
On the Complexities of Consistency Checking for Restricted

UML Class Diagrams1

Ken Kaneiwa
National Institute of Information and Communications Technology

3-5 Hikaridai, Seika, Soraku, Kyoto 619-0289, Japan
kaneiwa@nict.go.jp

Ken Satoh
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
ksatoh@nii.ac.jp

Abstract

Automatic debugging of UML class diagrams helps in the visual specification of
software systems because users cannot detect errors in logical consistency easily. This
study focuses on the tractable consistency checking of UML class diagrams. We ac-
curately identify inconsistencies in these diagrams by translating them into first-order
predicate logic that is generalized by counting quantifiers and classify their expressivities
by eliminating certain components. We introduce optimized algorithms that compute
the respective consistencies of class diagrams of different expressive powers in P, NP,
PSPACE, or EXPTIME with respect to the size of the class diagrams. In particular, ow-
ing to the restrictions imposed on attribute value types, the complexities of consistency
checking of class diagrams decrease from EXPTIME to P and PSPACE in two cases:
(i) when the class diagrams contain disjointness constraints and overwriting/multiple
inheritances and (ii) when the class diagrams contain both these components along with
completeness constraints. Additionally, we confirm the existence of a restriction of class
diagrams that prevents any logical inconsistency.

1 Introduction

The Unified Modeling Language (UML) [12, 7] is a standard modeling language; it is used
as a visual tool for designing software systems. However, visualized descriptions make it
difficult to determine consistency in formal semantics. In order to design UML diagrams,
designers check not only for syntax errors but also for logical inconsistency, which may
be present implicitly in the diagrams. Automatic detection of errors is very helpful for
designers; for example, it enables them to revise erroneous portions of the UML diagrams
by determining inconsistent classes or attributes. Moreover, in order to confirm the accuracy
of debugging (soundness, completeness, and termination), it is necessary to computationally
and theoretically develop a consistency checking algorithm.

1This paper is an extended version of [9], containing complete proofs as well as some additional definitions,
theorems, lemmas, and examples.

1

Class diagrams, which are a type of UML diagrams, are employed to model concepts in
static views. Many investigations on the consistency of class diagrams have been carried
out. Evans [6] attempted a rigorous description of UML class diagrams by using OCL
(Object Constraint Language) that enables reasoning on UML diagrams. Beckert, Keller,
and Schmitt [2] defined a translation of UML class diagrams with OCL into FOPL (First-
Order Predicate Logic). Further, Tsiolakis and Ehrig [14] analyzed the consistency of UML
class and sequence diagrams by using attributed graph grammars. The use of OCL and
other approaches provide rigorous semantics and logical reasoning on UML class diagrams;
however, they do not theoretically analyze the worst-case complexity of consistency checking.
A number of object-oriented models and their consistencies [11, 13] have been considered for
developing software systems, but the models do not characterize the components of UML
class diagrams; for example, the semantics of attribute multiplicities is not supported.

Berardi, Calvanese, and De Giacomo presented the correspondence between UML class
diagrams and description logics (DLs), which enables us to utilize DL-based systems for
reasoning on UML class diagrams [3]. Franconi and Ng implemented a concept modeling
system called ICOM [8] using DLs. The cyclic expressions of class diagrams are represented
by general axioms for DLs. For example, a class diagram is cyclic if a class C has an attribute
and the attribute value type is defined by the same class. However, it is well known that
reasoning on general axioms of the necessary DLs is exponential time hard [4]. Therefore,
consistency checking of the class diagrams in DLs requires exponential time in the worst
case.

In order to reduce the complexity, we consider restricted UML class diagrams obtained by
deleting some components. A meaningful restriction of class diagrams is expected to avoid
intractable reasoning, thus facilitating automatic debugging. This solution not only provides
us with tractable consistency checking but also with a sound family of class diagrams (i.e.,
its consistency is theoretically guaranteed without checking).

The aim of this paper is to present optimized algorithms for testing the consistencies
of restricted UML class diagrams, which are designed to be suitable for class diagrams
of different expressive powers. The algorithms detect the logical inconsistency of class
diagram formulation in FOPL that is generalized by counting quantifiers [10]. Although past
approaches employ reasoning algorithms of DL and OCL, we develop consistency checking
algorithms specifically for UML class diagrams. Our algorithms deal directly with the
structure of UML class diagrams; hence, they have the following properties:

• Easy recognition of inconsistency triggers in the diagram structure, such as combina-
tions of disjointness/completeness constraints, attribute multiplicities, and overwrit-
ing/multiple inheritances, and

• Refinement of the algorithms when the expressivity is changed due to the presence of
the inconsistency triggers.

The inconsistency triggers captured by the diagram structure are used to restrict some
relevant class diagram components in order to derive a classification of UML class diagrams.
Since we can theoretically prove that no inconsistency arises for eliminated components, the
algorithms are simplified and optimized for their respective expressivity.

The contributions of this paper are as follows:

1. Inconsistency triggers: We accurately identify inconsistency triggers that cause logical
inconsistency among classes, attributes, and associations.

2

2. Expressivity: We classify the expressivity of UML class diagrams by deleting and
adding certain inconsistency triggers.

3. Algorithms and complexities: We develop several consistency checking algorithms for
class diagrams of different expressive powers and demonstrate that they compute the
consistency of those class diagrams in P, NP, PSPACE, or EXPTIME with respect to
the size of the class diagram.

4. Tractable consistency checking in the optimized algorithms: When the attribute value
types are defined with restrictions in class diagrams, consistency checking is com-
putable in P and PSPACE when the diagrams contain (i) disjointness constraints and
overwriting/multiple inheritances and (ii) both these components along with com-
pleteness constraints, respectively.

5. Consistent class diagrams: We demonstrate that all class diagrams are consistent if
their expressivities are restricted by deleting disjointness constraints and overwrit-
ing/multiple inheritances (but allowing attributes multiplicities and simple inheri-
tances). Thus, we need not test the consistency of such less expressive class diagrams
(D−

0 and D−
com).

The results of this study indicate two main advantages. First, the optimized algorithms
support efficient reasoning for various expressive powers of class diagrams. In contrast, the
DL formalisms do not provide optimized algorithms for the restricted UML class diagrams
because general axioms of DLs require exponential time even if DLs are restricted [4]. There-
fore, the classification of DLs does not fit into the classification of UML class diagrams1.
Second, we analyze a meaningful restriction of UML class diagrams and confirm the exis-
tence of restricted class diagrams that permit attribute multiplicities, which cause no logical
inconsistency.

This paper is arranged as follows. In Section 2 we discuss the translation of UML class
diagrams into FOPL that is generalized by counting quantifiers. In Section 3, we clarify
three inconsistency triggers in UML class diagrams. In Section 4, we develop an algorithm
for testing the consistency. In Section 5, we modify the algorithm (proposed in Section 4)
in order to provide optimized algorithms that are suitable for the expressive powers of class
diagrams. In Section 6, we conclude our study and discuss our future work.

2 Class diagrams in FOPL with counting quantifiers

We define a translation of UML class diagrams into FOPL that is generalized by counting
quantifiers. The reasons for encoding into FOPL with counting quantifiers are as follows.
First, each UML class diagram should be defined by encoding it in a logical language because
consistency checking is based on the syntax and semantics of encoded formulas. In other
words, no consistency checking algorithm can operate on original diagrams without logical
quantifiers and connectives, and the soundness and completeness of the algorithm cannot
be guaranteed without formal semantics. Second, variables and quantifiers in FOPL lead
to an explicit formulation that is useful in restricting/classifying the expressive powers. In

1Note that reasoning on general axioms becomes exponential time hard even if the small DL AL contains
no disjunction, qualified existential restriction, and number restriction.

3

C1 C2

A

nl..numl..mu

Binary association

C1 Cn

A

m(1,l)..m(1,u)

N-ary association

C2

m(2,l)..m(2,u)

m(n,l)..m(n,u)

a[i..j] : T

C

f() : T

Class

C1 C2

nl..numl..mu

CA

f(T1, . . . , Tm) : T

(1)

(2)
(3)

(4)
Binary association class

(5)

C1 Cn

CA

m(1,l)..m(1,u)

N-ary association class

C2

m(2,l)..m(2,u)

m(n,l)..m(n,u)

(7)(6)

C ′
1 C ′

2
A′

C1 C2

A

C

C1

{complete, disjoint}

Cn

Class-hierarchy

Association generalization
(8)

(9)
(10) (11)

Figure 1: Components of UML class diagrams

contrast to encoding in FOPL, DL encoding [3] conceals the quantification of variables in
expressions.

2.1 Classes

The alphabet of UML class diagrams consists of a set of class names, a set of attribute
names, a set of operation names, a set of association names, and a set of datatype names.
Let C, C ′, Ci be class names, a, a′ attribute names, f, f ′ operation names, A, A′ association
names, and t, t′, ti datatype names. Let type T be either a class or a datatype. The leftmost
figure in Figure 1 represents a class C with an attribute a[i..j] : T , a 0-ary operation f() : T ,
and an n-ary operation f(T1, . . . , Tn) : T , where [i..j] is the attribute multiplicity and T and
T1, . . . , Tn are types. Any class C can be represented by the unary predicate C in FOPL.
Let F1 and F2 be first-order formulas. We define the implication form F1 → F2 as the
universal closure ∀x1 · · · ∀xn.(F1 → F2) where x1, . . . , xn are all the free variables occurring
in F1 → F2. Let F (x) denote a formula F in which the free variable x occurs. The counting
quantifier formula ∃≥ix.F (x) is true if at least i elements x satisfy F (x), while the counting
quantifier formula ∃≤ix.F (x) is true if at most i elements x satisfy F (x). The value type
T and multiplicity [i..j] of attribute a in class C are specified by the following implication
forms:

(1) C(x) → (a(x, y) → T (y)) and C(x) → ∃≥iz.a(x, z) ∧ ∃≤jz.a(x, z)

where a is a binary predicate and T is a unary predicate. The infinite multiplicity [i..∗]
of attribute a in class C is translated into C(x) → ∃≥iz.a(x, z). That is, the unbounded
upper limit ‘∗’ is not translated into any formula. The 0-ary operation f() : T in class C is
specified by the following implication forms:

(2) C(x) → (f(x, y) → T (y)) and C(x) → ∃≤1z.f(x, z)

where f is a binary predicate and T is a unary predicate. Moreover, the n-ary operation
f(T1, . . . , Tn) : T in class C is specified by the following implication forms:

(3) C(x) → (f(x, y1, . . . , yn, z) → T1(y1) ∧ · · · ∧ Tn(yn) ∧ T (z))
C(x) → ∃≤1z.f(x, y1, . . . , yn, z)

where f is an n + 2-ary predicate and T1, . . . , Tn and T are unary predicates.

4

2.2 Associations

We formalize the associations A that imply connections among classes C1, . . . , Cn (as in
(4) and (6) of Figure 1). The binary association A between two classes C1 and C2 and the
multiplicities ml..mu and nl..nu are specified by the forms:

(4) A(x1, x2) → C1(x1) ∧ C2(x2)
C1(x) → ∃≥nl

x2.A(x, x2) ∧ ∃≤nux2.A(x, x2)
C2(x) → ∃≥ml

x1.A(x1, x) ∧ ∃≤mux1.A(x1, x)

where A is a binary predicate and C1, C2 are unary predicates. In addition to the formulas,
if an association is represented by a class, then the association class CA is specified by
supplementing the implication forms below:

(5) A(x1, x2) → (r0(x1, x2, z) → CA(z))
A(x1, x2) → ∃=1z.r0(x1, x2, z) and ∃≤1z.(r0(x1, x2, z) ∧ CA(z))

where CA is a unary predicate and r0 is a ternary predicate. By extending the formulation
of a binary association, the n-ary association A among classes C1, . . . , Cn and their multi-
plicities “m(1,l)..m(1,u)”, . . . , “m(n,l)..m(n,u)” (as shown in (6) of Figure 1) are specified by
the following implication forms:

(6) A(x1, . . . , xn) → C1(x1) ∧ · · · ∧ Cn(xn)
Ck(x) → ∃≥m(1,l)

x1· · ·∃≥m(k−1,l)
xk−1∃≥m(k+1,l)

xk+1· · ·∃≥m(n,l)
xn.A(x1, . . ., xn)[xk/x]

Ck(x) → ∃≤m(1,u)
x1· · ·∃≤m(k−1,u)

xk−1∃≤m(k+1,u)
xk+1· · ·∃≤m(n,u)

xn.A(x1, . . ., xn)[xk/x]

where A is an n-ary predicate and [xk/x] refers to the substitution of xk with x. In addition,
the association class CA is specified by adding the implication forms below:

(7) A(x1, . . . , xn) → (r0(x1, . . . , xn, z) → CA(z))
A(x1, . . . , xn)→∃=1z.r0(x1, . . . , xn, z) and ∃≤1z.(r0(x1, . . . , xn, z)∧CA(z))

where CA is a unary predicate and r0 is an n + 1-ary predicate. Furthermore, we treat
association generalization (not discussed in [3]) such that the binary association A′ between
classes C ′

1 and C ′
2 generalizes the binary association A between classes C1 and C2 (as in (8)

of Figure 1). The generalization between binary associations A and A′ is specified by the
implication forms below:

(8) A(x1, x2) → A′(x1, x2), C1(x) → C ′
1(x), and C2(x) → C ′

2(x)

where A, A′ are binary predicates and C1, C
′
1, C2, C

′
2 are unary predicates. More univer-

sally, the generalization between n-ary associations A and A′ is specified by the following
implication forms:

(8)’ A(x1, . . . , xn) → A′(x1, . . . , xn) and C1(x) → C ′
1(x), . . . , Cn(x) → C ′

n(x)

where A, A′ are n-ary predicates and Ci, C
′
j are unary predicates.

5

2.3 Class hierarchies

We consider class hierarchies and disjointness/completeness constraints of the classes in
hierarchies, as shown in (9), (10), and (11) of Figure 1. A class hierarchy (a class C
generalizes classes C1, . . . , Cn) is specified by the implication forms below:

(9) C1(x) → C(x), . . . , Cn(x) → C(x)

where C and C1, . . . , Cn are unary predicates. The completeness constraint {complete}
between a class C and classes C1, . . . , Cn and the disjointness constraint {disjoint} among
classes C1, . . . , Cn are specified by the implication forms:

(10)C(x) → C1(x) ∨ · · · ∨ Cn(x)
(11)Ci(x) → ¬Ci+1(x) ∧ · · · ∧ ¬Cn(x) for all i ∈ {1, . . . , n − 1}

respectively, where C and C1, . . . , Cn are unary predicates.
Let D be a UML class diagram. G(D) is called the translation of D and denotes the

set of implication forms obtained by the encoding of D in FOPL with counting quantifiers
(using (1)–(11)). The translation into first-order logic is similar to and based on the study
in references [2, 3].

In the encoding of UML class diagrams, no association roles and no aggregation between
classes are considered. The reason behind this consideration is as follows: if association roles
are encoded into first-order formulas, check the consistency where the equality of objects
is interpreted for the multiplicities of association roles; this is more complicated than the
equality of objects being interpreted for the multiplicities of attributes. For example, the
encoded formulas of association roles with the multiplicities [3..∗] and [2..∗] impose the two
conditions that there exist at least three objects and at least two objects, respectively. If
the multiplicities are used for the identically named association roles in different places,
it is necessary to check if there are common objects for the three and two objects, i.e., it
is necessary to verify the formulas ∃≥3y.(r(y, x) ∧ C1(y)) and ∃≥2y.(r(y, x) ∧ C2(y)). The
evaluation of any case of the equality of these objects essentially increases the complexity of
consistency checking for role expressions. Moreover, we do not deal with aggregations and
compositions; we consider them to be a particular type of association. Hence, there is no
specific need to introduce the encoding of aggregations and compositions.

3 Inconsistencies in class diagrams

In this section, we analyze inconsistencies among classes, attributes, and associations in
UML class diagrams. We first define the syntax errors of duplicate names and irrelevant
attribute value types as described below.

Duplicate name errors/attribute value type errors. A UML class diagram D con-
tains a duplicate name error if it contains the following:

(i) two different classes C1 and C2 of the same class name,

(ii) two different associations A1 and A2 of the same association name, or

(iii) two different attributes a1 and a2 of the same attribute name in a class C.

6

Moreover, if two classes have identically named attributes a : T1 and a : T2, such that T1 is
a class and T2 is a datatype, then the class diagram contains an attribute value type error.
Obviously, the checking of these syntax errors in a UML class diagram can be computed in
linear time.

We elaborate three inconsistency triggers for the UML class diagrams. Let G(D) be the
translation of a UML class diagram D into a set of implication forms; C, C ′ be classes; A, A′

be associations; and F (x) and F (x1, . . . , xn) be formulas with free variables. The reflexive
and transitive closure G(D)∗ of G(D) is defined by the following:

(i) C(x) →∗C(x) ∈ G(D)∗,

(ii) A(x1, . . . , xn) →∗A(x1, . . . , xn) ∈ G(D)∗,

(iii) if C(x) → F (x) ∈ G(D), or C(x) →∗C ′(x), C ′(x) →∗F (x) ∈ G(D)∗, then
C(x) →∗F (x) ∈ G(D)∗, and

(iv) if A(x1, . . . , xn) → F (x1, . . . , xn) ∈ G(D), or
A(x1, . . . , xn) →∗A′(x1, . . . , xn), A′(x1, . . . , xn) →∗F (x1, . . . , xn) ∈ G(D)∗, then
A(x1, . . . , xn) →∗F (x1, . . . , xn) ∈ G(D)∗.

Inconsistency trigger 1 (generalization and disjointness) The first inconsistency
trigger is caused by a combination of generalization and a disjointness constraint. A class
diagram D has an inconsistency trigger if the translation G(D)∗ contains the formulas
C(x) →∗ Ck(x) and C(x) →∗ ¬C1(x) ∧ · · · ∧ ¬Cn(x) where 1 ≤ k ≤ n. As shown in

Ck

Ck

{disjoint}

CnC1

C C

Figure 2: A combination of generalization and disjointness

Figure 2, this inconsistency arises when a class C has a superclass Ck and the classes C and
Ck are defined as being disjoint to each other in the constraint of a class hierarchy.

Inconsistency trigger 2 (overwriting/multiple inheritance) The second inconsis-
tency trigger is caused by one of the following situations:

1. (a) conflict between attributes value types T1 and T2 when they appear in attributes
a : T1 and a : T2 with the same name, or (b) conflict between multiplicities [i..j] and
[i′..j′] when they appear in multiplicities a : T1 and a : T2 of attributes with the same
name.

2. conflict between multiplicities when they appear in association and super-associations.

7

Types T1 and T2 are disjoint if they are classes C1 and C2 such that C1(x) →∗¬C2 ∈ G(D)
or if they are datatypes t1 and t2 such that t1∩t2 = ∅. More formally, a class diagram D has
an inconsistency trigger if the translation G(D)∗ contains a group of the following formulas:

1. C2(x) →∗C1(x), or C(x) →∗C1(x) and C(x) →∗C2(x), together with

(a) Attribute value types:
C1(x) → (a(x, y) → T1(y)) and C2(x) → (a(x, y) → T2(y)) where T1 and T2 are
disjoint, or

(b) Attribute multiplicities:
C1(x) → ∃≥iz.a(x, z) ∧ ∃≤jz.a(x, z) and C2(x) → ∃≥i′z.a(x, z) ∧ ∃≤j′z.a(x, z)
where i > j′.

2. Association multiplicities: A(x1, . . . , xn) → A′(x1, . . . , xn) with
Ck(x) → ∃≥m(1,l)

x1 · · · ∃≥m(k−1,l)
xk−1 ∃≥m(k+1,l)

xk+1 · · · ∃≥m(n,l)
xn.A(x1, . . . , xn)[xk/x]

and
C ′

k(x
′) → ∃≤m′

(1,u)
x′

1· · ·∃≤m′
(k−1,u)

x′
k−1∃≤m′

(k+1,u)
x′

k+1· · ·∃≤m′
(n,u)

x′
n.A′(x′

1, . . . , x
′
n)[x′

k/x′]
where m(i,l) > m′

(i,u).

C1

C

C2

a : T2[i
′..j′]a : T1[i..j]

C1

C2

a : T2[i
′..j′]

(i) Overwriting

inheritance a : T1[i..j]

(ii) Multiple

inheritance

Figure 3: Inheritances in class hierarchy

From Figure 3, it can be seen that (i) a class C2 with an attribute a : T2[i′..j′] inherits
the identically named attribute a : T1[i..j] from a superclass C1 and (ii) a class C inherits
the two attributes a : T1[i..j] and a : T2[i′..j′] of the same name from superclasses C1 and
C2. The former is called overwriting inheritance and the latter, multiple inheritance. In
these cases, if the attribute value types T1 and T2 are disjoint or if the multiplicities [i..j]
and [i′..j′] conflict with each other, the attributes are determined to be inconsistent. For
example, the multiplicities [1..5] and [10..∗] cannot simultaneously hold for the identically
named attributes.

Inconsistency trigger 3 (completeness and disjointness) By combining a disjoint-
ness constraint with a completeness constraint, we can yield the third inconsistency trigger.
A class diagram D has an inconsistency trigger if the translation G(D)∗ contains the follow-
ing formulas:

C(x) →∗C1(x) ∨ · · · ∨ Cn(x) and C(x) →∗¬C ′
1(x) ∧ · · · ∧ ¬C ′

m(x)

where {C1, . . . , Cn} ⊆ {C ′
1, . . . , C

′
m}. This inconsistency arises when classes C and C1, . . . , Cn

satisfy the completeness constraint in a class hierarchy and classes C and C ′
1, . . . , C ′

m satisfy

8

the disjointness constraint in another class hierarchy. Intuitively, any instance of class C
must be an instance of one of the classes C1, . . . , Cn, but each instance of class C cannot be
an instance of the classes C ′

1, . . . , C
′
m. Hence, this situation is contradictory.

The third inconsistency trigger may be more complicated when the number of complete-
ness and disjointness constraints that occur in a class diagram is increased. In other words,
disjunctive expressions raised by many completeness constraints expand the search space of
finding inconsistency. Let G(D)∗ be the reflexive and transitive closure of G(D). We define
the disjunctive closure G(D)+ of G(D)∗ as follows:

(i) if C(x) →∗F (x) ∈ G(D)∗, then C(x) →+ F (x) ∈ G(D)+, and

(ii) if C(x) →+ C1(x) ∨ · · · ∨ Cn(x), Ck(x) →+ DC(x) ∈ G(D)+ where 1 ≤ k ≤ n and
DC(x) = C ′

1(x) ∨ · · · ∨ C ′
m(x), then

C(x) →+ C1(x) ∨ · · · ∨ Ck−1(x) ∨ DC(x) ∨ Ck+1(x) ∨ · · · ∨ Cn(x) ∈ G(D)+.

A class diagram D has an inconsistency trigger if the translation G(D)+ contains the for-
mulas C(x) →+ C1(x) ∨ · · · ∨ Cn(x) and C(x) →+ ¬C(i,1)(x) ∧ · · · ∧ ¬C(i,mi)(x) for each
i ∈ {1, . . . , n}, where Ci is one of the classes C(i,1), . . . , C(i,mi). For example, Figure 4 il-
lustrates that two completeness constraints are complicatedly inconsistent with respect to
a disjointness constraint.

{disjoint}

C1

{complete}

C

Ck

{complete}

Ck+l

Cn

C

C1 Cn

Figure 4: A combination of completeness and disjointness

We define a formal model of UML class diagrams using the semantics of FOPL with
counting quantifiers. An interpretation I is an ordered pair (U, I) of the universe U and an
interpretation function I for a first-order language.

Definition 1 (UML class diagram models) Let I = (U, I) be an interpretation. The
interpretation I is a model of a UML class diagram D (called a UML-model of D) if

1. I(C) �= ∅ for every class C in D and

2. I satisfies G(D) where G(D) is the translation of D.

9

The first condition indicates that all classes are non-empty (i.e., an instance of the class
exists), and the second condition implies that I is a first-order model of the class diagram
formulation G(D). A UML class diagram D is consistent if it has a UML-model.

Remark. The class diagram in Figure 5 is invalid because the association class CA cannot
be used for two different binary associations between classes C1 and C2 and between classes
C1 and C3. In place of CA, we describe a ternary association or two association classes. It

C1 CA

C2

C3

Figure 5: An invalid class diagram

appears that the EXPTIME-hardness in [3] relies on such expressions because they corre-
spond to a knowledge base in the Description Logic ALC (denoted an ALC KB) where the
satisfiability problem of an ALC KB is EXPTIME-hard. More precisely, when we reduce
the (EXPTIME-hard) concept satisfiability in an ALC KB to class consistency in a UML
class diagram, the ALC KB

{C1 � ∃PA.C2, C1 � ∃PA.C3}

is encoded into an invalid association class. This condition is important in order to avoid
EXPTIME-hardness and therefore to derive the complexity results in Section 5. Because a
UML class diagram with such an association class can encode any ALC KB, the consistency
checking of a more expressive UML class diagram is also EXPTIME-hard. In a technical
way, the association class can be expressed by using complex combinations of association
generalization and multiplicities in a class diagram (as shown in [1]). However, such a
complicated encoding is not important for the development of a software using UML class
diagrams. Therefore, by simplifying association generalization in the following definition,
we obtain UML class diagrams that have no expressive power to encode the ALC KB. This
enables us to show that the consistency checking of some restricted UML class diagram
groups is computable in P and PSPACE.

Definition 2 (Safe class diagrams) Association generalization in a class diagram is sim-
ple if there is no class C that has associations A1, ..., An with classes C1, . . . , Cn (n ≥ 2)
such that A1, ..., An are subassociations of a common association A and the maximum mul-
tiplicity of A on the superclass of C is lower than the sum of the maximum multiplicities of
A1, ..., An on C1, . . . , Cn. A class diagram is safe if it is valid and its association general-
ization is simple.

It can be checked in linear time if each class diagram is safe. In the rest of this paper,
we assume that every class diagram is safe.

The following lemma shows that the three inconsistency triggers describe logical incon-
sistencies in UML class diagrams.

10

Lemma 3 If a UML class diagram contains an inconsistency trigger, then it has no UML-
model.

Proof. Let D be a UML class diagram and let G(D) be the translation of D. If D contains
an inconsistency trigger, then contradictory formulas are included in G(D). Therefore, there
is no UML-model of D.

The three inconsistency triggers can be found structurally in a UML class diagram; in
particular, by tracing the UML components once, we can determine whether or not the
conditions of the first and second inconsistency triggers hold. Intuitively, each inconsis-
tency trigger indicates that a class is directly inconsistent with some components under the
multiplicities and disjointness and completeness constraints.

Lemma 4 Finding the first and second inconsistency triggers in a UML class diagram is
computable in linear time. Moreover, finding the third inconsistency trigger in a UML class
diagram is computable in NP (non-deterministic polynomial time).

Proof. Let D be a UML class diagram and let G(D) be the translation of D. Suppose
that |G(D)| = n. Then, the first and second inconsistency triggers can be checked on class
hierarchies in n steps.

In order to find the third inconsistency trigger, the reflexive and transitive closure G(D)∗

of G(D) is computed in n2 steps, i.e., for each class, all the reachable classes over implication
forms are computed. The disjunctive closure G(D)+ of G(D)∗ identifies this inconsistency
trigger. The disjunctive closure G(D)+ is computed in exponential steps for each class C.
However, each disjunctive form C(x) →+ C1(x)∨· · ·∨Ch(x) ∈ G(D)+ is non-deterministically
computed in at most n3 steps because h ≤ n and |G(D)∗| ≤ n2. If all formulas of the form
C(x) →+ ¬C ′

1(x) ∧ · · · ∧ ¬C ′
m(x) ∈ G(D)∗ is consistent with the disjunctive form, then

there is no third inconsistency trigger. Therefore, finding the third inconsistency trigger is
non-deterministically computed in n3 + n2, i.e., O(n3).

However, it is difficult to structurally check any logical inconsistency in a UML class
diagram if a class has or inherits the identically named attributes a : C1[i..j] and a : C2[i′..j′]
with i, i′ ≥ 1. This implies that C1 and C2 have a common object, and therefore the
conjunction of C1 and C2 has to be checked. Many combinations of such conjunctions give
rise to indirect checking in the UML class diagram. As a result, many subsets of the set
of classes are checked in the worst case. In the next section, we will design a complete
consistency checking algorithm for finding such complicated inconsistencies in a UML class
diagram.

4 Consistency checking

This section presents a consistency checking algorithm for a set of implication forms Γ0 (cor-
responding to the UML class diagram formulation G(D)). It consists of two sub-algorithms
Cons and Assoc; Cons checks the consistency of a class in Γ0 and Assoc tests the consistency
of association generalization in Γ0.

11

4.1 Algorithm for testing consistency

We decompose an implication form set Γ0 in order to apply our consistency checking algo-
rithm to it. Let Γ0 be a set of implication forms, C be a class, and Fi(x) be any formula
including a free variable x. Γ is a decomposed set of Γ0 if the following conditions hold:

(i) Γ0 ⊆ Γ,

(ii) if C(x) → F1(x) ∧ · · · ∧ Fn(x) ∈ Γ, then C(x) → F1(x) ∈ Γ, . . . , C(x) → Fn(x) ∈ Γ,
and

(iii) if C(x) → F1(x) ∨ · · · ∨ Fn(x) ∈ Γ, then C(x) → Fi(x) ∈ Γ for some i ∈ {1, . . . , n}.

We denote Σ(Γ0) as the family of decomposed sets of Γ0.
We denote cls(Γ0) as the set of classes, att(Γ0) as the set of attributes, and asc(Γ0) as

the set of associations that occur in the implication form set Γ0.

Definition 5 Let C be a class, Γ be a decomposed set of Γ0, and δ be a set of classes.
Then, the following operations will be embedded as subroutines in the consistency checking
algorithm:

1. H(C, Γ) = {C ′ | C(x) →∗C ′(x) ∈ Γ} ∪ {¬C ′ | C(x) →∗¬C ′(x) ∈ Γ}.

2. E(δ, a, Γ) =
⋃

C∈δ E(C, a, Γ) where
E(C, a, Γ) = {C ′ | C(x) →∗ (a(x, y) → C ′(y)) ∈ Γ and C(x) →∗ ∃≥iz.a(x, z) ∈ Γ}
with i ≥ 1.

3. N(δ, a, Γ) =
⋃

C∈δ N(C, a, Γ) where
N(C, a, Γ) = {≥ i | C(x) →∗∃≥iz.a(x, z) ∈ Γ} ∪ {≤ j | C(x) →∗∃≤jz.a(x, z) ∈ Γ}.

4. μ0(δ, Γ) = {C} if for all C ′ ∈ μ(δ, Γ), C � C ′ and C ∈ μ(δ, Γ) where
μ(δ, Γ) = {C ∈ δ | δ ⊆ H(C, Γ)} and � is a linear order over cls(Γ0).

The operation H(C, Γ) denotes the set of superclasses C ′ of C and disjoint classes ¬C ′

of C in Γ. The operation E(δ, a, Γ) gathers the set of value types T of attribute a in Γ such
that each value type T is of classes in δ. Further, the operation N(δ, a, Γ) gathers the set
of multiplicities ≥ i and ≤ j of attribute a in Γ such that each of these multiplicities is of
classes in δ. The operation μ(δ, Γ) returns a set {C1, . . . , Cn} of classes in δ such that the
superclasses of each Ci (in Γ) subsume all the classes in δ. The operation μ0(δ, Γ) returns
the singleton set {C} of a class in μ(δ, Γ) such that C is the least class in μ(δ, Γ) over �.

The consistency checking algorithm Cons is described in Figure 6. In order to decide the
consistency of the input implication form set Γ0, we execute the algorithm Cons({C}, ∅, Γ0)
for every class C ∈ cls(Γ0). If C is consistent in Γ0, it returns 1, else 0. At the first
step of the algorithm, a decomposed set Γ of Γ0 (in Σ(Γ0)) which is one of the disjunctive
branches with respect to the completeness constraints in Γ0, is selected. Subsequently, for
each Γ ∈ Σ(Γ0), the following three steps are carried out.

(1) For the selected Γ, the algorithm checks whether all the superclasses of classes in
δ = {C} (obtained from S =

⋃
C∈δ H(C, Γ)) are disjoint to each other. Intuitively, it sets a

dummy instance of class C; the dummy instance is regarded as an instance of the superclasses
C ′ of C and of the disjoint classes ¬C ′ of C along the implication forms C(x) →∗ C ′(x) and

12

Algorithm Cons
input set of classes δ, family of sets of classes Δ, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
begin

for Γ ∈ Σ(Γ0) do
S =

⋃
C∈δ H(C,Γ); fΓ = 0;

if {C,¬C} �⊆ S and {t1, . . . , tn} �⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then fΓ = 1;
for a ∈ att(Γ0) do

if i > j s.t. {≥ i,≤ j} ⊆ N(δ, a,Γ) then fΓ = 0;
else δa = E(δ, a,Γ);

if δa �= ∅ and δa, μ0(δa,Γ) �⊆ Δ then fΓ = Cons(δa,Δ ∪ {δ},Γ0);
esle;

rof;
fi;
if fΓ = 1 then return 1;

rof;
return 0;

end;

Figure 6: The consistency checking algorithm Cons

C(x) →∗ ¬C ′(x) in Γ. If an inconsistent pair Ci and ¬Ci possesses the dummy instance,
then δ is determined to be inconsistent in Γ. For example, {C} is inconsistent in Γ1 = {C(x)
→ C1(x), C1(x) → C2(x), C(x) → ¬C2(x)} since it is necessary for the inconsistent pair C2

and ¬C2 to have the dummy instance of class C, i.e., H(C, Γ1) = {C, C1, C2,¬C2}.
(2) If step (1) finds no inconsistency in Γ, the algorithm then checks the multiplicities of

all the attributes a ∈ att(Γ0). The multiplicities of the same attribute name a are obtained
by N(δ, a, Γ); therefore, when N(δ, a, Γ) contains {≥ i,≤ j} with i > j, these multiplicities
are inconsistent. Intuitively, similar to phase (1), the algorithm checks whether superclasses
involve conflicting multiplicities along the implication form C(x) →∗C ′(x) in Γ. For example,
{C} is inconsistent in

Γ2 = {C(x) → ∃≥10z.a(x, z), C(x) → C1(x), C1(x) → ∃≤5z.a(x, z)}

since the counting quantifiers ∃≥10 and ∃≤5 cannot simultaneously hold when N({C}, a, Γ2) =
{≥ 10,≤ 5}.

(3) Next, the disjointness of attribute value types is checked. Along the implication
form C(x) →∗ C ′(x) in Γ, the algorithm gathers all the value types of the identically named
attributes, obtained by δa = E(δ, a, Γ) for each a ∈ att(Γ0). For example,

Γ3 = {C(x) → C1(x), C(x) → C2(x), C1(x)→(a(x, y) → C3(y)), C2(x)→(a(x, y) → C4(y))}

derives δa = {C3, C4} by E({C}, a, Γ3) since superclasses C1 and C2 of C have the attributes
a : C3 and a : C4. In other words, each value of attribute a is typed by C3 and C4. Hence,
the algorithm needs to check the consistency of δa = {C3, C4}. In order to accomplish this,
it recursively calls Cons(δa, Δ ∪ {{C}}, Γ0), where δa is consistent if 1 is returned. The
second argument Δ∪{{C}} prevents infinite looping by storing sets of classes wherein each
set is already checked in the caller processes.

In order to find a consistent decomposed set Γ in the disjunctive branches of Σ(Γ0), if
the three phases (1), (2), and (3) do not detect any inconsistency in Γ, the algorithm sets

13

Algorithm Assoc
input set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
begin

for A ∈ asc(Γ0) and k ∈ {1, . . . , n} s.t. arity(A) = n do
if iv > jv s.t. {(≥ i1, . . . ,≥ ik−1,≥ ik+1, . . . ,≥ in),

(≤ j1, . . . ,≤ jk−1,≤ jk+1, . . . ,≤ jn)} ⊆ Nk(H(A,Γ0),Γ0) then return 0;
rof;
return 1;

end;

Figure 7: The association checking algorithm Assoc

the flag fΓ = 1, else it sets fΓ = 0. Thus, the flag fΓ = 1 indicates that {C} is consistent in
the input Γ0, i.e., Cons({C}, ∅, Γ0) = 1.

As defined below, the operations H(A, Γ0) and Nk(α, Γ0) return the set of super-associations
A′ of A and the set of n − 1-tuples of multiplicities of n-ary associations A in α along the
implication forms

Ck(x) → ∃≥i1x1 · · · ∃≥ik−1
xk−1∃≥ik+1

xk+1 · · · ∃≥inxn.A(x1, . . . , xn)[xk/x]

and
Ck(x) → ∃≤j1x1 · · · ∃≤jk−1

xk−1∃≤jk+1
xk+1 · · · ∃≤jnxn.A(x1, . . . , xn)[xk/x],

respectively.

Definition 6 The operations H(A, Γ0) and Nk(α, Γ0) are defined as follows:

1. H(A, Γ0) = {A′ | A(x1, . . . , xn) →∗A′(x1, . . . , xn) ∈ Γ0}.

2. Nk(α, Γ0) =
⋃

A∈α Nk(A, Γ0) where
Nk(A, Γ0) = {(≥ i1, . . . ,≥ ik−1,≥ ik+1, . . . ,≥ in) |
Ck(x) → ∃≥i1x1 · · · ∃≥ik−1

xk−1∃≥ik+1
xk+1 · · · ∃≥inxn.A(x1, . . . , xn)[xk/x] ∈ Γ0}∪

{(≤ j1, . . . ,≤ jk−1,≤ jk+1, . . . ,≤ jn) |
Ck(x) → ∃≤j1x1 · · · ∃≤jk−1

xk−1∃≤jk+1
xk+1 · · · ∃≤jnxn.A(x1, . . . , xn)[xk/x] ∈ Γ0}.

In addition to the algorithm Cons, the consistency checking of multiplicities over asso-
ciation generalization is processed by the algorithm Assoc in Figure 7. If Γ0 does not cause
any inconsistency with respect to associations, Assoc(Γ0) returns 1, which is computable in
polynomial time.

Lemma 7 The algorithm Assoc computes the consistency of association generalization in
polynomial time.

Proof. Suppose that |Γ0| = m. Then, |cls(Γ0)| ≤ m and |asc(Γ0)| ≤ m. When Assoc(Γ0)
is called, the number of loops is bounded by at most

m2 = |asc(Γ0)| × Max({arity(A) | A ∈ asc(Γ0)}).

The subroutines H(A, Γ0) and Nk(H(A, Γ0), Γ0) are computable in at most m and 3m steps,
respectively. Hence, this algorithm is implemented in at most m2 × (m + 3m) steps, i.e.,
O(m4).

14

4.2 Soundness, completeness, and termination

We sketch a proof of the completeness for the algorithms Cons and Assoc. Assume that
Cons({C}, ∅, G(D)) for all C ∈ cls(G(D)) and Assoc(G(D)) are called. We construct an
implication tree of (C,G(D)) that expresses the consistency checking proof of C in G(D).
If Cons({C}, ∅,G(D)) = 1, there exists a non-closed implication tree of (C,G(D)). In order
to prove the existence of a UML-model of D, a canonical interpretation is constructed by
consistent subtrees of the non-closed implication trees of (C1,G(D)), . . . , (Cn,G(D)) (with
cls(G(D)) = {C1, . . . , Cn}) and by Assoc(G(D)) = 1. This proves that D is consistent.

Corresponding to calling Cons(δ0, ∅, Γ0), we define an implication tree of a class set δ0

that expresses the consistency checking proof of δ0.

Definition 8 Let Γ0 be a set of implication forms and let δ0 ⊆ cls(Γ0). An implication tree
of (δ0, Γ0) is a finite and minimal tree such that (i) the root is a node labeled with δ0, (ii)
each non-leaf node is labeled with a non-empty set of classes, (iii) each leaf is labeled with
0, 1, or w, (iv) each edge is labeled with Γ or (Γ, a) where Γ ∈ Σ(Γ0) and a ∈ att(Γ0), and
(v) for each node labeled with δ and each Γ ∈ Σ(Γ0), if

⋃
C∈δ H(C, Γ) contains {C,¬C} or

{t1, . . . , tn} with t1 ∩ · · · ∩ tn = ∅, then there is a child of δ labeled with 0 and the edge of
the nodes δ and 0 is labeled with Γ, and otherwise:

• if att(Γ0) = ∅, then there is a child of δ labeled with 1 and the edge of the nodes δ and
1 is labeled with Γ, and

• for all a ∈ att(Γ0), the following conditions hold:

1. if i > j such that {≥ i,≤ j} ∈ N(δ, a, Γ), then there is a child of δ labeled with 0
and the edge of the nodes δ and 0 is labeled with (Γ, a),

2. if E(δ, a, Γ) = ∅, then there is a child of δ labeled with 1 and the edge of the nodes
δ and 1 is labeled with (Γ, a),

3. if there is an ancestor labeled with E(δ, a, Γ) or μ0(E(δ, a, Γ), Γ) (called a witness
of the node labeled with δ), then there is a child of δ labeled with w and the edge
of the nodes δ and w is labeled with (Γ, a), and

4. otherwise, there is a child of δ labeled with E(δ, a, Γ) and the edge of the nodes δ
and E(δ, a, Γ) is labeled with (Γ, a).

Let T be an implication tree of (δ0, Γ0). A node d in T is closed if (i) d is labeled with 0
or if (ii) d is labeled with δ and for every Γ ∈ Σ(Γ0), there is an edge (d, d′) labeled with Γ
or (Γ, a) such that d′ is closed. An implication tree of (δ0, Γ0) is closed if the root is closed.
The implication tree of ({C},G(D)) is a finite tree that determines whether or not there is
a UML-model for the class C in D. That is, a non-closed implication tree of ({C},G(D))
indicates that the class C is consistent in D. The following is an example of an implication
tree.

Example 1 Let G(D) be the translation of a UML class diagram D that contains the fol-
lowing formulas:

C1(x) → C(x), C2(x) → C(x), C1(x) → ¬C2(x),

C(x) → (a1(x, y) → t(y)), C(x) → (a2(x, y) → C2(y)).

15

{C1}
Γ

{C1, C,¬C2}

(Γ, a2)(Γ, a1)

1 {C2}
Γ

{C1, C2}

(Γ, a2)(Γ, a1)

1 w

a witness of
the node {C1, C2}

Figure 8: An implication tree of ({C1},G(D))

As shown in Figure 8, we can construct the implication tree of ({C1},G(D)) that is not
closed since it does not contain any node labeled with 0. In the implication tree, the root is
labeled with {C1} and every leaf is labeled with 1 or w where the leaf labeled with w has a
witness of the parent node labeled with {C1, C2}.

A forest of Γ0 is a set of implication trees of ({C1}, Γ0), . . . , ({Cn}, Γ0) such that cls(Γ0) =
{C1, . . . , Cn}. A forest S of Γ0 is closed if there exists a closed implication tree T in S.
The following lemma states the correspondence between the consistency checking for every
C ∈ cls(Γ0) and the existence of a non-closed forest of Γ0.

Lemma 9 Let Γ0 be a set of implication forms. For every class C ∈ cls(Γ0), Cons({C}, ∅,
Γ0) = 1 if and only if there is a non-closed forest of Γ0.

Proof. (⇒) Let us assume that for every class C0 ∈ cls(Γ0), Cons({C0}, ∅, Γ0) = 1. For
each C0 ∈ cls(Γ0), we construct a tree of ({C0}, Γ0) as follows.

1. Create the root d0 labeled with {C0}.

2. Perform the following operations if a node d labeled with δ is created:

(a) Create a new node d′ labeled with 0 and add the edge (d, d′) labeled with Γ if
fΓ = 0 is kept by satisfying the condition {C,¬C} ⊆ S or {t1, . . . , tn} ⊆ S such
that t1 ∩ · · · ∩ tn = ∅.

(b) Create a new node d′ labeled with 1 and add the edge (d, d′) labeled with Γ
if fΓ = 1 is set by satisfying the conditions att(Γ0) = ∅, {C,¬C} �⊆ S, and
{t1, . . . , tn} �⊆ S such that t1 ∩ · · · ∩ tn = ∅.

(c) Perform the following operations for each a ∈ att(Γ0) if att(Γ0) �= ∅, {C,¬C} �⊆ S,
and {t1, . . . , tn} �⊆ S such that t1 ∩ · · · ∩ tn = ∅:

i. Create a new node d′ labeled with 0 and add the edge (d, d′) labeled with
(Γ, a) if fΓ = 0 is set by satisfying the condition i > j such that {≥ i,≤ j} ⊆
N(δ, a, Γ).

16

ii. Create a new node d′ labeled with 1 and add the edge (d, d′) labeled with
(Γ, a) if fΓ = 1 is kept by satisfying the conditions E(δ, a, Γ) = ∅ and i < j
for any ≥ i,≤ j ∈ N(δ, a, Γ).

iii. Create a new node d′ labeled with w and add the edge (d, d′) labeled with
(Γ, a) if fΓ = 1 is kept by satisfying the conditions that there exists an
ancestor labeled with E(δ, a, Γ) or μ0(E(δ, a, Γ), Γ) (i.e., it belongs to Δ) and
i < j for any ≥ i,≤ j ∈ N(δ, a, Γ).

iv. Create a new node d′ labeled with δ′ and add the edge (d, d′) labeled with
(Γ, a) if Cons(E(δ, a, Γ), Δ∪{δ}, Γ0) is called by satisfying the conditions that
E(δ, a, Γ) �= ∅, there exists no ancestor labeled with E(δ, a, Γ) or μ0(E(δ, a, Γ),
Γ), and i < j for any ≥ i,≤ j ∈ N(δ, a, Γ).

We will show that this tree satisfies the conditions in Definition 8. By Operation 1, it
satisfies Condition (i). By Operation 2 (a), (b), and (c)-i,ii, and iii, every node labeled with
0, 1 or w has no child, and by Operation (c)-iv, if a node has a child, then it is labeled with
a set of classes (Conditions (ii) and (iii)). By Operation 2 (a)-(c), Condition (iv) holds.
Let d be a node labeled with δ and let Γ ∈ Σ(Γ0). If the node d is labeled with 0, 1 or
w, then it satisfies Condition (v) by Operation 2 (a), (b), and (c)-i,ii and iii. If the node
d is labeled with δ, then it satisfies Condition (v) and by the induction hypothesis, all the
children nodes d′ satisfy Condition (v).

(⇐) Let S be a non-closed forest of Γ0 and T be a non-closed implication tree of
({C0}, Γ0) in S. By induction on the depth of T , we will show that if a node d (in T)
labeled with δ is not closed, then Cons(δ, Δd, Γ0) = 1 where Δd is the set of ancestor nodes
of d. Since d is not closed, a non-closed child d′ of d exists. By definition, there exists some
Γ ∈ Σ(Γ0), and if att(Γ0) = ∅, then d′ is labeled with 1 and the edge (d, d′) is labeled with
Γ, otherwise, the node d has a non-closed child da and the edge (d, da) is labeled with (Γ, a)
for all a ∈ att(Γ0). If the child da is labeled with 1, then by Definition 8, E(δ, a, Γ) = ∅.
Hence,

⋃
C∈δ H(C, Γ) does not contain {C,¬C} or {t1, . . . , tn} with t1 ∩ · · · ∩ tn = ∅. If the

child da is labeled with w, then by Definition 8, E(δ, a, Γ) ∈ Δd. If the child da is labeled
with δ′, then by the induction hypothesis, Cons(δ′, Δda , Γ0) = 1. Thus, there exists no
{≥ i,≤ j} ⊆ N(δ, a, Γ) such that i > j. Therefore, for the non-leaf and non-closed node
d labeled with δ, Cons(δ, Δd, Γ0) = 1. It follows that Cons({C0}, ∅, Γ0) = 1 for the root
labeled with {C0}.

We define a consistent subtree T ′ of a non-closed implication tree T such that T ′ is
constructed by non-closed nodes in T .

Definition 10 (Consistent subtree) Let T be a non-closed implication tree of ({C0}, Γ0)
and d0 be the root where Γ0 is a set of implication forms and C0 ∈ cls(Γ0). A tree T ′ is a
consistent subtree of T if (i) T ′ is a subtree of T , (ii) every node in T ′ is not closed, and
(iii) every non-leaf node has m children of all the attributes a1, . . . , am ∈ att(Γ0) where each
child is labeled with 1, w, or a set of classes and each edge of the non-leaf node and its child
is labeled with (Γ, ai).

We show the correspondence between the consistency of an implication form set Γ0 and
the existence of a non-closed forest of Γ0. We extend the first-order language by adding the
new constants d̄ for all the elements d ∈ U such that each new constant is interpreted by
itself, i.e., I(d̄) = d. In addition, we define the following operations:

17

1. projn
k (x1, . . . , xn) = xk where 1 ≤ k ≤ n.

2. Max≥(X) = (Max(X1), . . . , Max(Xn)) where X is a set of n-tuples and for each
v ∈ {1, . . . , n}, Xv = { projn

v (i1, . . . , in) | (≥ i1, . . . ,≥ in) ∈ X}.

3. AC(A, Γ) = (C1, . . . , Cn) if A(x1, . . . , xn) → C1(x1) ∧ · · · ∧ Cn(xn) ∈ Γ.

A canonical interpretation of an implication form set Γ0 is constructed by consistent
subtrees of the non-closed implication trees in a forest of Γ0, that is used to prove the
completeness of the algorithm Cons. A class C is consistent in Γ if there exists a non-closed
implication tree of ({C}, Γ0) such that the root labeled with {C} has a non-closed child
node labeled with Γ or (Γ, a).

Definition 11 (Canonical interpretation) Let Γ0 be a set of implication forms such that
Assoc(Γ0) = 1 and let S = {T1, . . . , Tn} be a non-closed forest of Γ0. For every Ti ∈ S,
there is a consistent subtree T ′

i of Ti, and we set S ′ = {T ′
1 , . . . , T ′

n} as the set of consistent
subtrees of T1, . . . , Tn in S. An canonical interpretation of Γ0 is a pair I = (U, I) such that
U0 = {d | d is a non-leaf node in T ′

1 ∪ · · · ∪ T ′
n}, each e0, ej , e(v,w) are new individuals, and

the following conditions hold:

U = U0 ∪
⋃

d∈T ′
1∪···∪T ′

n

a∈att(Γ0)

Ud,a ∪
⋃

d∈T ′
1∪···∪T ′

n

A∈asc(Γ0)

Ud,A and I(x) = I0(x) ∪
⋃

d∈T ′
1∪···∪T ′

n

a∈att(Γ0)

Id,a(x) ∪
⋃

d∈T ′
1∪···∪T ′

n

A∈asc(Γ0)

Id,A(x)

where I0, Id,a, and Id,A are the minimal functions satisfying the following statements in S ′:

1. For each Γ ∈ Σ(Γ0),

• d ∈ I0(C) if a non-leaf node d is labeled with δ where C ∈
⋃

C′∈δ H(C ′, Γ), and

• (d, d′) ∈ I0(a) if (i) d′ is a non-leaf node and (d, d′) is an edge labeled with (Γ, a), or
(ii) a node d has a child labeled with w, the edge (d, w) is labeled with (Γ, a), and there
is a witness d′ of d2.

2. For each edge (d, d′) labeled with (Γ, a) such that the node d is labeled with δ and
Max≥(N(δ, a, Γ)) = k,

• Ud,a = {e1, . . . , ek−1},

• (d, e1), . . . , (d, ek−1) ∈ Id,a(a) if (d, d′) ∈ I0(a),

• e1, . . . , ek−1 ∈ Id,a(C) if d′ ∈ I0(C), and

• (e1, d
′′), . . . , (ek−1, d

′′) ∈ Id,a(a′) if (d′, d′′) ∈ I0(a′).

3. For all nodes d ∈ I0(Ck) such that AC(A, Γ0) = (C1, . . . , Ck, . . . , Cn) and

Max≥(Nk(H(A, Γ0), Γ0)) = (i1, . . . , ik−1, ik+1, . . . , in),

• Ud,A = {e0} ∪
⋃

v∈{1,...,n}\{k}{e(v,1), . . . , e(v,iv)},

2In Definition 8, for each node labeled with w, there is a witness of the parent node d.

18

• for all (w1, . . . , wk−1, wk+1, . . . , wn) ∈ Nn−1 with 1 ≤ wv ≤ iv,

(e(1,w1), . . . , e(k−1,wk−1), d, e(k+1,wk+1), . . . , e(n,wn)) ∈ Id,A(A) and

e(1,w1) ∈ Id,A(C1), . . . , e(k−1,wk−1) ∈ Id,A(Ck−1),

e(k+1,wk+1) ∈ Id,A(Ck+1), . . . , e(n,wn) ∈ Id,A(Cn),

• e(v,w) ∈ Id,A(C ′) for all C ′ ∈ H(Cv, Γ′) if e(v,w) ∈ Id,A(Cv) and Cv is consistent in Γ′,

• (u1, . . . , un) ∈ Id,A(A′) for all A′ ∈ H(A, Γ0) if (u1, . . . , un) ∈ Id,A(A)3,

• (e(v,w), d
′′) ∈ Id,A(a) and e(v,w)∈ Id,A(Cv) if (d′, d′′) ∈ I0(a) and d′ ∈ I0(Cv), and

• for all (w1, . . . , wk−1, wk+1, . . . , wn) ∈ Nn−1 with 1 ≤ wv ≤ iv,

(e(1,w1), . . . , e(k−1,wk−1), e, e(k+1,wk+1), . . . , e(n,wn)) ∈ Id,A(A)

if e ∈ I(Ck) where e is e0, ej, or e(x,y).

4. For all A ∈ asc(Γ0),

• (u1, . . . , un, e0) ∈ Id,A(r0) and e0 ∈ Id,A(CA) if (u1, . . . , un) ∈ Id,A(A),

• e0 ∈ Id,A(C) for all C ∈ H(CA, Γ′) if e0 ∈ Id,A(CA) and Cv is consistent in Γ′, and

• (e0, d
′′) ∈ Id,A(a) and e0 ∈ Id,A(CA) if (d′, d′′) ∈ I0(a) and d′ ∈ I0(CA).

This canonical interpretation is generated from a set of non-closed implication trees in
order to define a UML-model of D. If an implication tree contains a leaf labeled with w to
avoid a cyclic structure, the cyclic structure is constructed in I0(a) according to Statement
1 of Definition 11. Moreover, the multiplicities of attributes a and associations A are ac-
tually modeled in Id,a and Id,A, respectively, according to Statements 2–4 of Definition 11
where Ud,a and Ud,A are introduced as the sets of individuals in the interpretation of the
multiplicities.

Lemma 12 Let Γ0 be a set of implication forms. There exists an interpretation I such that
for every C0 ∈ cls(Γ0), I |= ∃x.C0(x) if and only if (i) there exists a non-closed forest of Γ0

and (ii) Assoc(Γ0) = 1.

Proof. (⇒) Let I = (U, I) be a FOPL-model I of Γ0 such that for every C0 ∈ cls(Γ0),
I |= ∃x.C0(x). Using the tree construction in the proof of Lemma 9, we can construct an
implication tree T of ({C0}Γ0).

(i) We show that if I |= ∃x.C1(x)∧· · ·∧Cn(x) and there exists a node d0 in T labeled with
δ = {C1, . . . , Cn}, then the node d0 is not closed. Let u0 ∈ U such that I |= C1(ū0) ∧ · · · ∧
Cn(ū0) and let a node d0 be labeled with δ = {C1, . . . , Cn}. Due to I |= Γ0, a decomposed
set Γ of Γ0 is satisfied by I, and therefore, for every L ∈

⋃
C∈δ H(C, Γ), I |= L(ū0) where

L is a class C, a disjoint class ¬C, or a datatype t. Hence,
⋃

C∈δ H(C, Γ) does not contain
{C,¬C} or {t1, . . . , tn} with t1 ∩ · · · ∩ tn = ∅.

3Note that d, d′, d′′, d0 are nodes, e0, ej , e(v,w) are new constants, and u, uj are nodes or new constants.

19

If att(Γ0) = ∅, then a non-closed child node d′ of d0 is labeled with 1 and the edge (d0, d
′)

is labeled with Γ. Otherwise, for all ≥ j ∈ N(δ, a, Γ), I |= ∃≥iz.a(ū0, z) where a ∈ att(Γ0).
For all ≤ j ∈ N(δ, a, Γ), I |= ∃≤jz.a(ū0, z). Hence, there exists no {≥ i,≤ j} ⊆ N(δ, a, Γ)
such that i > j.

For each a ∈ att(Γ0), if E(δ, a, Γ) = ∅, then a non-closed child node d′ of d0 is labeled
with 1 and the edge (d0, d

′) is labeled with (Γ, a). If there is an ancestor labeled with
E(δ, a, Γ) or μ0(E(δ, a, Γ), Γ), then a non-closed child node d′ of d0 is labeled with w and
the edge (d0, d

′) is labeled with (Γ, a). Otherwise, there exists u ∈ U such that for all
v ∈ {1, . . . , n}, I |= Cv(ū) where E(δ, a, Γ) = {C1, . . . , Cn}. So, since for all v ∈ {1, . . . , n},
I |= ∃≥iz.a(ū0, z) (i ≥ 1) and I |= a(ū0, y) → Cv(y), we have I |= ∃x.C1(x) ∧ · · · ∧ Cn(x).
By the induction hypothesis, there exists a non-closed implication tree of (E(δ, a, Γ), Γ0).

By the assumption, for every C0 ∈ cls(Γ0), I |= ∃x.C0(x) and the root of an implication
tree of ({C0}, Γ0) is labeled with {C0}. Therefore, the tree is not closed. It follows that a
non-closed forest of Γ0 exists.

(ii) Due to I |= Γ0, a decomposed set Γ of Γ0 is satisfied by I. Let A ∈ asc(Γ0) and
k ∈ {1, . . . , n} such that arity(A) = n. If A(x1, . . . , xn) → A′(x1, . . . , xn) ∈ Γ0, then for all
ū1, . . . , ūn ∈ U , I |= A(ū1, . . . , ūn) → A′(ū1, . . . , ūn). If C1(x) → C ′

1(x), . . . , Cn(x) → C ′
n(x)

in Γ, then for all ū0 ∈ U , I |= C1(ū0) → C ′
1(ū0), . . . , I |= Cn(ū0) → C ′

n(ū0). Let ū0 ∈ I(Ck).
We have

I |= ∃≥i1x1 · · · ∃≥ik−1
xk−1∃≥ik+1

xk+1 · · · ∃≥inxn.A′(x1, . . . , xn)[xk/ū0]

and
I |= ∃≤j1x1 · · · ∃≤jk−1

xk−1∃≤jk+1
xk+1 · · · ∃≤jnxn.A′(x1, . . . , xn)[xk/ū0].

Hence, there exists no iv > jv such that

{(≥ i1,. . .,≥ ik−1,≥ ik+1,. . .,≥ in), (≤ j1,. . .,≤ jk−1,≤jk+1,. . .,≤ jn)} ⊆ Nk(H(A, Γ0), Γ0).

Therefore, Assoc(Γ0) = 1.
(⇐) Let S = {T1, . . . , Tn} be a non-closed forest of Γ0 and let Assoc(Γ0) = 1. Then,

there exists the set S ′ = {T ′
1 , . . . , T ′

n} of consistent subtrees of T1, . . . , Tn in S, that is used
to construct a canonical interpretation I = (U, I) of Γ0. We want to show that it satisfies
Γ0 and ∃x.C0(x) for every C0 ∈ cls(Γ0). By definition, if T ′

i is a consistent subtree of an
implication tree T of (C0, Γ0), the root d is an element of I0(C0). Hence, I |= ∃x.C0(x).

We now show that each formula in Γ0 is satisfied by I. Let C(x) → F (x) ∈ Γ0. If
d ∈ I0(C), then by the definition of canonical interpretation, for some Γ ∈ Σ(Γ0), d is
labeled with δ where C ∈

⋃
C′∈δ H(C ′, Γ). If F (x) = C1(x) ∨ · · · ∨ Cm(x) (m ≥ 1), then for

some i ∈ {1, . . . , m}, C(x) → Ci(x) ∈ Γ. Then, d ∈ I0(Ci) since Ci ∈
⋃

C′∈δ H(C ′, Γ). If
F (x) = ¬C1(x)∧· · ·∧¬Cm(x) (m ≥ 1), then C(x) → ¬C1(x), . . . , C(x) → ¬Cm(x) ∈ Γ. So,
{C1, . . . , Cm}∩

⋃
C′∈δ H(C ′, Γ) = ∅ because {¬C1, . . . ,¬Cm} ⊆

⋃
C′∈δ H(C ′, Γ) and d is not

closed. By definition, d �∈ I0(C1)∪ · · ·∪ I0(Cm). Hence, I |= C(d̄) → ¬C1(d̄)∧ · · ·∧¬Cm(d̄).
If F (x) = (a(x, y) → C ′(y)), then consider the two cases for (d, d′) ∈ I0(a) where (i) the edge
(d, d′) is labeled with (Γ, a) and (ii) there is a witness d0 of d, the edge (d0, d

′) is labeled
with (Γ, a), and d has a child node labeled with w. Let δa = E(δ, a, Γ). For (i), due to
δa �= ∅, d′ is labeled with δa and C ′ ∈ δa. Thus, d′ ∈ I0(C ′) since C ′ ∈

⋃
C′′∈δa

H(C ′′, Γ).
For (ii), by definition, (d0, d

′) ∈ I0(a), the child node d′ of d0 is labeled with δa, and C ′ ∈ δa.
So, C ′ ∈

⋃
C′′∈δa

H(C ′′, Γ) implies d′ ∈ I0(C ′). Moreover, we have to consider the case

20

where (d, e1), . . . , (d, ek−1) ∈ Id,a(a). By definition, there exists (d, d′) ∈ I0(a). Since d′ is a
non-leaf node labeled with δa and C ′ ∈

⋃
C′′∈δa

H(C ′′, Γ), we have d′ ∈ I0(C ′) and it implies
e1, . . . , ek−1 ∈ Id,a(C ′). Hence, I |= C(d̄) → (a(d̄, y) → C ′(y)). If F (x) = ∃≥iz.a(x, z),
then since d is not closed, the following two cases are considered. If the node d has a
child node d′ such that d′ is a non-leaf node and (d, d′) is an edge labeled with (Γ, a). Thus,
(d, d′) ∈ I0(a). By definition, (d, e1), . . . , (d, ek−1) ∈ Id,a(a) where k = Max≥(N(δ, a, Γ)) ≥ i.
If the node d has a child labeled with w, then there is a witness d0 of d and (d0, d

′) is labeled
with (Γ, a). By definition, (d, d′) ∈ I0(a), and hence (d, e1), . . . , (d, ek−1) ∈ Id,a(a) where
k = Max≥(N(δ, a, Γ)) ≥ i. It follows I |= ∃≥iz.a(d̄, z). If F (x) = ∃≤jz.a(x, z), then since
d is not closed, there is no implication form C(x) →∗ ∃≥iz.a(x, z) ∈ Γ such that i > j. It
derives Max≥(N(δ, a, Γ)) ≤ j. By definition, |{(d, d′)} ∪ {(d, e1), . . . , (d, ek−1)}| ≤ j. Hence,
I |= ∃≤jz.a(d̄, z).

Let ej ∈ Id,a(C) where 1 ≤ j ≤ k − 1. By definition, there exists a node d labeled
with δ such that C ∈

⋃
C′∈δ H(C ′, Γ). So, d ∈ I0(C). If F (x) = C1(x) ∨ · · · ∨ Cm(x)

(m ≥ 1), then for some Ci ∈ {C1, . . . , Cm}, C(x) → Ci(x) ∈ Γ. By Ci ∈
⋃

C′∈δ H(C ′, Γ),
d ∈ I0(Ci), and hence e1, . . . , ek−1 ∈ Id,a(Ci). Also, if F (x) = ¬C1(x) ∧ · · · ∧ ¬Cm(x)
(m ≥ 1), then C(x) → ¬C1(x), . . . , C(x) → ¬Cm(x) ∈ Γ. Due to d �∈ I0(C1)∪ · · · ∪ I0(Cm),
{e1, . . . , ek−1}∩ Id,a(C1)∩ · · · ∩ Id,a(Cm) = ∅. Hence, I |= C(ēj) → ¬C1(ēj)∧ · · · ∧¬Cm(ēj).
Similarly, we can prove it for the cases where F (x) = (a(x, y) → C ′(y)), ∃≥iz.a(x, z), and
∃≤jz.a(x, z).

Let e(v,w) ∈ Id,A(C). Then, there exists d ∈ Id′,A′(Ck) such that AC(A, Γ0) = (C1, . . . ,
Ck, . . . , Cn) and Max≥(Nk(H(A, Γ0), Γ0)) = (i1, . . . , ik−1, ik+1, . . . , in). By definition,
e(v,w) ∈ Id,A(Cv) with C ∈ H(Cv, Γ′) where v ∈ {1, . . . , n}\{k} and Cv is consistent in
Γ′. So, e(v,w) ∈ Id,A(C ′) for all C ′ ∈ H(C, Γ′). If F (x) = C1(x) ∨ · · · ∨ Cm(x) (m ≥ 1),
then for some Ci ∈ {C1, . . . , Cm}, C(x) → Ci(x) ∈ Γ. Then, e(v,w) ∈ I0(Ci) by Ci ∈
H(C, Γ′). If F (x) = ¬C1(x) ∧ · · · ∧ ¬Cm(x) (m ≥ 1), then for any Γ′ ∈ Σ(Γ0), C(x) →
¬C1(x), . . . , C(x) → ¬Cm(x) ∈ Γ′. Since Cv is consistent in Γ′, H(C, Γ′) does not contain
any inconsistent pair Ci and ¬Ci. So, {C1, . . . , Cm} ∩ H(C, Γ′) = ∅. This derives e(v,w) �∈
Id,A(Ci). So, I |= ¬C1(ē(v,w)) ∧ · · · ∧ ¬Cm(ē(v,w)). If F (x) = (a(x, y) → C ′(y)), then for
every (e(v,w), d

′′) ∈ Id,A(a), there exists d′′ such that (d′, d′′) ∈ I0(a) and d′ ∈ I0(Cv). By the
above proof, d′′ ∈ I0(C ′). Hence, I |= a(ē(v,w), d̄

′′) → C ′(d̄′′)). If F (x) = ∃≥iz.a(x, z), then
for every (e(v,w), d

′′) ∈ Id,A(a), there exists d′ such that (d′, d′′) ∈ I0(a) and d′ ∈ I0(Cv). By
the above proof, we have I |= ∃≥iz.a(d̄′, z). By the definition of canonical interpretation,
I |= ∃≥iz.a(ē(v,w), z). Similarly, if F (x) = ∃≤jz.a(x, z), then I |= ∃≤jz.a(ē(v,w), z).

Let e0 ∈ Id,A(C). Similar to the case e(v,w) ∈ Id,A(C).
Let Ck(x) → ∃≥i1x1 · · · ∃≥ik−1

xk−1 ∃≥ik+1
xk+1 · · · ∃≥inxn.A(x1, . . . , xn) [xk/x] in Γ0.

Due to Assoc(Γ0) = 1, there exists no iv > jv such that

{(≥ i1,. . .,≥ ik−1,≥ ik+1,. . .,≥ in), (≤ j1,. . .,≤ jk−1,≤ jk+1,. . .,≤ jn)} ⊆ Nk(H(A, Γ0), Γ0).

For each v ∈ {1, . . . , n}\{k}, {e(v,1), . . . , e(v,iv)} ⊆ Ud,A and iv ≥ i′v where AC(A, Γ0) = (C1,
. . . , Ck, . . . , Cn) and Max≥(Nk(H(A, Γ0), Γ0)) = (i′1, . . . , i′k−1, i

′
k+1, . . . , i′n). If d ∈ I(Ck),

then by definition, for all (w1, . . . , wk−1, wk+1, . . . , wn) with 1 ≤ wv ≤ i′v, (e(1,w1), . . . ,
e(k−1,wk−1), d, e(k+1,wk+1), . . . , e(n,wn)) ∈ Id,A(A). Therefore,

I |= Ck(d̄) → ∃≥i1x1 · · · ∃≥ik−1
xk−1∃≥ik+1

xk+1 · · · ∃≥inxn.A(x1, . . . , xn)[xk/d̄].

Similarly, if e ∈ I(Ck) where e is e0, ej , or e(x,y), then

I |= Ck(ē) → ∃≥i1x1 · · · ∃≥ik−1
xk−1∃≥ik+1

xk+1 · · · ∃≥inxn.A(x1, . . . , xn)[xk/ē].

21

Let Ck(x) → ∃≤j1x1 · · · ∃≤jk−1
xk−1 ∃≤jk+1

xk+1 · · · ∃≤jnxn. A(x1, . . . , xn)[xk/x] in Γ0.
For each v ∈ {1, . . . , n}\{k}, {e(v,1), . . . , e(v,iv)} ⊆ Ud,A and iv < jv (due to Assoc(Γ0) =
1) where AC(A, Γ0) = (C1, . . . , Ck, . . . , Cn) and Max≥(Nk(H(A, Γ0), Γ0)) = (i1, . . . ,
ik−1, ik+1, . . . , in). If d ∈ I(Ck), then by definition, for all (w1, . . . , wk−1, wk+1, . . . , wn)
with 1 ≤ wv ≤ iv, (e(1,w1), . . . , e(k−1,wk−1), d, e(k+1,wk+1), . . . , e(n,wn)) ∈ Id,A(A). Hence,
I |= Ck(d̄) → ∃≤j1x1 · · · ∃≤jk−1

xk−1 ∃≤jk+1
xk+1 · · · ∃≤jnxn. A(x1, . . . , xn)[xk/d̄]. Similarly,

if e ∈ I(Ck) where e is e0, ej , or e(x,y), then

I |= Ck(ē) → ∃≤j1x1 · · · ∃≤jk−1
xk−1∃≤jk+1

xk+1 · · · ∃≤jnxn.A(x1, . . . , xn)[xk/ē].

Let A(x1, . . . , xn) → A′(x1, . . . , xn) ∈ Γ0. If (u1, . . . , un) ∈ Id,A(A), then by definition,
(u1, . . . , un) ∈ Id,A(A′). If (u1, . . . , un) ∈ Id,A′′(A) with A �= A′′, then A′′(x1, . . . , xn) →∗

A(x1, . . . , xn) in Γ0. By definition, (u1, . . . , un) ∈ Id,A′′(A′).
Let A(x1, . . . , xn) → C1(x1)∧ · · · ∧Cn(xn) ∈ Γ0. If (u1, . . . , un) ∈ Id,A(A), then

by definition u1 ∈ Id,A(C1), . . . , un ∈ Id,A(Cn). If (u1, . . . , un) ∈ Id,A′(A) with A �= A′

with A �= A′′, then A′(x1, . . . , xn) →∗ A(x1, . . . , xn) ∈ Γ0, AC(A′, Γ0) = (C ′
1, . . . , C ′

n),
u1 ∈ Id,A′(C ′

1), . . . , un ∈ Id,A′(C ′
n), and {C ′

1(x) →∗ C1(x), . . . , C ′
n(x) →∗ Cn(x)} ⊆ Γ0. By

definition u1 ∈ Id,A′(C1), . . . , un ∈ Id,A′(Cn).
Let A(x1, . . . , xn) → (r0(x1, . . . , xn, z) → CA(z)) ∈ Γ0. If (u1, . . . , un) ∈ Id,A(A), then

for every (u1, . . . , un, e0) ∈ Id,A(r0), e0 ∈ Id,A(CA).
Let A(x1, . . . , xn) → ∃=1z.r0(x1, . . . , xn, z) ∈ Γ0. If (u1, . . . , un) ∈ Id,A(A), then

(u1, . . . , un, e0) ∈ Id,A(r0). Since the element e0 is introduced for (u1, . . . , un) ∈ Id,A(A),
|{e0 | (u1, . . . , un, e0) ∈ Id,A(r0)}| = 1. Hence, I |= ∃=1z.r0(d̄1, . . . , d̄n, z).

Let ∃≤1z.(CA(z) ∧ r0(x1, . . . , xn, z)) ∈ Γ0. Then, there must exist A(x1, . . . , xn) →
∃=1z.r0(x1, . . . , xn, z) ∈ Γ0. Hence, for any (u1, . . . , un) ∈ Un, if (u1, . . . , un) ∈ Id,A(A),
then (u1, . . . , un, e0) ∈ Id,A(r0) and e0 ∈ Id,A(CA), otherwise, there exits no e0 such that
(u1, . . . , un, e0) ∈ Id,A(r0) and e0 ∈ Id,A(CA). Therefore, I |= ∃≤1z.(CA(z) ∧ r0(x1, . . . ,
xn, z)).

The correctness for the algorithms Cons and Assoc is obtained as follows:

Theorem 13 (Completeness) Let D be a UML class diagram with association general-
ization and without roles, and let G(D) be the translation of D into a set of implication
forms. D is consistent if and only if Cons({C}, ∅,G(D)) = 1 for all C ∈ cls(G(D)) and
Assoc(G(D)) = 1.

Proof. (⇒) Suppose G(D) has a UML-model. Then, by the definition of UML-models, for
all C ∈ cls(G(D)), G(D) |= ∃x.C(x). By Lemma 9 and Lemma 12, for all C ∈ cls(G(D)),
Cons({C}, ∅,G(D)) = 1 and Assoc(Γ0) = 1.

(⇐) By Lemma 9 and Lemma 12, there is an interpretation I such that for every
C ∈ cls(G(D)), I |= ∃x.C(x). It follows that a UML-model of D exists.

Theorem 14 (Termination) The consistency checking algorithm Cons terminates.

Proof. The conditions δa �= ∅ and δa �∈ Δ in the algorithm lead to the termination. In the
worst case, Δ contains all the classes in cls(Γ0) but it must be a finite set.

Theorem 15 (Complexity) The algorithm Cons computes the consistency of D−
ful in

2EXPTIME.

22

Proof. Suppose that |Γ0| = m. Then, |cls(Γ0)| ≤ m and |att(Γ0)| ≤ m. Let D be a class
diagram in D−

ful and let G(D) be the translation of D. The algorithm Cons contains the
loops for all Γ ∈ Σ(G(D)) and a ∈ att(Γ0). Moreover, the number of recursive calls is the
number of subsets of the set cls(G(D)) of classes in Δ that is exponential. So, the total
number of recursive calls is |2cls(G(D))||Σ(G(D))|×|att(Γ0)| = 22m·2m

where each call is computed
in at most m2 + m steps due to |

⋃
C∈δ H(C, Γ)| ≤ m2 and |N(δ, a, Γ)| ≤ m. Therefore, the

consistency checking for every class is computable in m × (m2 + m) × 22m·2m
steps in the

worst case.

In Theorems 14 and 15, the proposed consistency checking algorithm Cons terminates;
however, it still exhibits a double-exponential complexity in the worst case (and Assoc
exhibits polynomial time complexity).

5 Algorithms and complexities for various expressivities

In this section, we will present optimized consistency checking algorithms for class diagrams
of different expressive powers.

5.1 Restriction of inconsistency triggers

We denote the set of UML class diagrams with association generalization and without roles
as D−

ful. By deleting certain inconsistency triggers, we classify UML class diagrams that are
less expressive than D−

ful. The least set D−
0 of class diagrams is obtained by deleting dis-

jointness/completeness constraints and overwriting/multiple inheritances. We define D−
dis,

D−
com, and D−

inh as extensions of D−
0 by adding disjointness constraints, completeness con-

straints, and overwriting/multiple inheritances, respectively. We denote D−
dis+com, D−

dis+inh,
and D−

inh+com as the unions of D−
dis and D−

com, D−
dis and D−

inh, and D−
inh and D−

com, respectively.

D−
dis+com

D−
dis D−

com

D−
0

D−
ful

D−
com+inhD−

dis+inh

D−
inh

Group 5

Group 1

Group 4

Group 3

Group 2

Figure 9: Classification of UML class diagrams

In order to design algorithms that are suitable for these expressivities, we divide the class
diagrams into five groups, as shown in Figure 9. Group 1 comprises the least expressive class
diagrams obtained by deleting disjointness constraints and overwriting/multiple inheritances
(but allowing attribute multiplicities). Groups 2 and 3 prohibit the form C1(x)∨· · ·∨Cm(x)
as disjunctive classes by deleting completeness constraints. Furthermore, Group 2 con-
tains no overwriting/multiple inheritances. Group 4 is restricted by eliminating overwrit-

23

ing/multiple inheritances (but allowing disjointness constraints, completeness constraints,
and attribute multiplicities).

Given a real UML class diagram, we need to select a group to which the diagram belongs
in order to apply an optimized algorithm to it. One of the five groups is determined by
means of which combinations of overwriting/multiple inheritances, disjointness constraints,
and completeness constraints are included in the UML class diagram.

Definition 16 (Classification rules of UML class diagrams) For any UML class di-
agram D, its belonged group is uniquely selected by the following rules:

(i) if D contains the disjointness constraint {disjoint}, then it belongs to Group 2, 3, or
4,

(ii) if D contains the completeness constraint {complete}, then it belongs to Group 1, 4,
or 5,

(iii) if D contains identically named attributes in two classes C1 and C2 such that C1 is a
subclass of C2 or C1 and C2 have a common subclass, then it belongs to Group 3 or 5,

(iv) if (i), (ii), or (iii) does not hold, then it belongs to Group 1, and

(v) if (i) - (iv) imply more than one group, then the least group number is selected.

These rules classify any real UML class diagram into a group even if the diagram includes
additional expressions beyond the class diagrams defined in the groups.

5.2 Restriction of attribute value types

Apart from the restriction of inconsistency triggers, we naturally restrict attribute value
types in the overwriting/multiple inheritances. Consider the class hierarchy in Figure 10. A

C2

C1

C3

a : C

C4

a : C ′

a : C ′′

Figure 10: Attribute value types in overwriting/multiple inheritances

class C1 with attribute a : C inherits attributes a : C ′ and a : C ′′ from superclasses C2 and
C4. In this case, if the value type C is a subclass of all the other value types C ′ and C ′′ of
the identically named attributes in the class hierarchy, the consistency checking of the value
types C, C ′, and C ′′ can be guaranteed by the consistency checking of only the value type
C.

24

Let C ∈ cls(Γ0) and let Γ ∈ Σ(Γ0). The attribute value types used in class C are said
to be restrictedly defined in Γ when if the superclasses C1, . . . , Cn of C (i.e., H(C, Γ) =
{C1, . . . , Cn}) have identically named attributes and the attribute value types are classes
C ′

1, . . . , C ′
m, a attribute value type C ′

i is a subclass of the other attribute value types
{C ′

1, . . . , C
′
m}\{C ′

i}, i.e., {C ′
1, . . . , C ′

m} ⊆ H(C ′
i, Γ). All the attribute value types are re-

strictedly defined if the attribute value types in any class C ∈ cls(Γ0) are restrictedly
defined in any Γ ∈ Σ(Γ0).

Example 2 As shown in Figure 10, the value types C, C ′, and C ′′ of attribute a in class
C1 are restrictedly defined in

Γ1 = {C1(x) → C2(x), C1(x) → C3(x), C3(x) → C4(x), C1(x) → (a(x, y) → C(y)),

C2(x) → (a(x, y) → C ′(y)), C4(x) → (a(x, y) → C ′′(y)), . . .}
if {C, C ′, C ′′} ⊆ H(C0, Γ1), where C0 is C, C ′, or C ′′.

The restriction of inconsistency triggers and the restriction of attribute value types
are relevant for users to obtain a simple syntax and effective consistency checking in class
diagrams. In practice, the users can make the specification of a software system more
abstract by excluding attributes and operations or disjointness and completeness constraints.
In the restriction of inconsistency triggers, the simplest diagrams become class hierarchies
and the other simplified diagrams correspond to one among Groups 1–5 (according to the
rules mentioned in Definition 16). Moreover, the restriction of attribute value types in
multiple inheritances is realized by two safety design patterns of class diagrams. The first
is to prohibit the use of two classes that have identically named attributes and a common
subclass in order to avoid any conflict of attribute value types. The second is that users
should decide a unique value type for each attribute name, i.e., they must set a general value
type for each attribute name. This is a simple way to restrict the attribute value types.

5.3 Optimized algorithms

We show that Group 1 does not cause any inconsistency and devise four consistency check-
ing algorithms Cons1–Cons4 that are suitably optimized for Groups 2–5 (because Cons
is not effectively designed for each of the groups). For Groups 2 and 3, we develop the
optimized algorithm Cons1 for the class diagrams with no completeness constraints. This
algorithm does not process any recursive calls but performs looping of consistency checking
for unchecked sets of classes. Hence, the computation is limited to polynomial time (when
Group 2 or attribute value types are restricted in Group 3). For Group 4, we design the opti-
mized algorithm Cons2 for the class diagrams with no overwriting or multiple inheritances.
The diagrams in Group 4 do not create complex sets of target classes during the evaluation
of attributes because of the absence of overwriting, or multiple inheritances. Even if the
completeness constraints expand the searching space exponentially, the depth of a recursive
call tree is limited to polynomial size. For Group 5, we develop the two optimized algorithms
Cons3 and Cons4 for the class diagrams with completeness constraints and overwriting and
multiple inheritances. The algorithm Cons4 is a single exponential time algorithm as an
optimization of Cons that eliminates redundant steps. The algorithm Cons3 can be used
to reduce space complexity if attribute value types are restricted in the class diagrams of
Group 5.

25

The optimized algorithm Cons1 (in Figure 11) computes the consistency of class dia-
grams in D−

dis+inh, D−
inh, and D−

dis (in Groups 2 and 3) by calling Cons1({C0}, ∅, Γ0) for
every class C0 ∈ cls(Γ0). Let X be a set and Y be a family of sets. Then, we define
ADD(X, Y) = {Xi ∈ Y | Xi �⊂ X} ∪ {X} such that X is added to Y and all Xi ⊂ X are re-
moved from Y . Since D−

dis+inh, D−
inh, and D−

dis do not contain any completeness constraints,
there is a unique decomposed set of Γ0, namely, Σ(Γ0) = {Γ}. Instead of recursive calls,
Cons1 performs looping of consistency checking for each element of variable P that stores
unchecked sets of classes. Moreover, Cons1 is optimized by skipping over the sets of classes
that have already been checked to be consistent in any former routine. The sets are stored
in a good variable set G = {δ1, . . . , δn} that is a family of sets of classes such that each set
δi is consistent in a decomposed set of Γ0 (in Σ(Γ0)). The condition “δa, μ0(δa, Γ) �⊆ δ′ for
all δ′ ∈ G” makes Cons1 skip the consistency checking of the target set δa if a superset δ′ of
either δa or μ0(δa, a, Γ) is already checked in former processes (i.e., δ′ ∈ G). The optimiza-
tion method of using good and no good variable sets G and NG is based on the EXPTIME
tableau algorithm presented in reference [5].

Algorithm Cons1 for D−
dis+inh, D−

inh, and D−
dis

input set of classes δ, family of sets of classes Δ, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
begin

P = {δ}; G = Δ;
while P �= ∅ do

δ ∈ P ; P = P − {δ}; Γ ∈ Σ(Γ0); S =
⋃

C∈δ H(C,Γ);
if {C,¬C} ⊆ S or {t1, . . . , tn} ⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then return 0;
else G = ADD(δ,G);

for a ∈ att(Γ0) do
if i > j s.t. {≥ i,≤ j} ⊆ N(δ, a,Γ) then return 0;
else δa = E(δ, a,Γ);

if δa �= ∅ and δa, μ0(δa,Γ) �⊆ δ′ for all δ′ ∈ G then
if μ(δa,Γ) �= ∅ then δa = μ0(δa,Γ);
P = ADD(δa, P);

fi;
esle;

rof;
esle;

elihw;
return 1;

end;

Figure 11: The optimized consistency checking algorithm Cons1

We need Lemmas 17, 18, and 19 in order to guarantee that the optimized algorithm
Cons1 preserves the completeness (Theorem 20).

Lemma 17 Let Γ0 be a set of implication forms and let C0 ∈ cls(Γ0). There is a non-closed
implication tree T of ({C0}, Γ0) if and only if there is a consistent subtree of T .

Proof. (⇒) Trivial. (⇐) Suppose that there exists no a non-closed implication tree T
of ({C0}, Γ0). Let T ′ be a subtree of T such that each node satisfies Condition (iii) in
Definition 10. Then, T ′ is closed. Hence, there is no consistent subtree of T .

26

Lemma 18 Let Γ0 be a set of implication forms and let δ0 ⊆ cls(Γ0). If there is a non-
closed implication tree of (δ0, Γ0), then for every δ′0 ⊆ δ0 with δ0 �= ∅, there is a non-closed
implication tree of (δ′0, Γ0).

Proof. Let T be a non-closed implication tree of (δ0, Γ0) and let δ′0 ⊆ δ0 with δ0 �= ∅. In
order to construct a non-closed implication tree T ′ of (δ′0, Γ0), we use the tree construction
in the proof of Lemma 9. Since it terminates, there must exist an implication tree T ′ of
(δ′0, Γ0). For each node d labeled with δ in T , the tree T ′ has the corresponding node d′

labeled with δ′ such that d′ has the same path to the root of T . So, δ′ ⊆ δ because δ′0 ⊆ δ0

and if δ′i ⊆ δi then E(δ′i, a, Γ) ⊆ E(δi, a, Γ) for any a ∈ att(Γ0) and Γ ∈ Σ(Γ0). Therefore,
there exists a consistent subtree of T ′. By Lemma 17, T ′ is not closed.

Lemma 19 Let Γ0 be a set of implication forms in D−
dis+inh, D

−
inh, or D−

dis. For every class
C0 ∈ cls(Γ0), Cons1({C0}, ∅, Γ0) = 1 if and only if there is a non-closed forest of Γ0.

Proof. (⇒) Let us assume that for every class C0 ∈ cls(Γ0), Cons1({C0}, ∅, Γ0) = 1. For
each C0 ∈ cls(Γ0), we construct a tree T of ({C0}, Γ0) as follows.

1. Create the root d0 labeled with {C0}.

2. Perform the following operations if a node d labeled with δ is created:

(a) Create a new node d′ labeled with 0 and add the edge (d, d′) labeled with Γ if
0 is returned by satisfying the condition {C,¬C} ⊆ S or {t1, . . . , tn} ⊆ S such
that t1 ∩ · · · ∩ tn = ∅.

(b) Create a new node d′ labeled with 1 and add the edge (d, d′) labeled with Γ
if 1 is returned by satisfying the conditions att(Γ0) = ∅, {C,¬C} �⊆ S, and
{t1, . . . , tn} �⊆ S such that t1 ∩ · · · ∩ tn = ∅,

(c) Perform the following operations for each a ∈ att(Γ0) if att(Γ0) �= ∅, {C,¬C} �⊆ S,
and {t1, . . . , tn} �⊆ S such that t1 ∩ · · · ∩ tn = ∅:

i. Create a new node d′ labeled with 0 and add the edge (d, d′) labeled with
(Γ, a) if 0 is returned by satisfying the condition i > j such that {≥ i,≤ j} ⊆
N(δ, a, Γ),

ii. Create a new node d′ labeled with 1 and add the edge (d, d′) labeled with
(Γ, a) if δa is not added to P by satisfying the conditions E(δ, a, Γ) = ∅ and
i < j for any ≥ i,≤ j ∈ N(δ, a, Γ),

iii. Create a new node d′ labeled with w and add the edge (d, d′) labeled with
(Γ, a) if δa is not added to P by satisfying the condition that there exists an
ancestor node labeled with E(δ, a, Γ) or μ0(E(δ, a, Γ), Γ) and i < j for any
≥ i,≤ j ∈ N(δ, a, Γ),

iv. Add the non-closed implication tree of (δ′, Γ0) and the edge (d, d′) labeled
with (Γ, a) to the node d if δa is not added to P by satisfying the condition
that E(δ, a, Γ) ⊆ δ′ or μ0(E(δ, a, Γ), Γ) ⊆ δ′ with δ′ ∈ G and there exists no
ancestor labeled with E(δ, a, Γ) or μ0(E(δ, a, Γ), Γ). The non-closed implica-
tion tree can be obtained by Lemma 18 because for every δ′ ∈ G, there exists
a non-closed implication tree of (δ′, Γ0). Moreover, for every descendant node
d′′ of d in the added tree, apply the following operations:

27

Algorithm Cons2 for D−
dis+com

input class C0, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
begin

for Γ ∈ Σ(Γ0) do
S = H(C0,Γ);
if {C,¬C} �⊆ S and {t1, . . . , tn} �⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then

for a ∈ att(Γ0) do
if i > j s.t. {≥ i,≤ j} ⊆ N(C0, a,Γ) then return 0;

return 1;
fi;

rof;
return 0;

end;

Figure 12: The optimized consistency checking algorithm Cons2

A. Replace δ′′ with w and delete all the descendant nodes of d′′ if there exists
an ancestor node labeled with δ′′ or μ0(δ′′, Γ).

B. Recursively apply operation (iv) to the node d′′ if d′′ is labeled with
w such that there exists no ancestor node labeled with E(δ′′, a, Γ) or
μ0(E(δ′′, a, Γ), Γ).

v. Create a new node d′ labeled with δ′ and add the edge (d, d′) labeled with
(Γ, a) if δa is added to P by satisfying the conditions that E(δ, a, Γ) �= ∅,
μ0(E(δ, a, Γ), Γ) �⊆ δ′ and E(δ, a, Γ) �⊆ δ′ for any δ′ ∈ G, and i < j for any
≥ i,≤ j ∈ N(δ, a, Γ).

Similar to the proof of Lemma 9, this tree T satisfies the conditions in Definition 8.
(⇐) By the expressivity of D−

dis+inh, D−
inh, or D−

dis, Σ(Γ0) = {Γ} for an implication form
set Γ0. This can be proved similar to the case of the algorithm Cons.

The following theorem guarantees that the optimized algorithm Cons1 preserves the
completeness.

Theorem 20 (Completeness) Let D be a UML class diagram in D−
dis+inh, D

−
inh, or D−

dis,
and let G(D) be the translation of D into a set of implication forms. D is consistent if and
only if Cons1({C}, ∅,G(D)) = 1 for all C ∈ cls(G(D)) and Assoc(G(D)) = 1.

Proof. By Lemmas 12 and 19.

The optimized algorithm Cons2 (in Figure 12) computes the consistency of D−
dis+com

(in Group 4) if Cons2(C0, Γ0) is called for every class C0 ∈ cls(Γ0). This algorithm is
simply designed for testing the consistency of an input class C0 in every Γ ∈ Σ(Γ0), where
the multiplicities of attributes in C0 are checked but the disjointness of the attribute value
types are not. This is because D−

dis+com involves no overwriting/multiple inheritances, i.e.,
each attribute value is uniquely typed and if type T is a class (in cls(Γ0)), the consistency
of T can be checked in another call Cons2(T, Γ0).

We need Lemma 21 in order to guarantee that the optimized algorithm Cons2 preserves
the completeness (Theorem 22).

28

Lemma 21 Let Γ0 be a set of implication forms in D−
dis+com. For every class C0 ∈ cls(Γ0),

Cons2(C0, Γ0) = 1 if and only if there is a non-closed forest of Γ0.

Proof. (⇒) Let us assume that for every class C0 ∈ cls(Γ0), Cons2(C0, Γ0) = 1. If we
apply Cons({C0}, ∅, Γ0) to each C0, then since Γ0 does not contain overwriting/multiple
inheritances, every recursively call in the algorithm Cons({C0}, ∅, Γ0) is limited to the calls
Cons({Ci}, Δ, Γ0) where Ci ∈ cls(Γ0) and Δ ⊆ cls(Γ0). Therefore, by the assumption, for
every class C0 ∈ cls(Γ0), Cons({C0}, ∅, Γ0) = 1. By Lemma 9, a non-closed forest of Γ0

exists.
(⇐) Let S be a non-closed forest of Γ0 and T be a non-closed implication tree of

({C0}, Γ0) in S. So, the root d (in T) labeled with {C0} is not closed. For each Γ ∈ Σ(Γ0),
a child d′ of d is labeled with 1 and the edge (d, d′) is labeled with Γ if att(Γ0) = ∅,
otherwise, for all a ∈ att(Γ0), a child da of d is labeled with a set of classes. Therefore,
Cons2(C0, Γ0) = 1.

The following theorem guarantees that the optimized algorithm Cons2 preserves the
completeness.

Theorem 22 (Completeness) Let D be a UML class diagram in D−
dis+com, and let G(D)

be the translation of D into a set of implication forms. D is consistent if and only if
Cons2({C}, ∅,G(D)) = 1 for all C ∈ cls(G(D)) and Assoc(G(D)) = 1.

Proof. By Lemmas 12 and 21.

The optimized algorithm Cons3 (in Figure 13) computes the consistency of D−
com+inh

and D−
ful (in Group 5) if we call Cons3({C0}, ∅, Γ0) for every class C0 ∈ cls(Γ0). It should

be noted that the algorithm Cons requires double exponential time in the worst case. This
algorithm is optimized as a single exponential version by skipping the sets of classes that
are already checked as consistent or inconsistent in any former routine (but Cons limits
the skipping to the set Δ stored in the caller processes). The no good variable set NG is a
family of pairs of a set δ of classes and a decomposed set Γ of Γ0 such that δ is inconsistent
in Γ. Each element in NG exactly indicates the inconsistency of δ in the set Γ by storing
the pair (δ, Γ), so that it is never checked again.

In addition to this method, we consider that further elements can be skipped by the con-
dition “δa, μ0(δa, Γ) �⊆ δ′ for all δ′ ∈ Δ ∪G.” This implies that Cons3 skips the consistency
checking of the target set δa if a superset δ′ of either δa or μ0(δa, a, Γ) is already checked
in former processes (i.e., δ′ ∈ Δ ∪ G). With regard to the skipping condition, the following
lemma guarantees that if μ(δ, Γ) �= ∅, then all the classes C1, . . . , Cn in δ and the sole class
C in μ0(δ, Γ) (= {C}) have the same superclasses. In other words, the consistency checking
of δ can be replaced with the consistency checking of μ0(δ, Γ). Therefore, the computational
steps can be decreased by skipping the target set δa since this set can be replaced by an
already checked superset of the singleton μ0(δa, a, Γ).

Lemma 23 Let Γ0 be a set of implication forms and let Γ ∈ Σ(Γ0). For all δ ⊆ cls(Γ0)
and a ∈ att(Γ0), if μ(δ, Γ) �= ∅, then

1.
⋃

C∈δ H(C, Γ) =
⋃

C∈μ0(δ,Γ) H(C, Γ),

29

Algorithm Cons3 for D−
com+inh and D−

ful

input set of classes δ, family of sets of classes Δ, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
global variables G = ∅, NG = ∅
begin

for Γ ∈ Σ(Γ0) s.t. (δ,Γ) �∈ NG do
S =

⋃
C∈δ H(C,Γ); fΓ = 0;

if {C,¬C} �⊆ S and {t1, . . . , tn} �⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then fΓ = 1;
for a ∈ att(Γ0) do

if i > j s.t. {≥ i,≤ j} ⊆ N(δ, a,Γ) then fΓ = 0;
else δa = E(δ, a,Γ);

if δa �= ∅ and δa, μ0(δa,Γ) �⊆ δ′ for all δ′ ∈ Δ ∪ G then
if μ(δa,Γ) �= ∅ then δa = μ0(δa,Γ);
fΓ = Cons3(δa,Δ,Γ0);

fi;
esle;

rof;
fi;
if fΓ = 1 then G = ADD(δ,G); return 1;
else NG = ADD((δ,Γ), NG);

rof;
return 0;

end;

Figure 13: The optimized consistency checking algorithm Cons3

2. N(δ, a, Γ) = N(μ0(δ, Γ), a, Γ), and

3. E(δ, a, Γ) = E(μ0(δ, Γ), a, Γ).

Proof. Let δ be a set of classes in cls(Γ0).
C0 ∈

⋃
C∈δ H(C, Γ) if and only if there exists C ∈ δ such that C(x) →∗ C0(x) ∈ Γ. By

the definition of μ(δ, Γ), for all C ′ ∈ μ(δ, Γ), δ ⊆ H(C ′, Γ). Then, for every C ∈ δ, C ′(x)
→∗ C(x) ∈ Γ. Hence, C ′(x) →∗ C0(x) ∈ Γ if and only if C0 ∈ H(C ′, Γ). Since μ0(δ, Γ) ⊆
μ(δ, Γ), it implies C0 ∈

⋃
C′

0∈μ0(δ,Γ) H(C ′, Γ). Inversely, if C0 ∈
⋃

C′
0∈μ0(δ,Γ) H(C ′

0, Γ), then
C ′

0(x) → C0(x) ∈ Γ where μ0(δ, Γ) = {C ′
0}. By μ0(δ, Γ) ⊆ δ ⊆ H(C ′, Γ) where C ′ ∈ μ(δ, Γ),

for all C ′ ∈ μ(δ, Γ), C ′(x) →∗ C ′
0(x) ∈ Γ. Thus, C ′(x) →∗ C0(x) ∈ Γ. So, C0 ∈ H(C ′, Γ) for

all C ′ ∈ μ(δ, Γ).
We have that ≤ j ∈ N(δ, a, Γ) (or ≥ i ∈ N(δ, a, Γ)) if and only if there exists C ∈ δ such

that C(x) →∗ ∃≤jz.a(x, z) ∈ Γ (or C(x) →∗ ∃≥iz.a(x, z) ∈ Γ). By the definition of μ(δ, Γ),
for all C ′ ∈ μ(δ, Γ), δ ⊆ H(C ′, Γ). Then, for every C ∈ δ, C ′(x) →∗ C(x) ∈ Γ. Hence,
C ′(x) →∗ ∃≤jz.a(x, z) ∈ Γ (or C ′(x) →∗ ∃≥iz.a(x, z) ∈ Γ) if and only if ≤ j ∈ N(C ′, a, Γ)
(or ≥ i ∈ N(δ, a, Γ)). Since μ0(δ, Γ) ⊆ μ(δ, Γ), it implies ≤ j ∈ N(μ0(δ, Γ), a, Γ) (or ≥ i
∈ N(μ0(δ, Γ), a, Γ)). Inversely, if ≤ j ∈ N(μ0(δ, Γ), a, Γ) (or ≥ i ∈ N(μ0(δ, Γ), a, Γ)), then
C ′

0(x) →∗ ∃≤jz.a(x, z) ∈ Γ (or C ′
0(x) →∗ ∃≥iz.a(x, z) ∈ Γ) where μ0(δ, Γ) = {C ′

0}. By
μ0(δ, Γ) ⊆ δ ⊆ H(C ′, Γ) where C ′ ∈ μ(δ, Γ), for all C ′ ∈ μ(δ, Γ), C ′ →∗ C ′

0 ∈ Γ. Thus,
C ′(x) →∗ ∃≤jz.a(x, z) ∈ Γ (or C ′(x) →∗ ∃≥iz.a(x, z) ∈ Γ). So, ≤ j ∈ N(C ′, a, Γ) (or ≥ i ∈
N(δ, a, Γ)) for all C ′ ∈ μ(δ, Γ).

C0 ∈ E(δ, a, Γ) if and only if there exists C ∈ δ such that C(x) →∗ (a(x, y) → C0(y)) ∈ Γ
and C(x) →∗ ∃≥iz.a(x, z) ∈ Γ (i ≥ 1). By the definition of μ(δ, Γ), for all C ′ ∈ μ(δ, Γ),

30

Algorithm Cons4 for D−
com+inh and D−

ful

input set of classes δ, family of sets of classes Δ, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
global variables G = ∅, NG = ∅
begin

for Γ ∈ Σ(Γ0) do
S =

⋃
C∈δ H(C,Γ); fΓ = 0;

if {C,¬C} �⊆ S and {t1, . . . , tn} �⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then fΓ = 1;
for a ∈ att(Γ0) do

if i > j s.t. {≥ i,≤ j} ⊆ N(δ, a,Γ) then fΓ = 0;
else δa = E(δ, a,Γ);

if δa �= ∅ and δa, μ0(δa,Γ) �⊆ δ′ for all δ′ ∈ Δ ∪ G then
if μ(δa,Γ) �= ∅ then δa = μ0(δa,Γ);
if δa ∈ NG then fΓ = 0;
else fΓ = Cons4(δa,Δ,Γ0);

fi;
esle;

rof;
fi;
if fΓ = 1 then G = ADD(δ,G); return 1;

rof;
NG = ADD(δ,NG); return 0;

end;

Figure 14: The optimized consistency checking algorithm Cons4

δ ⊆ H(C ′, Γ). Then, for every C ∈ δ, C ′(x) →∗ C(x) ∈ Γ. Hence,

C ′(x) →∗ (a(x, y) → C(x)) ∈ Γ and C ′(x) →∗∃≥iz.a(x, z) ∈ Γ

if and only if C0 ∈ E(C ′, a, Γ). Since μ0(δ, Γ) ⊆ μ(δ, Γ), it implies C ∈ E(μ0(δ, Γ), a, Γ).
Inversely, if C ∈ E(μ0(δ, Γ), a, Γ), then

C ′
0(x) →∗ (a(x, y) → C0(y)) ∈ Γ and C ′

0(x) →∗∃≥iz.a(x, z) ∈ Γ

where μ0(δ, Γ) = {C ′
0}. By μ0(δ, Γ) ⊆ δ ⊆ H(C ′, Γ) where C ′ ∈ μ(δ, Γ), for all C ′ ∈ μ(δ, Γ),

C ′(x) →∗ C ′
0(x) ∈ Γ. Thus, C ′(x) → (a(x, y) →∗ C0(y)) ∈ Γ and C ′(x) →∗ ∃≥iz.a(x, z) ∈ Γ.

So, C0 ∈ E(C ′, a, Γ) for all C ′ ∈ μ(δ, Γ).

We adjust the algorithm Cons3 to class diagrams in which all the attribute value types
are restrictedly defined. The optimized algorithm Cons4 is shown in Figure 14; as indicated
by the underlined text, this algorithm is improved by only storing the sets of classes in NG
(similar to G). The restriction of value types leads to μ(δa, Γ) �= ∅; therefore, the size of NG
is limited to a set of singletons of classes. In other words, Cons4 can be adjusted to decrease
the space complexity (i.e., NG) to polynomial space by using the property of Lemma 23.
Unfortunately, this adjustment does not yield a single exponential algorithm if the attribute
value types are unrestrictedly defined. Hence, we need both Cons3 and Cons4 for the cases
where the attribute value types are restrictedly and unrestrictedly defined.

We need Lemma 24 in order to guarantee that the optimized algorithms Cons3 and
Cons4 preserve the completeness (Theorem 25).

31

Lemma 24 Let Γ0 be a set of implication forms in D−
com+inh or D−

ful. For every class
C0 ∈ cls(Γ0), Cons3({C0}, ∅, Γ0) = 1 (or Cons4({C0}, ∅, Γ0) = 1) if and only if there is a
non-closed forest of Γ0.

Proof. (⇒) Let us assume that for every class C0 ∈ cls(Γ0), Cons3({C0}, ∅, Γ0) = 1 (or
Cons4({C0}, ∅, Γ0) = 1). For each C0 ∈ cls(Γ0), we construct a tree T of ({C0}, Γ0) as
follows.

1. Create the root d0 labeled with {C0}.

2. Perform the following operations if a node d labeled with δ is created:

(a) Create a new node d′ labeled with 0 and add the edge (d, d′) labeled with Γ if
fΓ = 0 is kept by satisfying the conditions {C,¬C} ⊆ S or {t1, . . . , tn} ⊆ S with
t1 ∩ · · · ∩ tn = ∅, and (δ, Γ) �∈ NG (or Γ �∈ NG).

(b) Create a new node d′ labeled with 1 and add the edge (d, d′) labeled with Γ if 1 is
returned by satisfying the conditions att(Γ0) = ∅, {C,¬C} �⊆ S, {t1, . . . , tn} �⊆ S
with t1 ∩ · · · ∩ tn = ∅, and (δ, Γ) �∈ NG (or Γ �∈ NG).

(c) Perform the following operations for each a ∈ att(Γ0) if att(Γ0) �= ∅, {C,¬C} �⊆ S,
{t1, . . . , tn} �⊆ S with t1 ∩ · · · ∩ tn = ∅, and (δ, Γ) �∈ NG (or Γ �∈ NG):

i. - iii. Perform the same operations as the tree construction in the proof of
Lemma 9.

iv. Perform the same operations in the proof of Lemma 19.
v. Create a new node d′ labeled with δ′ and add the edge (d, d′) labeled with

(Γ, a) if δa is added to P by satisfying the conditions that E(δ, a, Γ) �= ∅,
E(δ, a, Γ) �⊆ δ′ (or μ0(E(δ, a, Γ), Γ) �⊆ δ′ by Lemma 23) for any δ ∈ G, there
exists no ancestor labeled with E(δ, a, Γ) (or μ0(E(δ, a, Γ), Γ) by Lemma 23),
and i < j for any ≥ i,≤ j ∈ N(δ, a, Γ).

(d) Add all the children d′ of d such that the edge (d, d′) is labeled with Γ or (Γ, a)
and their descendants to the node d if (δ, Γ) ∈ NG (or Γ ∈ NG). Moreover,
for every descendant node d′′ of d that is labeled with δi, apply the following
operations:

i. Replace δi with w and delete all the descendant nodes of d′′ if d′′ is labeled
with δi such that there exists an ancestor labeled with δi (or μ0(δi, Γ) by
Lemma 23).

ii. Recursively apply operation (v) to the node d′′ if d′′ is labeled with w such
that there exists no ancestor labeled with E(δi, a, Γ).

Similar to the proof of Lemma 9, this tree T satisfies the conditions in Definition 8.
(⇐) Similar to the case of the algorithm Cons.

The following theorem guarantees that the optimized algorithms Cons3 and Cons4
preserve the completeness.

Theorem 25 (Completeness) Let D be a UML class diagram in D−
com+inh or D−

ful, and
let G(D) be the translation of D into a set of implication forms. D is consistent if and
only if Cons3({C}, ∅,G(D)) = 1 (or Cons4({C}, ∅,G(D)) = 1) for all C ∈ cls(G(D)) and
Assoc(G(D)) = 1.

32

Proof. By Lemmas 12 and 24.

5.4 Upper-bound complexities

Without losing the completeness of consistency checking, the optimized algorithms Cons1
– Cons4 have the following computational properties for all the class diagram groups (as
shown in Table 1).

Theorem 26 (Complexities)

1. Every class diagram in D−
0 and D−

com is consistent.

2. The algorithm Cons1 computes the consistency of D−
dis in polynomial time and com-

putes the consistency of D−
inh and D−

dis+inh in EXPTIME. If every attribute value type
is restrictedly defined, then it computes the consistency of D−

inh and D−
dis+inh in poly-

nomial time.

3. The algorithm Cons2 computes the consistency of D−
dis+com in NP.

4. The algorithm Cons3 computes the consistency of D−
com+inh and D−

ful in EXPTIME. If
every attribute value type is restrictedly defined, then the algorithm Cons4 computes
the consistency of D−

com+inh and D−
ful in PSPACE.

Proof. Suppose that |Γ0| = m. Then, |cls(Γ0)| ≤ m and |att(Γ0)| ≤ m.
(1) Let D be a class diagram in D−

0 or D−
com and let G(D) be the translation of D.

The class diagram does not contain disjointness constraints nor overwriting/multiple inher-
itances. By the expressivity, there exist no disjoint classes in G(D), every class inherits no
more than one attribute of the same name (i.e., for each Γ ∈ Σ(G(D)), N(H(C, Γ), a, Γ)
has the two elements denoting the multiplicity of one attribute such as {≥ i,≤ j} with
i > j), and every class in associations has no multiplicities if multiplicities are already
defined in classes of the super-associations. Therefore, if Cons({C0}, ∅, Γ0) for all C0 ∈
cls(G(D)) and Assoc(G(D)) are called, then they cannot find any inconsistency. That is,
Cons({C0}, ∅, Γ0) = 1 for all C0 ∈ cls(G(D)) and Assoc(Γ0) = 1, and by Theorem 13, D is
consistent.

(2) Let D be a class diagram in D−
dis and let G(D) be the translation of D. Let us

assume that the algorithm Cons1(C0, Γ0) for all C0 ∈ cls(G(D)) is called. Then, the number
of loops is decided by the variable P where P is a subset of the power set of cls(G(D)).
Each loop for elements in P performs to check disjointness in class-hierarchies (whether the
set of superclasses and disjoint classes

⋃
C∈δ H(C, Γ) contains an inconsistent pair C ′ and

¬C ′) and to check the conflicted multiplicities of the identically named attributes for every
a ∈ att(Γ0). They are computable in at most 2m × (m + m2) steps. Moreover, any class
diagram in D−

dis does not contain overwriting/multiple inheritances, so that the variable
P is limited to a set of singletons of classes, precisely, μ0(δ, Γ) is added to P by applying
P = ADD(μ0(δ, Γ), P) where μ0(δ, Γ) is the singleton of a class. The number of loops is at
most the number of classes in cls(G(D)), and hence the algorithm computes the consistency
in at most m×(m+m2) steps. We have to consider that the algorithm Cons1({C0}, ∅,G(D))
for all C0 ∈ cls(G(D)) is called. Therefore, the complexity totally becomes O(m4).

Let D be a class diagram in D−
inh or D−

dis+inh and let G(D) be the translation of D.
The class diagrams in D−

inh and D−
dis+inh contain overwriting/multiple inheritances, so that

33

the variable P is a subset of the power set of cls(G(D)) by applying P = ADD(δa, P)
where δa = E(δ, a, Γ) is a set of classes. Therefore, the number of loops is exponential
in the worst case. Moreover, it is clear that |

⋃
C∈δ H(C, Γ)| ≤ m, |N(δ, a, Γ)| ≤ m, and

|E(δ, a, Γ)| ≤ m. Each loop is bounded by at most m + m2 steps. Hence, this algorithm is
implemented by using at most O(2m) steps. When every attribute value type is restrictedly
defined in D, if a class C ∈ cls(G(D)) has attributes, then the type C0 of an attribute in
the class C is a subclass of the types C1, . . . , Cn of other attributes in the class C such that
E(H(C, Γ), a, Γ) = {C0, C1, . . . , Cn} and {C1, . . . , Cn} ⊆ H(C0, Γ). Due to μ(δ, Γ) �= ∅, P
contains only the singleton of a class by applying P = ADD(δa, P) where δa = μ0(δ, Γ).
Similar to the proof of D−

dis, the number of loops is bounded by m steps. Hence, the
consistency is computable in polynomial time.

(3) Let D be a class diagram in D−
dis+com and let G(D) be the translation of D. Let

us assume that Cons2(C0,G(D)) for all C0 ∈ cls(G(D)) is called. First, a decomposed set
Γ ∈ Σ(G(D)) is non-deterministically chosen. Next, it checks disjointness in class-hierarchies
(for H(C0, Γ)) and checks the multiplicities of the identically named attributes for every
a ∈ att(Γ0). For each Γ, they are computable in at most m × (m + m2) steps. Since we
need to call the algorithm Cons2(C0,G(D)) for all C0 ∈ cls(G(D)), the consistency of D is
decided non-deterministically in O(m4) steps.

(4) Let D be a class diagram in D−
com+inh or D−

ful and let G(D) be the translation of D.
The algorithm Cons3 recursively calls itself in the loops for all Γ ∈ Σ(G(D)) and a ∈ att(Γ0).
The number of recursive calls is decreased by the two conditions in the algorithm Cons3
that are (i) Γ ∈ Σ(Γ0) such that (δ, Γ) �∈ NG and (ii) δa �⊆ δ′ for all δ′ ∈ Δ ∪ G. With
respect to (i), each (δ, Γ) ∈ 2cls(G(D)) × Σ(G(D)) is added to NG if it causes inconsistency,
otherwise δ is added to G. So, the total number of recursive calls is bounded by at most
|2cls(G(D))| × |Σ(G(D))| = 2m2

where each call is computed in at most m2 + m steps due to
|
⋃

C∈δ H(C, Γ)| ≤ m2 and |N(δ, a, Γ)| ≤ m. Therefore, the consistency checking for every
class is computable in at most m × (m2 + m) × 2m2

steps, i.e., O(2m2
).

Next we show that if every attribute value type is restrictedly defined in class diagrams of
D−

ful, then the consistency checking of the algorithm Cons4 is computable by using at most
polynomial size memory (i.e., it belongs to PSPACE). The total number of recursive calls is
bounded by single exponential time, precisely, at most |att(Γ0)|× |cls(G(D))|× |Σ(G(D))| =
2m × 2m. The restricted attribute value types imply μ(δa, Γ) �= ∅ for any a ∈ att(Γ0) and
Γ ∈ Σ(Γ0). So, the depth of recursive calls is bounded by at most m. In the recursive
calls, the trace and the variables G, NG, and Δ have to be stored. When Cons4(δa, Δ, Γ0)
is recursively called, δa is a set of singletons of classes. So, G, NG, and Δ can be stored
by using at most 3m2 bits because they are sets of singletons of classes (i.e., |G| ≤ m,
|NG| ≤ m, and |Δ| ≤ m). Moreover, we can reuse space to store each decomposed set
Γ ∈ Σ(Γ0), that is, it is sufficient that each loop stores one element of Σ(Γ0). Hence, this
algorithm is implemented by using O(m2) bits.

We believe that the complexity classes 0, P, NP, and PSPACE, whose complexities are
lower than that of EXPTIME, are suitable for implementing the algorithms for different
expressive powers of class diagram groups. For all the class diagram groups, the column
“complexity1” in Table 1 shows the complexities of the algorithms Cons1, Cons2, and
Cons3 with respect to the size of the class diagram. Every class diagram in D−

0 and D−
com

is consistent; therefore, the complexity is zero (i.e., we do not need to check consistency).

34

Cons1 computes the consistency of D−
dis in P (polynomial time) and that of D−

inh and D−
dis+inh

in EXPTIME (exponential time). Cons2 computes the consistency of D−
dis+com in NP (non-

deterministic polynomial time), and Cons3 computes the consistency of D−
com+inh and D−

ful

in EXPTIME.
Moreover, the column “complexity2” in Table 1 shows the complexities of the algorithms

Cons1, Cons2, and Cons4 for the cases in which all the attribute value types are restrictedly
defined. In particular, Cons1 computes the consistency of D−

inh and D−
dis+inh in P, and Cons4

computes the consistency of D−
com+inh and D−

ful in PSPACE (polynomial space). Therefore,
according to Lemma 23 and by the skipping of consistency checking, the complexities of
Cons1 and Cons4 are reduced from EXPTIME to P and PSPACE, respectively.

Remark. We discuss the complexities of our algorithms with respect to the depth of the
class hierarchies. The complexity results in Theorem 26 depend on the number of classes
in the diagram because consistent and inconsistent sets of classes in the good and no good
variables are restored in the loops or recursive calls in the algorithms. In the proof of
Theorem 26, it is shown that the number of classes in cls(Γ0) determines the complexity of
all algorithms. In particular, the size of P in Cons1 leads to polynomial time complexity,
and the sizes of G, NG, and Δ in Cons4 lead to polynomial space complexity. Therefore,
the complexities are not changed even when they are measured on the basis of the number of
classes in the diagram (instead of the size of the diagram). Furthermore, if the complexities
are analyzed with respect to the depth of the class hierarchies, then the algorithms result in
the same complexities. This is because in the worst case, the depth of the class hierarchies
corresponds to the number of classes.

6 Conclusion and future work

We introduced the restriction of UML class diagrams based on

(i) inconsistency triggers (disjointness constraints, completeness constraints, and over-
writing/multiple inheritances) and

(ii) attribute value types defined with restrictions in overwriting/multiple inheritances.

Inconsistency triggers are employed to classify the expressivity of class diagrams, and their
combination with the attribute value types results in tractable consistency checking of the
restricted class diagrams. First, we presented a complete algorithm for testing the consis-
tency of class diagrams that includes any inconsistency triggers. Second, the algorithm was
suitably refined in order to develop optimized algorithms for different expressive powers of
class diagrams that are obtained by deleting some of the inconsistency triggers. Our algo-
rithms were easily modified depending on the presence of diagram components. From the
algorithms, we clarified that it is necessary for all the class diagrams in D−

0 and D−
com to have

a UML model (i.e., consistency is guaranteed); we further clarified that when every attribute
value type is restrictedly defined, the complexities of class diagrams in D−

inh and D−
dis+inh

and in D−
com+inh and D−

ful essentially decrease from EXPTIME to P and PSPACE, respec-
tively. In this study, we classified UML class diagrams and developed optimized algorithms
for testing the consistencies of restricted UML class diagrams

35

Table 1: Upper-bound complexities of algorithms for testing consistency
UML group complexity1 algorithm complexity2 algorithm

D−
0 0 0

D−
com 0 0
D−

dis P Cons1 P Cons1
D−

inh EXPTIME P
D−

dis+inh EXPTIME P
D−

dis+com NP Cons2 NP Cons2
D−

com+inh EXPTIME Cons3 PSPACE Cons4
D−

ful EXPTIME PSPACE

Our future research is concerned with the average-case complexity for consistency check-
ing. Furthermore, we intend to perform an experimental evaluation to ascertain the appli-
cability of optimized consistency algorithms.

References

[1] A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. Reason-
ing over extended er models. In Proc. of the 26th Int. Conf. on Conceptual Modeling
(ER 2007), volume 4801 of LNCS, pages 277–292. Springer, 2007.

[2] B. Beckert, U. Keller, and P. H. Schmitt. Translating the object constraint language
into first-order predicate logic. In Proceedings of VERIFY, Workshop at Federated
Logic Conferences (FLoC), pages 113–123, 2002.

[3] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168(1-2):70–118, 2005.

[4] F. M. Donini. Complexity of reasoning. In Description Logic Handbook, pages 96–136,
2003.

[5] F. M. Donini and F. Massacci. EXPTIME tableaux for ALC. Artificial Intelligence,
124(1):87–138, 2000.

[6] A. S. Evans. Reasoning with UML class diagrams. In Proceedings of the Second IEEE
Workshop on Industrial Strength Formal Specification Techniques, WIFT’98, USA,
pages 102–113, 1998.

[7] M. Fowler. UML Distilled: A Brief Guide to the Standard Modeling Object Language.
Object Technology Series. Addison-Wesley, third edition, September 2003.

[8] E. Franconi and G. Ng. The i.com tool for intelligent conceptual modeling. In Proceed-
ings of the 7th International Workshop on Knowledge Representation meets Databases
(KRDB 2000), pages 45–53, 2000.

36

[9] K. Kaneiwa and K. Satoh. Consistency checking algorithms for restricted UML class
diagrams. In Proceedings of the Fourth International Symposium on Foundations of In-
formation and Knowledge Systems (FoIKS2006), pages 219–239. LNCS 3861, Springer–
Verlag, 2006.

[10] P. G. Kolaitis and J. A. Väänänen. Generalized quantifiers and pebble games on finite
structures. Annals of Pure and Applied Logic, 74(1):23–75, 1995.

[11] H. Mannila and K.-J. Räihä. On the complexity of inferring functional dependencies.
Discrete Applied Mathematics, 40(2):237–243, 1992.

[12] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Addison-Wesley, Reading, Massachusetts, USA, 1st edition, 1999.

[13] K.-D. Schewe and B. Thalheim. Fundamental concepts of object oriented databases.
Acta Cybern, 11(1-2):49–84, 1993.

[14] A. Tsiolakis and H. Ehrig. Consistency analysis between UML class and sequence
diagrams using attributed graph gammars. In Proceedings of joint APPLIGRAPH/
GETGRATS Workshop on Graph Transformation Systems, pages 77–86, 2000.

37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

