
Consistency Checking Algorithms for Restricted

UML Class Diagrams

Ken Kaneiwa and Ken Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

{kaneiwa,ksatoh}@nii.ac.jp

Abstract. Automatic debugging of UML class diagrams helps in the vi-
sual specification of software systems because users cannot detect errors
in logical inconsistency easily. This paper focuses on tractable consistency
checking of UML class diagrams. We accurately identify inconsistencies
in these diagrams by translating them into first-order predicate logic
generalized by counting quantifiers and classify their expressivities by
eliminating some components. For class diagrams of different expressive
powers, we introduce optimized algorithms that compute their respective
consistencies in P, NP, PSPACE, or EXPTIME with respect to the size
of a class diagram. In particular, for two cases in which class diagrams
contain (i) disjointness constraints and overwriting/multiple inheritances
and (ii) these components along with completeness constraints, the re-
striction of attribute value types decreases the complexities from EXP-
TIME to P and PSPACE. Additionally, we confirm the existence of a
meaningful restriction of class diagrams that prevents any logical incon-
sistency.

1 Introduction

The Unified Modeling Language (UML) [11, 6] is a standard modeling language;
it is used as a visual tool for designing software systems. However, visualized
descriptions make it difficult to determine consistency in formal semantics. In
order to design UML diagrams, designers check not only for syntax errors but
also for logical inconsistency, which may be present implicitly in the diagrams.
Automatic detection of errors is very helpful for designers; for example, it enables
them to revise erroneous parts of UML diagrams by determining inconsistent
classes or attributes. Moreover, in order to confirm the accuracy of debugging
(soundness, completeness, and termination), a consistency checking algorithm
should be developed computationally and theoretically.

Class diagrams, which are a type of UML diagrams, are employed to model
concepts in static views. The consistency of class diagrams has been investigated
as follows. Evans [5] attempted a rigorous description of UML class diagrams by
using the Object Constraint Language (OCL) and treated UML reasoning. Beck-
ert, Keller, and Schmitt [1] defined a translation of UML class diagrams with
OCL into first-order predicate logic. Further, Tsiolakis and Ehrig [13] analyzed

the consistency of UML class and sequence diagrams by using attributed graph
grammars. The OCL and other approaches provide rigorous semantics and logi-
cal reasoning on UML class diagrams; however, they do not theoretically analyze
the worst-case complexity of consistency checking. On the other hand, a number
of object-oriented models and their consistency [10, 12] have been considered for
developing software systems, but the models do not characterize the components
of UML class diagrams; for example, the semantics of attribute multiplicities is
not supported.

Berardi, Calvanese, and De Giacomo presented the correspondence between
UML class diagrams and description logics (DLs), which enables us to utilize
DL-based systems for reasoning on UML class diagrams [2]. In fact, Franconi
and Ng implemented the concept modeling system ICOM [7] using DLs. The
cyclic expressions of class diagrams are represented by general axioms for DLs.
For example, a class diagram is cyclic if a class C has an attribute and the type
of the attribute value is defined by the same class. However, it is well known that
reasoning on general axioms of the necessary DLs is exponential time hard [3].
Therefore, consistency checking of the class diagrams in DLs requires exponential
time in the worst case.

In order to reduce the complexity, we consider restricted UML class dia-
grams obtained by deleting some components. A meaningful restriction of class
diagrams is expected to avoid intractable reasoning, thus facilitating automatic
debugging. This solution provides us with not only tractable consistency check-
ing but also a sound family of class diagrams (i.e., its consistency is theoretically
guaranteed without checking).

The aim of this paper is to present optimized algorithms for testing the con-
sistency of restricted UML class diagrams, which are designed to be suitable for
class diagrams of different expressive powers. The algorithms detect the logical
inconsistency of class diagram formulation in first-order predicate logic gener-
alized by counting quantifiers [9]. Although past approaches employ reasoning
algorithms of DL and OCL, we develop consistency checking algorithms specif-
ically for UML class diagrams. Our algorithms deal directly with the structure
of UML class diagrams; hence, they enable the following:

– Easy recognition of the inconsistency triggers in the diagram structure, such
as combinations of disjointness/completeness constraints, attribute multi-
plicities, and overwriting/multiple inheritances, and

– Refinement of the algorithms when the expressivity is changed by the pres-
ence of the inconsistency triggers.

The inconsistency triggers captured by the diagram structure are used to re-
strict some relevant class diagram components in order to derive a classification
of UML class diagrams. Since we can theoretically prove that there arises no
inconsistency of eliminated components, the algorithms will become simplified
and optimized for their respective expressivity.

The contributions of this paper are as follows:

1. Inconsistency triggers: We accurately identify the inconsistency triggers that
cause logical inconsistency among classes, attributes, and associations.

2

2. Expressivity: We classify the expressivity of UML class diagrams by deleting
and adding certain inconsistency triggers.

3. Algorithms and complexities: We develop several consistency checking algo-
rithms for class diagrams of different expressive powers and demonstrate that
they compute the consistency of those class diagrams in P, NP, PSPACE, or
EXPTIME with respect to the size of a class diagram.

4. Tractable consistency checking in the optimized algorithms: When the at-
tribute value types are defined with restrictions in class diagrams, con-
sistency checking is respectively computable in P and PSPACE for two
cases in which the diagrams contain (i) disjointness constraints and over-
writing/multiple inheritances and (ii) these components with completeness
constraints.

5. Consistent class diagrams: We demonstrate that every class diagram is con-
sistent if the expressivity is restricted by deleting disjointness constraints
and overwriting/multiple inheritances (but allowing attributes multiplicities
and simple inheritances). Thus, we need not test the consistency of such less
expressive class diagrams (D−

0 and D−
com).

There are two main advantages with regard to the results of this study. First,
the optimized algorithms support efficient reasoning for various expressive pow-
ers of class diagrams. In contrast, the DL formalisms do not provide optimized
algorithms for the restricted UML class diagrams because general axioms of DLs
require exponential time even if DLs are restricted [3]. Therefore, the classifica-
tion of DLs does not fit into the classification of UML class diagrams1. Second,
a meaningful restriction of UML class diagrams is analyzed. We confirm the ex-
istence of restricted class diagrams that permit attribute multiplicities but that
cause no logical inconsistency.

2 Class Diagrams in FOPL with Counting Quantifiers

We define a translation of UML class diagrams into first-order predicate logic
generalized by counting quantifiers. The reasons for encoding into first-order
predicate logic with counting quantifiers are as follows. First, the semantics of
UML class diagrams should be defined by encoding them in a logical language
because consistency checking is based on the semantics of encoded formulas. In
other words, no consistency checking algorithm can operate on original diagrams
without formal semantics. Second, variables and quantifiers in first-order logic
lead to an explicit formulation that is useful to restrict/classify the expressive
powers. In contrast, DL encoding [2] conceals the quantification of variables in
expressions.

The alphabet of UML class diagrams consists of a set of class names, a set
of attribute names, a set of operation names, a set of association names, and a
set of datatype names. Let C,C ′, Ci be class names, a, a′ attribute names, f, f ′

1 Note that reasoning on general axioms becomes exponential hard even if the small DL
AL contains no disjunction, qualified existential restriction, and number restriction.

3

C1 C2

A

nl..numl..mu

Binary association

C1 Cn

A

m(1,l)..m(1,u)

n-ary association

C2

m(2,l)..m(2,u)

m(n,l)..m(n,u)

a[i..j] : T

C

f() : T

Class

C1 C2

nl..numl..mu

CA

f(T1, . . . , Tm) : T

(1)

(2)
(3)

(4)
Binary association class

(5)

C1 Cn

CA

m(1,l)..m(1,u)

n-ary association class

C2

m(2,l)..m(2,u)

m(n,l)..m(n,u)

(7)(6)

C ′
1 C ′

2
A′

C1 C2

A

C

C1

{complete, disjoint}

Cn

Class-hierarchy

Association generalization
(8)

(9)
(10) (11)

Fig. 1. Components of UML class diagrams

operation names, A,A′ association names, and t, t′, ti datatype names. Let type
T be either a class or a datatype. The leftmost figure in Fig.1 represents a class
C with an attribute a[i..j] : T , a 0-ary operation f() : T , and an n-ary operation
f(T1, . . . , Tn) : T , where [i..j] is the attribute multiplicity and T and T1, . . . , Tn

are types. Any class C can be expressed as the unary predicate C in first-order
logic. Let F1 and F2 be first-order formulas. We denote the implication form
F1 → F2 as the universal closure ∀x1 · · · ∀xn.(F1 → F2) where x1, . . . , xn are all
the free variables occurring in F1 → F2. Let F (x) denote a formula F in which
the free variable x occurs. The counting quantifier formula ∃≥ix.F (x) implies
that at least i elements x satisfy F (x), while the counting quantifier formula
∃≤ix.F (x) implies that at most i elements x satisfy F (x). The value type T and
multiplicity [i..j] of the attribute a in the class C are specified by the following
implication forms:

(1) C(x) → (a(x, y) → T (y)) and C(x) → ∃≥iz.a(x, z) ∧ ∃≤jz.a(x, z)

where a is a binary predicate and T is a unary predicate. Moreover, the 0-ary
operation f() : T of the class C is specified by the following implication forms:

(2) C(x) → (f(x, y) → T (y)) and C(x) → ∃≤1z.f(x, z)

where f is a binary predicate and T is a unary predicate. The n-ary operation
f(T1, . . . , Tn) : T of the class C is specified by the following implication forms:

(3) C(x) → (f(x, y1, . . . , yn, z) → T1(y1) ∧ · · · ∧ Tn(yn) ∧ T (z))
C(x) → ∃≤1z.f(x, y1, . . . , yn, z)

where f is an n + 2-ary predicate and each Ti, T are unary predicates.
We next formalize associations A that imply connections among classes C1,

. . . , Cn (as in (4) and (6) of Fig.1). A binary association A between two classes
C1 and C2 and the multiplicities ml..mu and nl..nu are specified by the forms:

(4) A(x1, x2) → C1(x1) ∧ C2(x2)

4

C1(x) → ∃≥nl
x2.A(x, x2) ∧ ∃≤nu

x2.A(x, x2)
C2(x) → ∃≥ml

x1.A(x1, x) ∧ ∃≤mu
x1.A(x1, x)

where A is a binary predicate and C1, C2 are unary predicates. In addition to the
formulas, if an association is represented by a class, then the association class
CA is specified by supplementing the implication forms below:

(5) A(x1, x2) → (r0(x1, x2, z) → CA(z))
A(x1, x2) → ∃=1z.r0(x1, x2, z) and ∃≤1z.(r0(x1, x2, z) ∧ CA(z))

where CA is a unary predicate and r0 is a ternary predicate. By extending the
formulation of a binary association, the n-ary association A among classes C1,
. . . , Cn and their multiplicities “m(1,l)..m(1,u)”, . . . , “m(n,l)..m(n,u)” (as shown
in (6) of Fig.1) are specified by the following implication forms:

(6) A(x1, . . . , xn) → C1(x1) ∧ · · · ∧ Cn(xn)
Ck(x) → ∃≥m(1,l)x1· · ·∃≥m(k−1,l)xk−1∃≥m(k+1,l)xk+1· · ·∃≥m(n,l)xn.A(x1, . . ., xn)[xk/x]
Ck(x) → ∃≤m(1,u)x1· · ·∃≤m(k−1,u)xk−1∃≤m(k+1,u)xk+1· · ·∃≤m(n,u)xn.A(x1, . . ., xn)[xk/x]

where A is an n-ary predicate and [xk/x] is a substitution of xk with x. In
addition, the association class CA is specified by adding the implication forms
below:

(7) A(x1, . . . , xn) → (r0(x1, . . . , xn, z) → CA(z))
A(x1, . . . , xn)→∃=1z.r0(x1, . . . , xn, z) and ∃≤1z.(r0(x1, . . . , xn, z)∧CA(z))

where CA is a unary predicate and r0 is an n + 1-ary predicate. Furthermore,
we treat association generalization (not discussed in [2]) such that the binary
association A′ between classes C ′

1 and C ′
2 generalizes the binary association A

between classes C1 and C2 (as in (8) of Fig.1). More universally, the generaliza-
tion between n-ary associations A and A′ is specified by the following implication
forms:

(8)’ A(x1, . . . , xn) → A′(x1, . . . , xn) and C1(x) → C ′
1(x), . . . , Cn(x) → C ′

n(x)

where A,A′ are n-ary predicates and each Ci, C ′
j are unary predicates.

We consider class hierarchies and disjointness/completeness constraints of the
classes in hierarchies, as shown in (9), (10), and (11) of Fig.1. A class hierarchy
(a class C generalizes classes C1, . . . , Cn) is specified by the implication forms
below:

(9) C1(x) → C(x), . . . , Cn(x) → C(x)

where C and C1, . . . , Cn are unary predicates. The completeness constraint be-
tween class C and classes C1, . . . , Cn and the disjointness constraint among
classes C1, . . . , Cn are respectively specified by the implication forms:

(10) C(x) → C1(x) ∨ · · · ∨ Cn(x)
(11) Ci(x) → ¬Ci+1(x) ∧ · · · ∧ ¬Cn(x) for all i ∈ {1, . . . , n − 1}
where C and C1, . . . , Cn are unary predicates.

Let D be a UML class diagram. G(D) is called the translation of D and
denotes the set of implication forms obtained by the encoding of D in first-order
predicate logic with counting quantifiers (using (1)–(11)).

5

3 Inconsistencies in Class Diagrams

In this section, we analyze inconsistencies among classes, attributes, and asso-
ciations in UML class diagrams. We first define the syntax errors of duplicate
names and irrelevant attribute value types as follows.

Duplicate name errors/attribute value type errors. A UML class diagram
D contains a duplicate name error if (i) two classes C1 and C2 appear and C1

and C2 have the same class name, (ii) two associations A1 and A2 appear and
A1 and A2 have the same association name, or (iii) two attributes a1 and a2

appear in a class C and a1 and a2 have the same attribute name. Moreover,
if two classes have the same name’s attributes a : T1 and a : T2, such that T1

is a class and T2 is a datatype, then the class diagram contains an attribute
value type error. Obviously, the checking of these syntax errors in a UML class
diagram can be computed in linear time.

We elaborate three inconsistency triggers for the UML class diagrams. The
reflexive and transitive closure of → over classes and associations are denoted
by →∗ such that (i) C(x) →∗ C(x), (ii) A(x1, . . . , xn) →∗ A(x1, . . . , xn), (iii) if
C(x) → F (x), or C(x) →∗ C ′(x) and C ′(x) →∗ F (x), then C(x) →∗ F (x), and
(iv) if A(x1, . . . , xn) → F (x1, . . . , xn), or A(x1, . . . , xn) →∗A′(x1, . . . , xn) and
A′(x1, . . . , xn) →∗ F (x1, . . . , xn), then A(x1, . . . , xn) →∗ F (x1, . . . , xn), where
F (x) and F (x1, . . . , xn) are any formulas including the free variables.

Inconsistency trigger 1 (generalization and disjointness) The first incon-
sistency trigger is caused by a combination of generalization and a disjointness
constraint. A class diagram has an inconsistency trigger if it contains the formu-
las C(x) →∗Ck(x) and C(x) →∗¬C1(x) ∧ · · · ∧ ¬Cn(x) where 1 ≤ k ≤ n.

Ck

Ck

{disjoint}

CnC1

C C

As shown in the above figure, this inconsistency appears when a class C has a
superclass Ck but the classes C and Ck are defined as disjoint to each other in
the constraint of a class hierarchy.

Inconsistency trigger 2 (overwriting/multiple inheritance) The second
inconsistency trigger is caused by one of the following situations:

1. (a) conflict between value types T1 and T2 when they appear in attributes
a : T1 and a : T2 of the same name, or (b) conflict between multiplicities [i..j]
and [i′..j′] when they appear in multiplicities a : T1 and a : T2 of attributes
with the same names.

6

2. conflict between multiplicities when they appear in association and super-
associations.

More formally, a class diagram has an inconsistency trigger if it contains a group
of the following formulas:

1. C2(x) →∗C1(x), or C(x) →∗C1(x) and C(x) →∗C2(x), together with
(a) Attribute value types: C1(x) → (a(x, y) → T1(y)) and C2(x) →

(a(x, y) → T2(y)) where T1 and T2 are disjoint2, or
(b) Attribute multiplicities: C1(x) → ∃≥iz.a(x, z) ∧ ∃≤jz.a(x, z) and

C2(x) → ∃≥i′z.a(x, z) ∧ ∃≤j′z.a(x, z) where i > j′.

2. Association multiplicities: A(x1, . . . , xn) → A′(x1, . . . , xn) with
Ck(x) → ∃≥m(1,l)x1 · · · ∃≥m(k−1,l)xk−1 ∃≥m(k+1,l)xk+1 · · · ∃≥m(n,l)xn.A(x1,
. . . , xn)[xk/x] and C ′

k(x′) → ∃≤m′
(1,u)

x′
1 · · · ∃≤m′

(k−1,u)
x′

k−1 ∃≤m′
(k+1,u)

x′
k+1

· · · ∃≤m′
(n,u)

x′
n. A′(x′

1, . . . , x′
n)[x′

k/x′] where m(i,l) > m′
(i,u).

C1

C

C2

a : T2[i
′..j′]a : T1[i..j]

C1

C2

a : T2[i
′..j′]

(i) Overwriting

inheritance a : T1[i..j]

(ii) Multiple

inheritance

This figure explains that (i) a class C2 with an attribute a : T2[i′..j′] inherits
the same name’s attribute a : T1[i..j] from a superclass C1 and (ii) a class C
inherits the two attributes a : T1[i..j] and a : T2[i′..j′] of the same name from
superclasses C1 and C2. The former is called overwriting inheritance; the latter,
multiple inheritance. In these cases, if the attribute value types T1 and T2 are
disjoint or if the multiplicities [i..j] and [i′..j′] conflict with each other, then
the attributes are determined to be inconsistent. For example, the multiplicities
[1..5] and [10..∗] cannot simultaneously hold for the same name’s attributes.

Inconsistency trigger 3 (completeness and disjointness) A disjointness
constraint combined with a completeness constraint can yield the third incon-
sistency trigger. A class diagram has an inconsistency trigger if it contains the
formulas C(x) →∗ C1(x) ∨ · · · ∨ Cn(x) and C(x) →∗ ¬C ′

1(x) ∧ · · · ∧ ¬C ′
m(x),

where {C1, . . . , Cn} ⊆ {C ′
1, . . . , C ′

m}. This inconsistency appears when classes
C and C1, . . . , Cn satisfy the completeness constraint in a class hierarchy and
classes C and C ′

1, . . . , C ′
m satisfy the disjointness constraint in another class hi-

erarchy. Intuitively, any instance of class C must be an instance of one of the
classes C1, . . . , Cn, but each instance of class C cannot be an instance of classes
C ′

1, . . . , C ′
m. Hence, this situation is contradictory.

2 Types T1 and T2 are disjoint if they are classes C1 and C2 such that C1(x) →∗¬C2 ∈
G(D) or if they are datatypes t1 and t2 such that t1 ∩ t2 = ∅.

7

The third inconsistency trigger may be more complicated when the number
of completeness and disjointness constraints that occur in a class diagram is
increased. In other words, disjunctive expressions raised by many completeness
constraints expand the search space of finding inconsistency. Let us define the
relation C(x) →+ C1(x)∨· · ·∨Cn(x) as follows: (i) if C(x) →∗C1(x)∨· · ·∨Cn(x),
then C(x) →+ C1(x) ∨ · · · ∨ Cn(x), and (ii) if C(x) →+ C1(x) ∨ · · · ∨ Cn(x)
and C1(x) →+ DC1(x), . . . , Cn(x) →+ DCn(x), then C(x) →+ DC1(x) ∨ · · · ∨
DCn(x) where each DCi denotes C ′

1(x)∨· · ·∨C ′
m(x) as disjunctive classes. A class

diagram has an inconsistency trigger if it contains the formulas C(x) →+ C1(x)∨
· · · ∨ Cn(x) and for each i ∈ {1, . . . , n}, C(x) →∗¬C(i,1)(x) ∧ · · · ∧ ¬C(i,mi)(x),
where Ci is one of the classes C(i,1), . . . , C(i,mi). For example, the following figure
illustrates that two completeness constraints are complicatedly inconsistent with
respect to a disjointness constraint.

{disjoint}

C1

{complete}

C

Ck

{complete}

Ck+l

Cn

C

C1 Cn

The three inconsistency triggers describe all the logical inconsistencies in
UML class diagrams if they contain association generalization but not roles. In
the next section, we will design a complete consistency checking algorithm for
finding those inconsistency triggers.

We define a formal model of UML class diagrams using the semantics of
FOPL with counting quantifiers. An interpretation I is an ordered pair (U, I) of
the universe U and an interpretation function I for a first-order language.

Definition 1 (UML Class Diagram Models). Let I = (U, I) be an inter-
pretation. The interpretation I is a model of a UML class diagram D (called a
UML-model of D) if

1. I(C) �= ∅ for every class C in D and
2. I satisfies G(D) where G(D) is the translation of D.

The first condition indicates that every class is a non-empty class (i.e., an in-
stance of the class exists) and the second condition implies that I is a first-order

8

model of the class diagram formulation G(D). A UML class diagram D is con-
sistent if it has a UML-model.

Furthermore, the following class diagram is invalid because the association
class CA cannot be used for two different binary associations between classes C1

and C2 and between classes C1 and C3.

C1 CA

C2

C3

Instead of CA, we describe a ternary association or two association classes. It
appears that the EXPTIME-hardness in [2] relies on such expressions. This is
because when we reduce (EXPTIME-hard) concept satisfiability in ALC KBs to
class consistency in a UML class diagram, the ALC KB {C1 � ∃PA.C2, C1 �
∃PA.C3} is encoded into an invalid association class. This condition is important
in order to avoid the EXPTIME-hardness and therefore to derive the complexity
results in Section 5. This implies that the consistency checking of some restricted
UML class diagram groups is computable in P and PSPACE.

4 Consistency Checking

This section presents a consistency checking algorithm for a set of implication
forms Γ0 (corresponding to the UML class diagram formulation G(D)). It consists
of two sub-algorithms Cons and Assoc: Cons checks the consistency of a class
in Γ0 and Assoc tests the consistency of association generalization in Γ0.

4.1 Algorithm for Testing Consistency

We decompose an implication form set Γ0 in order to apply our consistency
checking algorithm to it. Let Γ0 be a set of implication forms, C be a class, and
Fi(x) be any formula including a free variable x. Γ is a decomposed set of Γ0 if
the following conditions hold: (i) Γ0 ⊆ Γ , (ii) if C(x) → F1(x)∧ · · · ∧Fn(x) ∈ Γ ,
then C(x) → F1(x) ∈ Γ, . . . , C(x) → Fn(x) ∈ Γ , and (iii) if C(x) → F1(x) ∨
· · · ∨ Fn(x) ∈ Γ , then C(x) → Fi(x) ∈ Γ for some i ∈ {1, . . . , n}. We denote
Σ(Γ0) as the family of decomposed sets of Γ0.

We denote cls(Γ0) as the set of classes, att(Γ0) as the set of attributes, and
asc(Γ0) as the set of associations that occur in the implication form set Γ0.

Definition 2. The following operations will be embedded as subroutines in the
consistency checking algorithm:

1. H(C, Γ) = {C ′ | C(x) →∗C ′(x) ∈ Γ} ∪ {¬C ′ | C(x) →∗¬C ′(x) ∈ Γ}.
2. E(δ, a, Γ) =

⋃
C∈δ E(C, a,Γ) where E(C, a,Γ) = {C ′ | C(x) →∗ (a(x, y) →

C ′(y)) ∈ Γ and C(x) →∗ ∃≥iz.a(x, z) ∈ Γ} with i ≥ 1.

9

3. N(δ, a, Γ) =
⋃

C∈δ N(C, a,Γ) where N(C, a,Γ) = {≥ i | C(x) →∗ ∃≥iz.a(x,
z) ∈ Γ} ∪ {≤ j | C(x) →∗ ∃≤jz.a(x, z) ∈ Γ}.

4. μ0(δ, Γ) = {C} if for all C ′ ∈ μ(δ, Γ), C � C ′ and C ∈ μ(δ, Γ) where
μ(δ, Γ) = {C ∈ δ | δ ⊆ H(C, Γ)} and � is a linear order over cls(Γ0).

The operation H(C, Γ) denotes the set of superclasses C ′ of C and disjoint
classes ¬C ′ of C in Γ . The operation E(δ, a, Γ) gathers the set of value types T
of attribute a in Γ such that each value type T is of classes in δ. Further, the
operation N(δ, a, Γ) gathers the set of multiplicities ≥ i and ≤ j of attribute a
in Γ such that each of these multiplicities is of classes in δ. The operation μ(δ, Γ)
returns a set {C1, . . . , Cn} of classes in δ such that the superclasses of each Ci

(in Γ) subsume all the classes in δ. The operation μ0(δ, Γ) returns the singleton
set {C} of a class in μ(δ, Γ) such that C is the least class in μ(δ, Γ) over �. The
consistency checking algorithm Cons is described as follows.

Algorithm Cons
input set of classes δ, family of sets of classes Δ, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
begin

for Γ ∈ Σ(Γ0) do
S =

�
C∈δ H(C, Γ); fΓ = 0;

if {C,¬C} �⊆ S and {t1, . . . , tn} �⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then fΓ = 1;
for a ∈ att(Γ0) do

if i > j s.t. {≥ i,≤ j} ⊆ N(δ, a, Γ) then fΓ = 0;
else δa = E(δ, a, Γ);

if δa �= ∅ and δa, μ0(δa, Γ) �⊆ Δ then fΓ = Cons(δa, Δ ∪ {δ}, Γ0);
esle

rof
fi
if fΓ = 1 then return 1;

rof
return 0;

end;

In order to decide the consistency of the input implication form set Γ0, we execute
the algorithm Cons({C}, ∅, Γ0) for every class C ∈ cls(Γ0). If C is consistent in
Γ0, it returns 1, else 0 is returned. At the first step of the algorithm, a decomposed
set Γ of Γ0 (in Σ(Γ0)) is selected, which is one of all the disjunctive branches with
respect to the completeness constraints in Γ0. Subsequently, for each Γ ∈ Σ(Γ0),
the following three phases are performed.

(1) For the selected Γ , the algorithm checks whether all the superclasses of
classes in δ = {C} (obtained from S =

⋃
C∈δ H(C, Γ)) are disjoint to each other.

Intuitively, it sets a dummy instance of class C and then, the dummy instance is
regarded as an instance of the superclasses C ′ of C and of the disjoint classes ¬C ′

of C along the implication forms C(x) →∗C ′(x) and C(x) →∗¬C ′(x) in Γ . If an
inconsistent pair Ci and ¬Ci possesses the dummy instance, then δ is determined
to be inconsistent in Γ . For example, {C} is inconsistent in Γ1 = {C(x) → C1(x),

10

C1(x) → C2(x), C(x) → ¬C2(x)} since the inconsistent pair C2 and ¬C2 must
have the dummy instance of the class C, i.e., H(C, Γ1) = {C, C1, C2,¬C2}.

(2) If phase (1) finds no inconsistency in Γ , the algorithm next checks the
multiplicities of all the attributes a ∈ att(Γ0). The multiplicities of the same
attribute name a are obtained by N(δ, a, Γ); therefore, when N(δ, a, Γ) con-
tains {≥ i,≤ j} with i > j, these multiplicities are inconsistent. Intuitively,
similar to phase (1), the algorithm checks whether superclasses involve conflict-
ing multiplicities along the implication form C(x) →∗ C ′(x) in Γ . For example,
{C} is inconsistent in Γ2 = {C(x) → ∃≥10z. a(x, z), C(x) → C1(x), C1(x) →
∃≤5z.a(x, z)} since the counting quantifiers ∃≥10 and ∃≤5 cannot simultaneously
hold when N({C}, a, Γ2) = {≥ 10,≤ 5}.

(3) Next, the disjointness of attribute value types is checked. Along the im-
plication form C(x) →∗ C ′(x) in Γ , the algorithm gathers all the value types of
the same name’s attributes, obtained by δa = E(δ, a, Γ) for each a ∈ att(Γ0).
For example, Γ3 = {C(x) → C1(x), C(x) → C2(x), C1(x) → (a(x, y) → C3(y)),
C2(x) → (a(x, y) → C4(y))} derives δa = {C3, C4} by E({C}, a, Γ3) since su-
perclasses C1 and C2 of C have the attributes a : C3 and a : C4. In other words,
each value of attribute a is typed by C3 and C4. Hence, the algorithm needs to
check the consistency of δa = {C3, C4}. In order to accomplish this, it recursively
calls Cons(δa,Δ∪{{C}}, Γ0), where δa is consistent if 1 is returned. The second
argument Δ ∪ {{C}} prevents infinite looping by storing sets of classes where
each set is already checked in the caller processes.

In order to find a consistent decomposed set Γ in the disjunctive branches of
Σ(Γ0), if the three phases (1), (2), and (3) do not detect any inconsistency in Γ ,
then the algorithm sets the flag fΓ = 1, else it sets fΓ = 0. Thus, the flag fΓ = 1
indicates that {C} is consistent in the input Γ0, i.e., Cons({C}, ∅, Γ0) = 1.

In addition to the algorithm Cons, the consistency checking of multiplicities
over association generalization is processed by the following algorithm Assoc.
If Γ0 does not cause any inconsistency with respect to associations, Assoc(Γ0)
returns 1, which is computable in polynomial time.

Algorithm Assoc
input set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
begin

for A ∈ asc(Γ0) and k ∈ {1, . . . , n} s.t. arity(A) = n do
if iv > jv s.t. {(≥ i1, . . . ,≥ ik−1,≥ ik+1, . . . ,≥ in),

(≤ j1, . . . ,≤ jk−1,≤ jk+1, . . . ,≤ jn)} ⊆ Nk(H(A, Γ0), Γ0) then return 0;
rof
return 1;

end;

As defined below, the operations H(A, Γ0) and Nk(α,Γ0) respectively return
the set of super-associations A′ of A and the set of n− 1-tuples of multiplicities
of n-ary associations A in α along the implication forms Ck(x) → ∃≥i1x1 · · ·
∃≥ik−1xk−1 ∃≥ik+1xk+1 · · · ∃≥in

xn.A(x1, . . . , xn)[xk/x] and Ck(x) → ∃≤j1x1

· · · ∃≤jk−1xk−1 ∃≤jk+1xk+1 · · · ∃≤jn
xn.A(x1, . . . , xn)[xk/x], respectively.

11

Definition 3. The operations H(A, Γ0) and Nk(α,Γ0) are defined as follows:

1. H(A, Γ0) = {A′ | A(x1, . . . , xn) →∗A′(x1, . . . , xn) ∈ Γ0}.
2. Nk(α,Γ0) =

⋃
A∈α Nk(A, Γ0) where Nk(A, Γ0) = {(≥ i1, . . . ,≥ ik−1,≥ ik+1,

. . . , ≥ in) | Ck(x) → ∃≥i1x1 · · · ∃≥ik−1xk−1 ∃≥ik+1xk+1 · · · ∃≥in
xn.A(x1,

. . . , xn)[xk/x] ∈ Γ0} ∪ {(≤ j1, . . . , ≤ jk−1, ≤ jk+1, . . . , ≤ jn) | Ck(x) →
∃≤j1x1 · · · ∃≤jk−1xk−1 ∃≤jk+1xk+1 · · · ∃≤jn

xn.A(x1, . . . , xn)[xk/x] ∈ Γ0}.

4.2 Soundness, Completeness, and Termination

We sketch a proof of the completeness for the algorithms Cons and Assoc.
Assume that Cons({C}, ∅, G(D)) for all C ∈ cls(G(D)) and Assoc(G(D)) are
called. We construct an implication tree of (C,G(D)) that expresses the con-
sistency checking proof of C in G(D). If Cons({C}, ∅,G(D)) = 1, there exists
a non-closed implication tree of (C,G(D)). In order to prove the existence of a
UML-model of D, a canonical interpretation is constructed by consistent sub-
trees of the non-closed implication trees of (C1,G(D)), . . . , (Cn,G(D)) (with
cls(G(D)) = {C1, . . . , Cn}) and by Assoc(G(D)) = 1. This proves that D is
consistent.

Corresponding to calling Cons(δ0, ∅, Γ0), we define an implication tree of a
class set δ0 that expresses the consistency checking proof of δ0.

Definition 4. Let Γ0 be a set of implication forms and let δ0 ⊆ cls(Γ0). An
implication tree of (δ0, Γ0) is a finite and minimal tree such that (i) the root is
a node labeled with δ0, (ii) each non-leaf node is labeled with a non-empty set of
classes, (iii) each leaf is labeled with 0, 1, or w, (iv) each edge is labeled with Γ
or (Γ, a) where Γ ∈ Σ(Γ0) and a ∈ att(Γ0), and (v) for each node labeled with
δ and each Γ ∈ Σ(Γ0), if

⋃
C∈δ H(C, Γ) contains {C,¬C} or {t1, . . . , tn} with

t1 ∩ · · · ∩ tn = ∅, then there is a child of δ labeled with 0 and the edge of the
nodes δ and 0 is labeled with Γ , and otherwise:

– if att(Γ0) = ∅, then there is a child of δ labeled with 1 and the edge of the
nodes δ and 1 is labeled with Γ , and

– for all a ∈ att(Γ0), the following conditions hold:
1. if i > j such that {≥ i,≤ j} ∈ N(δ, a, Γ), then there is a child of δ

labeled with 0 and the edge of the nodes δ and 0 is labeled with (Γ, a),
2. if E(δ, a, Γ) = ∅, then there is a child of δ labeled with 1 and the edge of

the nodes δ and 1 is labeled with (Γ, a),
3. if there is an ancestor labeled with E(δ, a, Γ) or μ0(E(δ, a, Γ), Γ), then

there is a child of δ labeled with w and the edge of the nodes δ and w is
labeled with (Γ, a), and

4. otherwise, there is a child of δ labeled with E(δ, a, Γ) and the edge of the
nodes δ and E(δ, a, Γ) is labeled with (Γ, a).

Let T be an implication tree of (δ0, Γ0). A node d in T is closed if (i) d is
labeled with 0 or if (ii) d is labeled with δ and for every Γ ∈ Σ(Γ0), there is an
edge (d, d′) labeled with Γ or (Γ, a) such that d′ is closed. An implication tree of

12

(δ0, Γ0) is closed if the root is closed; it is non-closed otherwise. A forest of Γ0 is
a set of implication trees of ({C1}, Γ0), . . . , ({Cn}, Γ0) such that cls(Γ0) = {C1,
. . . , Cn}. A forest S of Γ0 is closed if there exists a closed implication tree T
in S. The following lemma states the correspondence between the consistency
checking for every C ∈ cls(Γ0) and the existence of a non-closed forest of Γ0.

Lemma 1. Let Γ0 be a set of implication forms. For every class C ∈ cls(Γ0),
Cons({C}, ∅, Γ0) = 1 if and only if there is a non-closed forest of Γ0.

We define a consistent subtree T ′ of a non-closed implication tree T such
that T ′ is constructed by non-closed nodes in T .

Definition 5 (Consistent Subtree). Let T be a non-closed implication tree
of ({C0}, Γ0) and d0 be the root where Γ0 is a set of implication forms and
C0 ∈ cls(Γ0). A tree T ′ is a consistent subtree of T if (i) T ′ is a subtree of T ,
(ii) every node in T ′ is not closed, and (iii) every non-leaf node has m children
of all the attributes a1, . . . , am ∈ att(Γ0) where each child is labeled with 1, w,
or a set of classes and each edge of the non-leaf node and its child is labeled with
(Γ, ai).

We show the correspondence between the consistency of an implication form
set Γ0 and the existence of a non-closed forest of Γ0. We extend the first-order
language by adding the new constants d̄ for all the elements d ∈ U such that
each new constant is interpreted by itself, i.e., I(d̄) = d. In addition, we define
the following operations:

1. projn
k (x1, . . . , xn) = xk where 1 ≤ k ≤ n.

2. Max≥(X) = (Max(X1), . . . ,Max(Xn)) where X is a set of n-tuples and
for each v ∈ {1, . . . , n}, Xv = { projn

v (i1, . . . , in) | (≥ i1, . . . ,≥ in) ∈ X}.
3. AC(A, Γ) = (C1, . . . , Cn) if A(x1, . . . , xn) → C1(x1) ∧ · · · ∧ Cn(xn) ∈ Γ .

A canonical interpretation of an implication form set Γ0 is constructed by
consistent subtrees of the non-closed implication trees in a forest of Γ0, that is
used to prove the completeness of the algorithm Cons. A class C is consistent
in Γ if there exists a non-closed implication tree of ({C}, Γ0) such that the root
labeled with {C} has a non-closed child node labeled with Γ or (Γ, a).

Definition 6 (Canonical Interpretation). Let Γ0 be a set of implication
forms such that Assoc(Γ0) = 1 and let S = {T1, . . . ,Tn} be a non-closed for-
est of Γ0. For every Ti ∈ S, there is a consistent subtree T ′

i of Ti, and we
set S ′ = {T ′

1 , . . . ,T ′
n} as the set of consistent subtrees of T1, . . . ,Tn in S.

An canonical interpretation of Γ0 is a pair I = (U, I) such that U0 = {d |
d is a non-leaf node in T ′

1 ∪· · · ∪T ′
n}, each e0, ej , e(v,w) are new individuals, and

the following conditions hold:

1. U = U0 ∪
⋃

d∈T ′
1∪···∪T ′

n

a∈att(Γ0)

Ud,a ∪
⋃

d∈T ′
1∪···∪T ′

n

A∈asc(Γ0)

Ud,A and I(x) = I0(x) ∪
⋃

d∈T ′
1∪···∪T ′

n

a∈att(Γ0)

Id,a(x) ∪
⋃

d∈T ′
1∪···∪T ′

n

A∈asc(Γ0)

Id,A(x).

2. For each Γ ∈ Σ(Γ0),

13

– d ∈ I0(C) iff a non-leaf node d is labeled with δ where C ∈
⋃

C′∈δ H(C ′, Γ),
and

– (d, d′) ∈ I0(a) iff (i) d′ is a non-leaf node and (d, d′) is an edge labeled with
(Γ, a), or (ii) a node d has a child labeled with w, there is a witness d0 of d,
and (d0, d

′) is an edge labeled with (Γ, a).

3. For each edge (d, d′) labeled with (Γ, a) such that the node d is labeled with δ
and Max≥(N(δ, a, Γ)) = k,

– Ud,a = {e1, . . . , ek−1},
– (d, e1), . . . , (d, ek−1) ∈ Id,a(a) iff (d, d′) ∈ I0(a),
– e1, . . . , ek−1 ∈ Id,a(C) iff d′ ∈ I0(C), and
– (e1, d

′′), . . . , (ek−1, d
′′) ∈ Id,a(a′) iff (d′, d′′) ∈ I0(a′).

4. For all nodes d ∈ I0(Ck) such that AC(A, Γ0) = (C1, . . . , Ck, . . . , Cn) and
Max≥(Nk(H(A, Γ0), Γ0)) = (i1, . . . , ik−1, ik+1, . . . , in),

– Ud,A = {e0} ∪
⋃

v∈{1,... ,n}\{k}{e(v,1), . . . , e(v,iv)},
– for all (w1, . . . , wk−1, wk+1, . . . , wn) ∈ Nn such that 1 ≤ wv ≤ iv, (e(1,w1),

. . . , e(k−1,wk−1), d, e(k+1,wk+1), . . . , e(n,wn)) ∈ Id,A(A) and e(1,w1) ∈ Id,A(C1),

. . . , e(k−1,wk−1) ∈ Id,A(Ck−1), e(k+1,wk+1) ∈ Id,A(Ck+1), . . . , e(n,wn) ∈
Id,A(Cn),

– e(v,w) ∈ Id,A(C ′) for all C ′ ∈ H(Cv, Γ
′) iff e(v,w) ∈ Id,A(Cv) and Cv is

consistent in Γ ′,
– (u1, . . . , un) ∈ Id,A(A′) for all A′ ∈ H(A, Γ0) iff (u1, . . . , un) ∈ Id,A(A)3,
– (e(v,w), d

′′) ∈ Id,A(a) and e(v,w) ∈ Id,A(Cv) iff (d′, d′′) ∈ I0(a) and d′ ∈
I0(Cv), and

– for all (w1, . . . , wk−1, wk+1, . . . , wn) ∈ Nn such that 1 ≤ wv ≤ iv, and
(e(1,w1), . . . , e(k−1,wk−1), e, e(k+1,wk+1), . . . , e(n,wn)) ∈ Id,A(A) iff e ∈ I(Ck)
where e is e0, ej , or e(x,y).

5. For all A ∈ asc(Γ0),

– (u1, . . . , un, e0) ∈ Id,A(r0) and e0 ∈ Id,A(CA) iff (u1, . . . , un) ∈ Id,A(A),
– e0 ∈ Id,A(C) for all C ∈ H(CA, Γ ′) iff e0 ∈ Id,A(CA) and Cv is consistent in

Γ ′, and
– (e0, d

′′) ∈ Id,A(a) and e0 ∈ Id,A(CA) iff (d′, d′′) ∈ I0(a) and d′ ∈ I0(CA).

Lemma 2. Let Γ0 be a set of implication forms. There exists an interpretation
I such that for every C0 ∈ cls(Γ0), I |= ∃x.C0(x) if and only if (i) there exists
a non-closed forest of Γ0 and (ii) Assoc(Γ0) = 1.

The correctness for the algorithms Cons and Assoc is obtained as follows:

Theorem 1 (Soundness and completeness). Let D be a UML class dia-
gram with association generalization and without roles, and let G(D) be the
translation of D into a set of implication forms. D is consistent if and only
if Cons({C}, ∅,G(D)) = 1 for all C ∈ cls(G(D)) and Assoc(G(D)) = 1.

Theorem 2 (Termination). The consistency checking algorithm Cons termi-
nates.
3 Note that d, d′, d′′, d0 are nodes, e0, ej, e(v,w) are new constants, and u, uj are nodes

or new constants.

14

5 Algorithms and Complexities for Various Expressivities

The proposed consistency checking algorithm terminates; however, Cons still
exhibits a double-exponential complexity in the worst case (and Assoc exhibits
polynomial time complexity). In this section, we will present optimized consis-
tency checking algorithms for class diagrams of different expressive powers.

5.1 Restriction of Inconsistency Triggers

We denote the set of UML class diagrams with association generalization and
without roles as D−

ful. By deleting certain inconsistency triggers, we classify UML
class diagrams that are less expressive than D−

ful. The least set D−
0 of class dia-

grams is obtained by deleting disjointness/completeness constraints and over-
writing/multiple inheritances. We define D−

dis, D−
com, and D−

inh as extensions
of D−

0 by adding disjointness constraints, completeness constraints, and over-
writing/multiple inheritances, respectively. We denote D−

dis+com, D−
dis+inh, and

D−
inh+com as the unions of D−

dis and D−
com, D−

dis and D−
inh, and D−

inh and D−
com,

respectively. In order to design algorithms suitable for these expressivities, we
divide the class diagrams into the five groups, as shown in Fig.2.

D−
dis+com

D−
dis D−

com

D−
0

D−
ful

D−
com+inhD−

dis+inh

D−
inh

Group 5

Group 1

Group 4

Group 3

Group 2

Fig. 2. Classification of UML class diagrams

The least expressive Group 1 is the set of class diagrams obtained by delet-
ing disjointness constraints and overwriting/multiple inheritances (but allowing
attribute multiplicities). Groups 2 and 3 prohibit C1(x) ∨ · · · ∨ Cm(x) as dis-
junctive classes by deleting completeness constraints, and furthermore, Group
2 contains no overwriting/multiple inheritances. Group 4 is restricted by elimi-
nating overwriting/multiple inheritances (but allowing disjointness constraints,
completeness constraints, and attribute multiplicities).

5.2 Restriction of Attribute Value Types

Apart from the restriction of inconsistency triggers, we naturally restrict at-
tribute value types in the overwriting/multiple inheritances. Consider the class

15

hierarchy in Fig.3. Class C1 with attribute a : C inherits attributes a : C ′ and

C2

C1

C3

a : C

C4

a : C ′

a : C ′′

Fig. 3. Attribute value types in overwriting/multiple inheritances

a : C ′′ from superclasses C2 and C4. In this case, if the value type C is a subclass
of all the other value types C ′ and C ′′ of the same name’s attributes in the class
hierarchy, then the consistency checking of the value types C, C ′, and C ′′ can
be guaranteed by the consistency checking of only the value type C.

Let C ∈ cls(Γ0) and Γ ∈ Σ(Γ0). The value types of attributes in class
C are said to be restrictedly defined in Γ when if the superclasses C1, . . . , Cn

of C (i.e., H(C, Γ) = {C1, . . . , Cn}) have the same name’s attributes and the
value types are classes C ′

1, . . . , C ′
m, then a value type C ′

i is a subclass of the
other value types {C ′

1, . . . , C ′
m}\{C ′

i} (i.e.,{C ′
1, . . . , C ′

m} ⊆ H(C ′
i, Γ)). Every

attribute value type is restrictedly defined if the value types of attributes in any
class C ∈ cls(Γ0) are restrictedly defined in any Γ ∈ Σ(Γ0). For example, as
shown in Fig.3, the value types C, C ′, and C ′′ of attribute a in class C1 are
restrictedly defined in Γ1 = {C1(x) → C2(x), C1(x) → C3(x), C3(x) → C4(x),
C1(x) → (a(x, y) → C(y)), C2(x) → (a(x, y) → C ′(y)), C4(x) → (a(x, y) →
C ′′(y)), . . . } if {C, C ′, C ′′} ⊆ H(C0, Γ1), where C0 is C, C ′, or C ′′.

5.3 Optimized Algorithms

We show that Group 1 does not cause any inconsistency and we devise con-
sistency checking algorithms suitable for Groups 2–5. The following algorithm
Cons1 computes the consistency of class diagrams in D−

dis+inh, D−
inh, and D−

dis

if we call Cons1({C0}, ∅, Γ0) for every class C0 ∈ cls(Γ0). Let X be a set and Y
be a family of sets. Then, we define ADD(X, Y) = {Xi ∈ Y | Xi �⊂ X} ∪ {X}
such that X is added to Y and all Xi ⊂ X are removed from Y . Since D−

dis+inh,
D−

inh, and D−
dis do not contain any completeness constraints, there is a unique

decomposed set of Γ0, namely, Σ(Γ0) = {Γ}. Instead of recursive calls, Cons1
performs looping of consistency checking for each element of variable P that
stores unchecked sets of classes.

16

Algorithm Cons1 for D−
dis+inh, D−

inh, and D−
dis

input set of classes δ, family of sets of classes Δ, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
begin

P = {δ}; G = Δ;
while P �= ∅ do

δ ∈ P ; P = P − {δ}; Γ ∈ Σ(Γ0); S =
�

C∈δ H(C, Γ);
if {C,¬C} ⊆ S or {t1, . . . , tn} ⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then return 0;
else G = ADD(δ, G);

for a ∈ att(Γ0) do
if i > j s.t. {≥ i,≤ j} ⊆ N(δ, a, Γ) then return 0;
else δa = E(δ, a, Γ);

if δa �= ∅ and δa, μ0(δa, Γ) �⊆ δ′ for all δ′ ∈ G then
if μ(δa, Γ) �= ∅ then δa = μ0(δa, Γ);
P = ADD(δa , P);

fi
esle

rof
esle

elihw
return 1;

end;

The algorithm Cons2 is simply designed for testing the consistency of an
input class C0 in every Γ ∈ Σ(Γ0), where the multiplicities of attributes in C0 are
checked but the disjointness of its attribute value types are not. This is because
D−

dis+com involves no overwriting/multiple inheritances, i.e., each attribute value
is uniquely typed and if type T is a class (in cls(Γ0)), the consistency of T can be
checked in another call Cons2(T,Γ0). This algorithm computes the consistency
of D−

dis+com if Cons2(C0, Γ0) is called for every class C0 ∈ cls(Γ0).

Algorithm Cons2 for D−
dis+com

input class C0, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
begin

for Γ ∈ Σ(Γ0) do
S = H(C0, Γ);
if {C,¬C} �⊆ S and {t1, . . . , tn} �⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then

for a ∈ att(Γ0) do
if i > j s.t. {≥ i,≤ j} ⊆ N(C0, a, Γ) then return 0;

return 1;
fi

rof
return 0;

end;

It should be noted that the algorithm Cons requires double exponential time
in the worst case. We develop the optimized algorithm Cons3 as the single
exponential version by skipping the sets of classes that are already checked as

17

consistent or inconsistent in any former routine (but Cons limits the skipping to
the set Δ stored in the caller processes). It computes the consistency of D−

com+inh

and D−
ful if we call Cons3({C0}, ∅, Γ0) for every class C0 ∈ cls(Γ0).

Algorithm Cons3 for D−
com+inh and D−

ful

input set of classes δ, family of sets of classes Δ, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
global variables G = ∅, NG = ∅
begin

for Γ ∈ Σ(Γ0) s.t. (δ, Γ) �∈ NG do
S =

�
C∈δ H(C, Γ); fΓ = 0;

if {C,¬C} �⊆ S and {t1, . . . , tn} �⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then fΓ = 1;
for a ∈ att(Γ0) do

if i > j s.t. {≥ i,≤ j} ⊆ N(δ, a, Γ) then fΓ = 0;
else δa = E(δ, a, Γ);

if δa �= ∅ and δa, μ0(δa, Γ) �⊆ δ′ for all δ′ ∈ Δ ∪ G then
if μ(δa, Γ) �= ∅ then δa = μ0(δa, Γ);
fΓ = Cons3(δa,Δ, Γ0);

fi
esle

rof
fi
if fΓ = 1 then G = ADD(δ, G); return 1;
else NG = ADD((δ, Γ), NG);

rof
return 0;

end;

The optimization method of using good and no good variables G and NG
is based on the EXPTIME tableau algorithm in [4]. In Cons1 and Cons3, the
good variable G = {δ1, . . . , δn} contains sets of classes such that each set δi is
consistent in a decomposed set of Γ0 (in Σ(Γ0)). In Cons3, the no good variable
NG contains pairs of a set δ of classes and a decomposed set Γ of Γ0 such that
δ is inconsistent in Γ . Each element in NG exactly indicates the inconsistency
of δ in the set Γ by storing the pair (δ, Γ), so that it is never checked again. In
addition to this method, we consider that further elements can be skipped by
the condition “δa, μ0(δa, Γ) �⊆ δ′ for all δ′ ∈ Δ ∪ G.” This implies that Cons1
and Cons3 skip the consistency checking of the target set δa if a superset δ′ of
either δa or μ0(δa, a, Γ) is already checked in former processes (i.e., δ′ ∈ Δ∪G).
With regard to the skipping condition, the following lemma guarantees that if
μ(δ, Γ) �= ∅, then all the classes C1, . . . , Cn in δ and the sole class C in μ0(δ, Γ)
(= {C}) have the same superclasses. In other words, the consistency checking
of δ can be replaced with the consistency checking of μ0(δ, Γ). Therefore, the
computational steps can be decreased by skipping the target set δa since this set
can be replaced by an already checked superset of the singleton μ0(δa, a, Γ).

Lemma 3. Let Γ0 be a set of implication forms and let Γ ∈ Σ(Γ0). For all δ ⊆
cls(Γ0) and a ∈ att(Γ0), if μ(δ, Γ) �= ∅, then

⋃
C∈δ H(C, Γ) =

⋃
C∈μ0(δ,Γ) H(C, Γ),

N(δ, a, Γ) = N(μ0(δ, Γ), a, Γ), and E(δ, a, Γ) = E(μ0(δ, Γ), a, Γ).

18

We adjust the algorithm Cons3 to class diagrams in which every attribute
value type is restrictedly defined. The algorithm Cons4 is shown below; as indi-
cated by the underlined text, this algorithm is improved by only storing sets of
classes in NG (similar to G). The restriction of value types leads to μ(δa, Γ) �= ∅;
therefore, the size of NG is limited to a set of singletons of classes. In other words,
Cons4 can be adjusted to decrease the space complexity (i.e., NG) to polynomial
space by using the property of Lemma 3. Unfortunately, this adjustment does
not yield a single exponential algorithm if attribute value types are unrestrict-
edly defined. Hence, we need both Cons3 and Cons4 for the case where attribute
value types are restrictedly defined or not.

Algorithm Cons4 for D−
com+inh and D−

ful

input set of classes δ, family of sets of classes Δ, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
global variables G = ∅, NG = ∅
begin

for Γ ∈ Σ(Γ0) do
S =

�
C∈δ H(C, Γ); fΓ = 0;

if {C,¬C} �⊆ S and {t1, . . . , tn} �⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then fΓ = 1;
for a ∈ att(Γ0) do

if i > j s.t. {≥ i,≤ j} ⊆ N(δ, a, Γ) then fΓ = 0;
else δa = E(δ, a, Γ);

if δa �= ∅ and δa, μ0(δa, Γ) �⊆ δ′ for all δ′ ∈ Δ ∪ G then
if μ(δa, Γ) �= ∅ then δa = μ0(δa, Γ);
if δa ∈ NG then fΓ = 0;

else fΓ = Cons4(δa, Δ, Γ0);
fi

esle
rof

fi
if fΓ = 1 then G = ADD(δ, G); return 1;

rof
NG = ADD(δ, NG); return 0;

end;

Without losing the completeness of consistency checking (see Appendix in
[8]), these algorithms have the following computational properties for each class
diagram group (as shown in Table 1). We believe that the complexity classes 0,
P, NP, and PSPACE less than EXPTIME are suitable for us to implement the al-
gorithms for different expressive powers of class diagram groups. For all the class
diagram groups, complexity1 in Table 1 arranges the complexities of algorithms
Cons1, Cons2, and Cons3 with respect to the size of a class diagram. Every class
diagram in D−

0 and D−
com is consistent; therefore, the complexity is zero (i.e., we

do not need to check consistency). Cons1 computes the consistency of D−
dis in

P (polynomial time) and that of D−
inh and D−

dis+inh in EXPTIME (exponential
time). Cons2 computes the consistency of D−

dis+com in NP (non-deterministic
polynomial time), and Cons3 computes the consistency of D−

com+inh and D−
ful in

EXPTIME.

19

Moreover, complexity2 in Table 1 shows the complexities of the algorithms
Cons1, Cons2, and Cons4 for the case in which every attribute value type
is restrictedly defined. In particular, Cons1 computes the consistency of D−

inh

and D−
dis+inh in P, and Cons4 computes the consistency of D−

com+inh and D−
ful

in PSPACE (polynomial space). Therefore, by Lemma 3 and by the skipping
method of consistency checking, the complexities of Cons1 and Cons4 are respec-
tively reduced from EXPTIME to P and PSPACE. Due to spatial constraints,
detailed proofs of the lemmas and theorems have been omitted (see [8]).

6 Conclusion

We introduced the restriction of UML class diagrams based on

(i) inconsistency triggers (disjointness constraints, completeness constraints, and
overwriting/multiple inheritances) and

(ii) attribute value types defined with restrictions in overwriting/multiple inher-
itances.

Inconsistency triggers are employed to classify the expressivity of class diagrams,
and their combination with the attribute value types results in tractable consis-
tency checking of the restricted class diagrams. First, we presented a complete
algorithm for testing the consistency of class diagrams including any inconsis-
tency triggers. Second, the algorithm was suitably refined in order to develop
optimized algorithms for different expressive powers of class diagrams obtained
by deleting some inconsistency triggers. Our algorithms were easily modified de-
pending on the presence of diagram components. The algorithms clarified that
every class diagram in D−

0 and D−
com must have a UML-model (i.e., consistency

is guaranteed) and when every attribute value type is restrictedly defined, the
complexities of class diagrams in D−

inh and D−
dis+inh and in D−

com+inh and D−
ful

are essentially decreased from EXPTIME to P and PSPACE, respectively. Re-
stricted/classified UML class diagrams and their optimized algorithms are new
results; however, the translation into first-order logic is similar to and based on
the study of [1, 2].

Our future research is concerned with the complexity in terms of the depth of
class hierarchies and the average-case complexity for consistency checking. Fur-
thermore, an experimental evaluation should be performed in order to ascertain
the applicability of optimized consistency algorithms.

References

1. B. Beckert, U. Keller, and P. H. Schmitt. Translating the object constraint language
into first-order predicate logic. In Proceedings of VERIFY, Workshop at Federated
Logic Conferences (FLoC), 2002.

2. D. Berardi, A. Cali, D. Calvanese, and G. De Giacomo. Reasoning on UML class
diagrams. Artificial Intelligence, 168(1-2):70–118, 2005.

20

Table 1. Upper-bound complexities of algorithms for testing consistency

UML group complexity1 algorithm complexity2 algorithm

D−
0 0 0

D−
com 0 0

D−
dis P Cons1 P Cons1

D−
inh EXPTIME P

D−
dis+inh EXPTIME P

D−
dis+com NP Cons2 NP Cons2

D−
com+inh EXPTIME Cons3 PSPACE Cons4
D−

ful EXPTIME PSPACE

3. F. M. Donini. Complexity of reasoning. In Description Logic Handbook, pages
96–136, 2003.

4. F. M. Donini and F. Massacci. EXPTIME tableaux for ALC. Artificial Intelligence,
124(1):87–138, 2000.

5. A. S. Evans. Reasoning with UML class diagrams. In Second IEEE Workshop on
Industrial Strength Formal Specification Techniques, WIFT’98, USA, 1998.

6. M. Fowler. UML Distilled: A Brief Guide to the Standard Modeling Object Lan-
guage. Object Technology Series. Addison-Wesley, third edition, September 2003.

7. E. Franconi and G. Ng. The i.com tool for intelligent conceptual modeling. In
KRDB, pages 45–53, 2000.

8. K. Kaneiwa and K. Satoh. Consistency checking algorithms for restricted UML
class diagrams. NII Technical Report, NII-2005-013E, National Institute of Infor-
matics, 2005, http://research.nii.ac.jp/TechReports/05-013E.html.

9. P. G. Kolaitis and J. A. Väänänen. Generalized quantifiers and pebble games on
finite structures. Annals of Pure and Applied Logic, 74(1):23–75, 1995.

10. H. Mannila and K.-J. Räihä. On the complexity of inferring functional dependen-
cies. Discrete Applied Mathematics, 40(2):237–243, 1992.

11. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, Reading, Massachusetts, USA, 1st edition, 1999.

12. K.-D. Schewe and B. Thalheim. Fundamental concepts of object oriented
databases. Acta Cybern, 11(1-2):49–84, 1993.

13. A. Tsiolakis and H. Ehrig. Consistency analysis between UML class and sequence
diagrams using attributed graph gammars. In Proceedings of joint APPLIGRAPH/
GETGRATS Workshop on Graph Transformation Systems, pages 77–86, 2000.

21

