ ground(L ← G). We have to show that for any partial variable assignment β such
that Dom(β) = EV ar(L← G), if IHβ |=Σ G, then IHβ |=Σ L. We have IH(si) = T0,si

(by Definition 4.1),
and (L← G)θ ∈ ground(L← G) for any sorted ground substitution θ for EV ar(L← G). Then we can let
θ(xi: si) = β(xi: si) for xi: si ∈ EV ar(L← G). By assumption, if IHβ |=Σ G, then IHβ |=Σ L.

We define a derivation tree of a ground clause C in PΣ as follows.

Definition 4.2 Let PΣ be a program. A derivation tree of a ground clause C in PΣ is a tree that satisfies
the following.

(1) The root is labeled with C.

(2) Every node is labeled with a ground clause.

(3) Every leaf is labeled with one of the following clauses:

– L← G ∈ ground(PΣ),

– s(t)← with sort(t) = s′ and s′ ≤ s, and

– s(t)← s′(t) with s′ ≤ s.

(4) Every non-leaf node is labeled with a clause L← G1 ∪G2 such that L← G1 ∪ {L′} and L′ ← G2 are
its children.

Definition 4.3 Let PΣ be a program. A canonical interpretation IP is a Herbrand interpretation such that:

IP |=Σ+ L iff there exists a derivation tree of a ground clause L← in PΣ.

Lemma 4.3 Let PΣ be a program. A canonical interpretation IP is a Σ+-model of PΣ.

Proof. First, we show that IP is a Σ+-interpretation. Since IP is a Herbrand interpretation, it is a Σ-
interpretation. We will prove I(s) ⊆ I(ps). Let t ∈ I(s)(= T0,s). Then there is s′ ≤ s with sort(t) = s′.
Hence we have a derivation tree of s(t)←. By Definition 4.3, IP |=Σ+ s(t) and therefore t ∈ I(ps). On the
other hand, we want to show I(ps′) ⊆ I(ps) for s′ ≤ s. Let t ∈ I(s′). IP |=Σ+ s′(t) yields a derivation tree
of s′(t)←. Moreover, we have a derivation tree of s(t)← s ′(t). Hence, because a derivation tree of s(t) ←
can be obtained, IP |=Σ+ s(t). Therefore, t ∈ I(ps).

Next, we prove that IP is a model of PΣ. Let L ← G(= {L1, . . . , Ln}) ∈ PΣ and let θ be a ground
substitution for EV ar(L ← G). If IP |=Σ+ Gθ, then IP |=Σ+ Liθ. By Definition 4.2, there is a derivation
tree of Liθ ←. Since (L← G)θ ∈ ground(PΣ), we obtain a derivation tree of (L← G)θ. Then, a derivation

9



tree of Lθ can be given by the definition of derivation trees. Then I P |=Σ+ Lθ. Hence IP |=Σ+ (L ← G)θ.
By Lemma 4.2, IP |=Σ+ L← G is shown.

Since IP is a Σ+-interpretation, the following statements must hold for s ′ ≤ s (by the definition of
satisfiability relations).

• IP |=Σ+ s(t) for sort(t) = s′.

• If IP |=Σ+ s′(t), then IP |=Σ+ s(t).

It is clear by the proof of that IP is a Σ+-interpretation.

Lemma 4.4 Let PΣ be a program. If there exists a derivation tree of a ground clause L ← G in PΣ, then
PΣ:G −→→ ⊥ implies PΣ:L −→→ ⊥.

Proof. We show the lemma by induction on the height n of a derivation tree of a ground clause L← G.
n = 1: we have to consider the following three cases for L← G. (i) L← G ∈ ground(P Σ). If PΣ:G −→→ ⊥,

then PΣ:L ε−→R4 G −→→ ⊥. (ii) s(t)←. s′ ≤ s and sort(t) = s must be ture. Because {s(t)} is a successful
goal, PΣ: s(t) −→→ ⊥. (iii) s(t)← s′(t). s′ ≤ s holds. If PΣ: s′(t) −→→ ⊥, then PΣ: s(t) ε−→R4 s

′(t) −→→ ⊥.
n > 1: by induction hypothesis, if PΣ:G1 ∪ {L′} −→→ ⊥, then PΣ:L −→→ ⊥, and if PΣ:G2 −→→ ⊥ , then

PΣ:L′ −→→ ⊥ where G = G1 ∪G2. Hence if PΣ:G1 ∪G2 −→→ ⊥, then PΣ:L ε−→R4 G1 ∪G2 −→→ ⊥.

Theorem 4.2 (Ground completeness) Let PΣ be a program and G a ground goal. If PΣ |=Σ+ G, then
there exists a derivation PΣ:G θ−→→ ⊥.

Proof. Let I |=Σ+ PΣ. By assumption, I |=Σ+ G. Then IP |=Σ+ G by Lemma 4.3. By Definition 4.3,
there exists a ground clause L ← in PΣ for all L ∈ G. Hence, PΣ:L −→→ ⊥ by Lemma 4.4. Therefore, we
can obtain PΣ:G θ−→→ ⊥.

The next lemma and its proof are based on Lemma 5.33 in [5].

Lemma 4.5 Let PΣ be a program. If PΣ has an unrestricted derivation

PΣ:G0
θ1−→R4 G1

θ2−→R4 · · ·
θn−→R4 Gn

where x: s ∈ EV ar(G0θ1
↑· · · θn↑)−EV ar(Gn), then for some Gi, Gj(i < j), x: s ∈ EV ar(Giθj

↑)− EV ar(Gj).

Proof. We show the lemma on induction of the length n of an unrestricted derivation.
n = 1: trivial by assumption.
n > 1: for x: s ∈ EV ar(G0θ1

↑· · · θn↑), there exists x′: s′ ∈ EV ar(G0θ1
↑· · · θn−1

↑) such that x: s ∈ EV ar(x′: s′θn
↑).

We consider two cases. (i) x ′: s′ ∈ EV ar(Gn−1). x: s ∈ EV ar(x′: s′θn
↑) implies x: s ∈ EV ar(Gn−1θn

↑).
Hence, x: s ∈ EV ar(Gn−1θn

↑) − EV ar(Gn). (ii) x′: s′ ∈ EV ar(Gn−1). By induction hypothesis, if x: s ∈
EV ar(G0θ1

↑· · · θn−1
↑), then for some Gi, Gj(i < j), we have x′: s′ ∈ EV ar(Giθj

↑) − EV ar(Gj). Therefore,
x′: s′ = x′: s′θn

↑(by θn
↑= θn↑EV ar(Gn−1)) implies x: s = x′: s′ (∈ EV ar(G0θ1

↑· · · θn−1
↑θn

↑)).

Lemma 4.6 (Lifting lemma) Let PΣ be a program. If PΣ has an unrestricted derivation

PΣ:G0θ0
θ1−→R4 G1

θ2−→R4 · · ·
θn−→R4 Gn,

then PΣ has a derivation

PΣ:G0
θ′
1−→R4 G

′
1

θ′
2−→R4 · · ·

θ′
n−→R4 G

′
n

and the following holds.

(i) γ0 = θ0, and for 1 ≤ i ≤ n, (γi−1↑EV ar(Gi−1))θi = θ′iγi and Gi = G′
iγi, and

(ii) there exists a substitution γ′n with G0θ0θ1
↑· · · θn↑= G0θ

′
1
↑· · · θ′n

↑
γ′n.
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Proof. We show the lemma on induction of the length n of a derivation.
n = 1: there exists a derivation PΣ:G0θ0

θ1−→R4 G1 where Lθ0 ∈ G0θ0, L′ ← G′ ∈ PΣ and θ1 is a unifier of
L0θ0 ∈ 〈Lθ0〉 and L′. EV ar(G0) ∩EV ar(L′ ← G′) = ∅ implies (L′ ← G′)θ0↑EV ar(G0) = L′ ← G′. Hence,

PΣ:G0
(θ0↑EV ar(G0))θ1−→ R4 G1. On the other hand, let θ ′1 be a mgu of L0 and L′. It follows PΣ:G0

θ′
1−→R4 G

′
1

with (γ0↑EV ar(G0))θ1 = θ′1γ1 and G1 = G′
1γ1.

Moreover, we will prove G0θ0θ1
↑ = G0θ

′
1
↑
γ′1. By (θ0↑EV ar(G0))θ1 = θ′1γ1, we have G0θ0θ1 = G0θ

′
1γ1.

Hence, G0θ0θ1
↑= G0θ

′
1
↑
γ1.

n > 1: by induction hypothesis, we have a derivation

PΣ:G0
θ′
1−→R4 G

′
1

θ′
2−→R4 · · ·

θ′
n−1−→R4 G

′
n−1

where γ0 = θ0, and for 1 ≤ i ≤ n−1, there exists a substitution γ i such that (γi−1↑EV ar(Gi−1))θi = θ′iγi and

Gi = G′
iγi. By assumption, there exists an unrestricted derivation PΣ:Gn−1

θn−→R4 Gn (Gn−1 = G′
n−1γn−1)

where L ∈ Gn−1, L′ ← G′ ∈ PΣ and θn is a unifier of L0 ∈ 〈L〉 and L′. EV ar(G′
n−1)∩EV ar(L′ ← G′) = ∅

implies (L′ ← G′)γn−1↑EV ar(G′
n−1) = L′ ← G′. Then, PΣ:G′

n−1

(γn−1 ↑EV ar(G′
n−1))θn−→ R4 Gn. On the other

hand, let θ′n be a mgu of L0 and L′. This infers PΣ:G′
n−1

θ′
n−→R4 G

′
n where (γn−1↑EV ar(Gn−1))θn = θ′nγn

and Gn = G′
nγn.

In addition, G0θ0θ1
↑· · · θn↑ = G0θ

′
1
↑· · · θ′n

↑
γ′n will be shown. Let γ ′

i be defined by extending γi. If x: s ∈
EV ar(Gjθk

↑) − EV ar(Gk) for some Gj , Gk(1 ≤ j < k ≤ n), then let x: sγ ′
i = x: sγ′i−1θi

↑. If x: s ∈
EV ar(G′

i−1θ
′
i) ∪ EV ar(G′

i) with G′
0 = G0, then let x: sγ ′

i = x: sγi. We will show x: sθ′n
↑
γ′n = x: sγ′n−1θn

↑

in two cases. (a) x: s ∈ EV ar(G ′
n−1). By the definition of γ ′

i and (γn−1 ↑ EV ar(Gn−1))θn = θ′nγn,
we have x: sθ′n

↑
γ′n = x: sθ′n

↑
γn = x: sγn−1θn

↑ = x: sγ′n−1θn
↑. (b) x: s ∈ EV ar(Gjθk

↑) − EV ar(Gk) for some
Gj, Gk(1 ≤ j < k ≤ n). x: sθ′n

↑ = x: s derives x: sθ′n
↑
γ′n = x: sγ′n = x: sγ′n−1θn

↑. Now we consider
y: s′ ∈ EV ar(G0) and y: s′θ′1

↑· · · θ′n−1
↑ = t. By Lemma 4.5, we can say that x: s in V ar(t) is (a) or (b).

Therefore, y: s′θ0θ1↑· · · θn↑=I.H. y: s′θ′1
↑· · · θ′n−1

↑γ′n−1θn
↑= tγ′n−1θn

↑= tθ′n
↑γ′n = y: s′θ′1

↑· · · θ′n
↑γ′n is proved.

Theorem 4.3 (Completeness) Let PΣ be a program, G a goal and θ a sorted substitution. If PΣ |=Σ+ Gθ,

then there exists a successful derivation PΣ:G θ′
−→→ ⊥ such that Gθ = Gθ′↑γ.

Proof. Let ci: si be a new constant for x i: si ∈ EV ar(Gθ). Let β be a sorted substitution defined by
Dom(β) = EV ar(Gθ) and β(xi: si) = ci: si. PΣ |=Σ+ Gθ implies PΣ |=Σ+ Gθβ. By Theorem 4.2, we have a

derivation PΣ:Gθβ δ−→→ ⊥. Lemma 4.6 yields a derivation PΣ:G θ′
−→→ ⊥ with Gθβδ↑= Gθ′↑γ. Since Gθβ has

no variables, Gθβ = Gθ′↑γ. Gθ′↑must contain no new constants c i: si, and hence γ(yi: si) = ci: si holds for
a variable yi: si (the sort of which is the same as of x i: si). Let γ0 be defined by (yi: si)γ0 = xi: si and let
γ′ = {(a, b) ∈ γ|a = yi: si} ∪ γ0. Therefore, we obtain Gθ = Gθ ′↑γ′.

5 Conclusion

This paper has formalized an order-sorted logic programming language with sort predicates, in which each
sort can be used as a unary predicate and that contains a complete inference system. Based on the resolution
system with sort predicates developed by Beierle et al., we have presented a practical inference method that
is obtained by linear resolution (from the techniques in logic programming) with sort predicates. Specifically,
inserting the inference rules relative to subsorts and sort predicates to linear resolution provides the complete
inference system as an extension to refutation, in which the empty goal or a successful goal is derived from
a goal. The completeness is proved by using the fact that a derivation tree from a program is used to build
a canonical model as a Σ+-model. The semantics corresponding to the extended inference system is defined
by the fact that the interpretation of a subsort relation influences the satisfiability of formulas with sort
predicates.
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Related to this research, logic programming languages with sort expressions have been studied from the
viewpoint of knowledge representation. One of the languages is the logic programming language LOGIN [1],
in which a complicated term (called ψ-term) allows for a kind of sort expression (called partially ordered
type structures) that is ordered and with feature structures. In the approach, sort expressions in ψ-terms
can describe what are represented ordinarily by predicates (e.g. person(x)), and then these reduce reasoning
steps. But, it deals with neither sort predicates for representing knowledge nor the combination of predicates
and sorts unlike our work. As another approach, Kakuta et al. [10] used order-sorted logic programming as
an application to legal reasoning. This does not either discuss knowledge representation for sort predicates.

Although this paper has attached importance to practical aspects by adopting the proof procedure of
logic programming, the results are rigorously theoretical. Recently, to theoretically show the soundness of
programming languages, it has been considered that the formalization of programming languages is essential.
For example, the compiler of the functional programming language ML was implemented on the basis of
the theoretical results. Similar to this, the results of this paper can formally guarantee the soundness and
completeness when we implement a logic programming language with sort predicates.
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